Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Relativistic quantum theory.

Статті в журналах з теми "Relativistic quantum theory"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Relativistic quantum theory".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Frolov, P. A., and A. V. Shebeko. "Relativistic Invariance and Mass Renormalization in Quantum Field Theory." Ukrainian Journal of Physics 59, no. 11 (November 2014): 1060–64. http://dx.doi.org/10.15407/ujpe59.11.1060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Guseinov, I. I. "Quantum Self-Frictional Relativistic Nucleoseed Spinor-Type Tensor Field Theory of Nature." Advances in High Energy Physics 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/6049079.

Повний текст джерела
Анотація:
For study of quantum self-frictional (SF) relativistic nucleoseed spinor-type tensor (NSST) field theory of nature (SF-NSST atomic-molecular-nuclear and cosmic-universe systems) we use the complete orthogonal basis sets of22s+1-component column-matrices type SFΨnljmjδ⁎s-relativistic NSST orbitals (Ψδ⁎s-RNSSTO) and SFXnljmjs-relativistic Slater NSST orbitals (Xs-RSNSSTO) through theψnlmlδ⁎-nonrelativistic scalar orbitals (ψδ⁎-NSO) andχnlml-nonrelativistic Slater type orbitals (χ-NSTO), respectively. Hereδ⁎=pl⁎orδ⁎=α⁎andpl⁎=2l+2-α⁎, α⁎are the integer(α⁎=α, -∞<α≤2) or noninteger(α⁎≠α, -∞<α⁎<3) SF quantum numbers, wheres=0,1/2,1,3/2,2,…. We notice that the nonrelativisticψδ⁎-NSO andχ-NSTO orbitals themselves are obtained from the relativisticΨδ⁎s-RNSSTO andXs-RSNSSTO functions fors=0, respectively. The column-matrices-type SFY1jmjls-RNSST harmonics (Y1ls-RNSSTH) andY2jmjls-modified NSSTH (Y2ls-MNSSTH) functions for arbitrary spinsintroduced by the author in the previous papers are also used. The one- and two-center one-range addition theorems forψδ⁎-NSO and nonintegern χ-NSTO orbitals are presented. The quantum SF relativistic nonperturbative theory forVnljmjδ⁎-RNSST potentials (Vδ⁎-RNSSTP) and their derivatives is also suggested. To study the transportations of mass and momentum in nature the quantum SF relativistic NSST gravitational photon (gph) withs=1is introduced.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Polyzou, W. N., W. Glöckle, and H. Witała. "Spin in Relativistic Quantum Theory." Few-Body Systems 54, no. 11 (December 29, 2012): 1667–704. http://dx.doi.org/10.1007/s00601-012-0526-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

't Hooft, Gerard. "Beyond relativistic quantum string theory." Modern Physics Letters A 29, no. 26 (August 27, 2014): 1430030. http://dx.doi.org/10.1142/s0217732314300304.

Повний текст джерела
Анотація:
The question "What lies beyond the Quantized String or Superstring Theory?" and the question "What lies beyond Quantum Mechanics itself?" might have one common answer: a discretized, classical version of string theory, which lives on a lattice in Minkowski space. The size a of the meshes on this lattice in Minkowski space is determined by the string slope parameter, α′.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Green, H. S. "Quantum Theory of Gravitation." Australian Journal of Physics 51, no. 3 (1998): 459. http://dx.doi.org/10.1071/p97084.

Повний текст джерела
Анотація:
It is possible to construct the non-euclidean geometry of space-time from the information carried by neutral particles. Points are identified with the quantal events in which photons or neutrinos are created and annihilated, and represented by the relativistic density matrices of particles immediately after creation or before annihilation. From these, matrices representing subspaces in any number of dimensions are constructed, and the metric and curvature tensors are derived by an elementary algebraic method; these are similar in all respects to those of Riemannian geometry. The algebraic method is extended to obtain solutions of Einstein’s gravitational field equations for empty space, with a cosmological term. General relativity and quantum theory are unified by the quantal embedding of non-euclidean space-time, and the derivation of a generalisation, consistent with Einstein"s equations, of the special relativistic wave equations of particles of any spin within representations of SO(3) ⊗ SO(4; 2). There are some novel results concerning the dependence of the scale of space-time on properties of the particles by means of which it is observed, and the gauge groups associated with gravitation.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chanyal, B. C. "A relativistic quantum theory of dyons wave propagation." Canadian Journal of Physics 95, no. 12 (December 2017): 1200–1207. http://dx.doi.org/10.1139/cjp-2017-0080.

Повний текст джерела
Анотація:
Beginning with the quaternionic generalization of the quantum wave equation, we construct a simple model of relativistic quantum electrodynamics for massive dyons. A new quaternionic form of unified relativistic wave equation consisting of vector and scalar functions is obtained, and also satisfy the quaternionic momentum eigenvalue equation. Keeping in mind the importance of quantum field theory, we investigate the relativistic quantum structure of electromagnetic wave propagation of dyons. The present quantum theory of electromagnetism leads to generalized Lorentz gauge conditions for the electric and magnetic charge of dyons. We also demonstrate the universal quantum wave equations for two four-potentials as well as two four-currents of dyons. The generalized continuity equations for massive dyons in case of quantum fields are expressed. Furthermore, we concluded that the quantum generalization of electromagnetic field equations of dyons can be related to analogous London field equations (i.e., current to electromagnetic fields in and around a superconductor).
Стилі APA, Harvard, Vancouver, ISO та ін.
7

LUNDBERG, LARS-ERIK. "QUANTUM THEORY, HYPERBOLIC GEOMETRY AND RELATIVITY." Reviews in Mathematical Physics 06, no. 01 (February 1994): 39–49. http://dx.doi.org/10.1142/s0129055x94000043.

Повний текст джерела
Анотація:
We construct a Lorentz-invariant quantum theory on velocity hyperboloids, with Schrödinger theory as its Euclidean analogue and with the property that the scattering operator is Poincaré invariant. This allows us to introduce the classical space-time concept for a macroscopic description of some properties of the microscopic scattering operator. This gives a completely novel approach to the relation between microscopic quantum theory and classical macroscopic sapce-time concepts. Hyperbolic integral geometry will be developed and used extensively in the construction of the theory, which might be called hyperbolic quantum theory. We stress that this is a radically new kind of relativistic quantum theory, where the term, relativistic, has a new meaning, dictated by the quantum theory. Special relativity was extracted from Maxwell's classical theory and should be properly adapted to quantum theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shin, Ghi Ryang, and Johann Rafelski. "Relativistic classical limit of quantum theory." Physical Review A 48, no. 3 (September 1, 1993): 1869–74. http://dx.doi.org/10.1103/physreva.48.1869.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Aharonov, Yakir, David Z. Albert, and Lev Vaidman. "Measurement process in relativistic quantum theory." Physical Review D 34, no. 6 (September 15, 1986): 1805–13. http://dx.doi.org/10.1103/physrevd.34.1805.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Strocchi, F. "Relativistic Quantum Mechanics and Field Theory." Foundations of Physics 34, no. 3 (March 2004): 501–27. http://dx.doi.org/10.1023/b:foop.0000019625.30165.35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Wang, Zheng-Chuan, and Bo-Zang Li. "Geometric phase in relativistic quantum theory." Physical Review A 60, no. 6 (December 1, 1999): 4313–17. http://dx.doi.org/10.1103/physreva.60.4313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Gitman, D. M., and A. L. Shelepin. "Orientable Objects in Relativistic Quantum Theory." Russian Physics Journal 59, no. 11 (March 2017): 1962–70. http://dx.doi.org/10.1007/s11182-017-1002-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Zhuang, P., and U. Heinz. "Relativistic Quantum Transport Theory for Electrodynamics." Annals of Physics 245, no. 2 (February 1996): 311–38. http://dx.doi.org/10.1006/aphy.1996.0011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Ziefle, Reiner Georg. "Newtonian quantum gravity." Physics Essays 33, no. 1 (March 4, 2020): 99–113. http://dx.doi.org/10.4006/0836-1398-33.1.99.

Повний текст джерела
Анотація:
Newtonian Quantum Gravity (NQG) unifies quantum physics with Newton's theory of gravity and calculates the so-called “general relativistic” phenomena more precisely and in a much simpler way than General Relativity, whose complicated theoretical construct is no longer needed. Newton's theory of gravity is less accurate than Albert Einstein's theory of general relativity. Famous examples are the precise predictions of General Relativity at binary pulsars. This is the reason why relativistic physicists claim that there can be no doubt that Einstein's theory of relativity correctly describes our physical reality. With the example of the famous “Hulse-Taylor binary” (also known as PSR 1913 + 16 or PSR B1913 + 16), the author proves that the so-called “general relativistic phenomena” observed at this binary solar system can be calculated without having any knowledge on relativistic physics. According to philosophical and epistemological criteria, this should not be possible, if Einstein's theory of relativity indeed described our physical reality. Einstein obviously merely developed an alternative method to calculate these phenomena without quantum physics. The reason was that in those days quantum physics was not yet generally taken into account. It is not the first time that a lack of knowledge of the underlying physical phenomena has to be compensated by complicated mathematics. Einstein's theory of general relativity indirectly already includes additional quantum physical effects of gravitation. This is the reason why it cannot be possible to unite Einstein's theory of general relativity with quantum physics, unless one uses “mathematical tricks” that make the additional quantum physical effects disappear again in the end.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Mirón Granese, Nahuel, Alejandra Kandus, and Esteban Calzetta. "Field Theory Approaches to Relativistic Hydrodynamics." Entropy 24, no. 12 (December 7, 2022): 1790. http://dx.doi.org/10.3390/e24121790.

Повний текст джерела
Анотація:
Just as non-relativistic fluids, oftentimes we find relativistic fluids in situations where random fluctuations cannot be ignored, with thermal and turbulent fluctuations being the most relevant examples. Because of the theory’s inherent nonlinearity, fluctuations induce deep and complex changes in the dynamics of the system. The Martin–Siggia–Rose technique is a powerful tool that allows us to translate the original hydrodynamic problem into a quantum field theory one, thus taking advantage of the progress in the treatment of quantum fields out of equilibrium. To demonstrate this technique, we shall consider the thermal fluctuations of the spin two modes of a relativistic fluid, in a theory where hydrodynamics is derived by taking moments of the Boltzmann equation under the relaxation time approximation.
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Fanchi, John R. "Parametrized Relativistic Quantum Theory in Curved Spacetime." Journal of Physics: Conference Series 2482, no. 1 (May 1, 2023): 012002. http://dx.doi.org/10.1088/1742-6596/2482/1/012002.

Повний текст джерела
Анотація:
Abstract The purpose of this paper is to present a parametrized relativistic quantum theory (pRQT) in curved spacetime. The formulation of pRQT in curved spacetime is developed and applied to free particle motion in flat and curved spacetime. It provides a theory for calculating probability amplitudes in curved spacetime. Unlike other formulations of parametrized relativistic dynamics (pRD), this work assumes that the metric tensor does not depend on the invariant evolution parameter.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Daguerre, L., G. Torroba, R. Medina, and M. Solís. "NON RELATIVISTIC QUANTUM FIELD THEORY: DYNAMICS AND IRREVERSIBILITY." Anales AFA 32, no. 4 (January 15, 2022): 93–98. http://dx.doi.org/10.31527/analesafa.2021.32.4.93.

Повний текст джерела
Анотація:
We study aspects of quantum field theory at finite density using techniques and concepts from quantum information theory. We focus on massive Dirac fermions with chemical potential in 1+1 space-time dimensions. Using the entanglement entropy on an interval, we construct an entropic c-function that is finite. This c-function is not monotonous,and incorporates the long-range entanglement from the Fermi surface. Motivated by previous works on lattice models,we next compute the Renyi entropies numerically, and find Friedel-type oscillations. Next, we analyze the mutual in-formation as a measure of correlation functions between different regions. Using a long-distance expansion developed by Cardy, we show how the mutual information detects the Fermi surface correlations already at leading order in the expansion. Finally, we analyze the relative entropy and its Renyi generalizations in order to distinguish states with different charge. We find that states in different superselection sectors give rise to a super-extensive behavior in the relative entropy.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Balachandran, A. P. "Localization in quantum field theory." International Journal of Geometric Methods in Modern Physics 14, no. 08 (May 11, 2017): 1740008. http://dx.doi.org/10.1142/s0219887817400084.

Повний текст джерела
Анотація:
In non-relativistic quantum mechanics, Born’s principle of localization is as follows: For a single particle, if a wave function [Formula: see text] vanishes outside a spatial region [Formula: see text], it is said to be localized in [Formula: see text]. In particular, if a spatial region [Formula: see text] is disjoint from [Formula: see text], a wave function [Formula: see text] localized in [Formula: see text] is orthogonal to [Formula: see text]. Such a principle of localization does not exist compatibly with relativity and causality in quantum field theory (QFT) (Newton and Wigner) or interacting point particles (Currie, Jordan and Sudarshan). It is replaced by symplectic localization of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localization gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with “continuous” spin. This review outlines the basic principles underlying symplectic localization and shows or mentions its deep implications. In particular, it has the potential to affect relativistic quantum information theory and black hole physics.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Kreshchuk, Michael, Shaoyang Jia, William M. Kirby, Gary Goldstein, James P. Vary, and Peter J. Love. "Light-Front Field Theory on Current Quantum Computers." Entropy 23, no. 5 (May 12, 2021): 597. http://dx.doi.org/10.3390/e23050597.

Повний текст джерела
Анотація:
We present a quantum algorithm for simulation of quantum field theory in the light-front formulation and demonstrate how existing quantum devices can be used to study the structure of bound states in relativistic nuclear physics. Specifically, we apply the Variational Quantum Eigensolver algorithm to find the ground state of the light-front Hamiltonian obtained within the Basis Light-Front Quantization (BLFQ) framework. The BLFQ formulation of quantum field theory allows one to readily import techniques developed for digital quantum simulation of quantum chemistry. This provides a method that can be scaled up to simulation of full, relativistic quantum field theories in the quantum advantage regime. As an illustration, we calculate the mass, mass radius, decay constant, electromagnetic form factor, and charge radius of the pion on the IBM Vigo chip. This is the first time that the light-front approach to quantum field theory has been used to enable simulation of a real physical system on a quantum computer.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

ELZE, H. TH, M. GYULASSY, D. VASAK, HANNELORE HEINZ, H. STÖCKER, and W. GREINER. "TOWARDS A RELATIVISTIC SELFCONSISTENT QUANTUM TRANSPORT THEORY OF HADRONIC MATTER." Modern Physics Letters A 02, no. 07 (July 1987): 451–60. http://dx.doi.org/10.1142/s0217732387000562.

Повний текст джерела
Анотація:
We derive the relativistic quantum transport- and constraint equations for a relativistic field theory of baryons coupled to scalar and vector mesons. We extract a selfconsistent momentum dependent Vlasov term and the structure of quantum corrections for the Vlasov-Uehling-Uhlenbeck approach. The inclusion of pions and deltas into this transport theory is discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

De Martini, Francesco, and Enrico Santamato. "Proof of the spin-statistics theorem in the relativistic regimen by Weyl’s conformal quantum mechanics." International Journal of Quantum Information 14, no. 04 (June 2016): 1640011. http://dx.doi.org/10.1142/s0219749916400116.

Повний текст джерела
Анотація:
The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle” but by the adoption of the complex standard relativistic quantum field theory. In a recent paper [E. Santamato and F. D. De Martini, Found. Phys. 45 (2015) 858] we presented a complete proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the “Conformal Quantum Geometrodynamics” (CQG). In this paper, by the same theory, the proof of the spin-statistics theorem (SST) is extended to the relativistic domain in the scenario of curved spacetime. No relativistic quantum field operators are used in the present proof and the particle exchange properties are drawn from rotational invariance rather than from Lorentz invariance. Our relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. As in the nonrelativistic case, we find once more that the “intrinsic helicity” of the elementary particles enters naturally into play. It is therefore this property, not considered in the standard quantum mechanics (SQM), which determines the correct spin-statistics connection observed in Nature.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Jalalzadeh, Shahram, and A. J. S. Capistrano. "Bohmian mechanics of Klein–Gordon equation via quantum metric and mass." Modern Physics Letters A 34, no. 33 (October 28, 2019): 1950270. http://dx.doi.org/10.1142/s0217732319502705.

Повний текст джерела
Анотація:
The causal stochastic interpretation of relativistic quantum mechanics has the problems of superluminal velocities, motion backward in time and the incorrect non-relativistic limit. In this paper, according to the original ideas of de Broglie, Bohm and Takabayasi, we introduce simultaneously a quantum mass and a quantum metric of a curved spacetime to obtain a correct relativistic theory free of mentioned problems.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Anastopoulos, Charis, Bei-Lok Hu, and Konstantina Savvidou. "Towards a Field-Theory based Relativistic Quantum Information." Journal of Physics: Conference Series 2533, no. 1 (June 1, 2023): 012004. http://dx.doi.org/10.1088/1742-6596/2533/1/012004.

Повний текст джерела
Анотація:
Abstract We present our program for the development of quantum informational concepts in relativistic systems in terms of the unequal-time correlation functions of quantum fields. We employ two formalisms that provide the basis for further developments. (i) The Quantum Temporal Probabilities (QTP) Method for quantum field measurements and (ii) the Closed-Time-Path (CTP) formalism for causal time evolutions. We present the main ideas of QTP and we show how it relates to the CTP formalism, allowing us to express concepts of measurement theory in terms of path-integrals. We also present many links of our program to non-equilibrium quantum field theories. Details can be found in a recent paper by the authors [1].
Стилі APA, Harvard, Vancouver, ISO та ін.
24

GONCHAR, M. O., A. E. KALOSHIN, and V. P. LOMOV. "FERMION RESONANCE IN QUANTUM FIELD THEORY." Modern Physics Letters A 22, no. 33 (October 30, 2007): 2511–19. http://dx.doi.org/10.1142/s0217732307025443.

Повний текст джерела
Анотація:
We accurately derive the fermion resonance propagator by means of Dyson summation of the self-energy contribution. It turns out that the relativistic fermion resonance differs essentially from its boson analog.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Serot, Brian D., and John Dirk Walecka. "Recent Progress in Quantum Hadrodynamics." International Journal of Modern Physics E 06, no. 04 (December 1997): 515–631. http://dx.doi.org/10.1142/s0218301397000299.

Повний текст джерела
Анотація:
Quantum hadrodynamics (QHD) is a framework for describing the nuclear many-body problem as a relativistic system of baryons and mesons. Motivation is given for the utility of such an approach and for the importance of basing it on a local, Lorentz-invariant lagrangian density. Calculations of nuclear matter and finite nuclei in both renormalizable and nonrenormalizable, effective QHD models are discussed. Connections are made between the effective and renormalizable models, as well as between relativistic mean-field theory and more sophisticated treatments. Recent work in QHD involving nuclear structure, electroweak interactions in nuclei, relativistic transport theory, nuclear matter under extreme conditions, and the evaluation of loop diagrams is reviewed.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Nikolić, Hrvoje. "Bohmian mechanics in relativistic quantum mechanics, quantum field theory and string theory." Journal of Physics: Conference Series 67 (May 1, 2007): 012035. http://dx.doi.org/10.1088/1742-6596/67/1/012035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Urbanowski, K. "On the Velocity of Moving Relativistic Unstable Quantum Systems." Advances in High Energy Physics 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/461987.

Повний текст джерела
Анотація:
We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Larin, S. A. "Higher-derivative relativistic quantum gravity." Modern Physics Letters A 33, no. 05 (February 20, 2018): 1850028. http://dx.doi.org/10.1142/s0217732318500281.

Повний текст джерела
Анотація:
Relativistic quantum gravity with the action including terms quadratic in the curvature tensor is analyzed. We derive new expressions for the corresponding Lagrangian and the graviton propagator within dimensional regularization. We argue that the considered model is a good candidate for the fundamental quantum theory of gravitation.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Earman, John, and Giovanni Valente. "Relativistic Causality in Algebraic Quantum Field Theory." International Studies in the Philosophy of Science 28, no. 1 (January 2, 2014): 1–48. http://dx.doi.org/10.1080/02698595.2014.915652.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Hegerfeldt, Gerhard C. "Violation of Causality in Relativistic Quantum Theory?" Physical Review Letters 54, no. 22 (June 3, 1985): 2395–98. http://dx.doi.org/10.1103/physrevlett.54.2395.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Olavo, L. S. F. "Foundations of quantum mechanics: non-relativistic theory." Physica A: Statistical Mechanics and its Applications 262, no. 1-2 (January 1999): 197–214. http://dx.doi.org/10.1016/s0378-4371(98)00395-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Liboff, Richard L., and Walter T. Grandy. "Kinetic Theory. Classical, Quantum, and Relativistic Descriptions." American Journal of Physics 59, no. 4 (April 1991): 379–81. http://dx.doi.org/10.1119/1.16509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Valente, Giovanni. "Local disentanglement in relativistic quantum field theory." Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44, no. 4 (November 2013): 424–32. http://dx.doi.org/10.1016/j.shpsb.2013.09.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Das, A. "Quantized phase space and relativistic quantum theory." Nuclear Physics B - Proceedings Supplements 6 (March 1989): 249–50. http://dx.doi.org/10.1016/0920-5632(89)90448-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Dosch, H. G., and V. F. Müller. "The facets of relativistic quantum field theory." European Physical Journal H 35, no. 4 (March 25, 2011): 331–75. http://dx.doi.org/10.1140/epjh/e2011-10030-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Saunders, Simon W. "Locality, Complex Numbers, and Relativistic Quantum Theory." PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992, no. 1 (January 1992): 365–80. http://dx.doi.org/10.1086/psaprocbienmeetp.1992.1.192768.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Redhead, Michael. "The Vacuum in Relativistic Quantum Field Theory." PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994, no. 2 (January 1994): 77–87. http://dx.doi.org/10.1086/psaprocbienmeetp.1994.2.192919.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

NARNHOFER, HEIDE. "ENTROPY DENSITY FOR RELATIVISTIC QUANTUM FIELD THEORY." Reviews in Mathematical Physics 06, no. 05a (January 1994): 1127–45. http://dx.doi.org/10.1142/s0129055x94000390.

Повний текст джерела
Анотація:
We show how the nuclearity condition of Buchholz and Wichmann allows to define in the ground state a local entropy with the desired properties despite the fact that local algebras are type III. Generalization to temperature states is also possible so that thermodynamic functions also exist in the context of relativistic quantum field theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ruijgrok, Th W. "General Requirements for a Relativistic Quantum Theory." Few-Body Systems 25, no. 1-3 (December 30, 1998): 5–27. http://dx.doi.org/10.1007/s006010050091.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Gill, T. L., T. Morris, and S. K. Kurtz. "Foundations for Proper-time Relativistic Quantum Theory." Universal Journal of Physics and Application 9, no. 1 (February 2015): 24–40. http://dx.doi.org/10.13189/ujpa.2015.030104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Sonego, Sebastiano. "Quasiprobabilities and explicitly covariant relativistic quantum theory." Physical Review A 44, no. 9 (November 1, 1991): 5369–82. http://dx.doi.org/10.1103/physreva.44.5369.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Gill, Tepper L., Trey Morris, and Stewart K. Kurtz. "Foundations for proper-time relativistic quantum theory." Journal of Physics: Conference Series 615 (May 14, 2015): 012013. http://dx.doi.org/10.1088/1742-6596/615/1/012013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Wu, Xiang-Yao, Si-Qi Zhang, Bo-Jun Zhang, Xiao-Jing Liu, Jing Wang, Hong Li, Nou Ba, Li Xiao, Yi-Heng Wu, and Jing-Wu Li. "Non-relativistic Quantum Theory at Finite Temperature." International Journal of Theoretical Physics 52, no. 8 (March 7, 2013): 2599–606. http://dx.doi.org/10.1007/s10773-013-1547-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Arteaga, Daniel. "Quasiparticle excitations in relativistic quantum field theory." Annals of Physics 324, no. 4 (April 2009): 920–54. http://dx.doi.org/10.1016/j.aop.2008.12.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Maiani, L., and M. Testa. "Unstable Systems in Relativistic Quantum Field Theory." Annals of Physics 263, no. 2 (March 1998): 353–67. http://dx.doi.org/10.1006/aphy.1997.5762.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Tkach, T. B. "QUANTUM DEFECT APPROXIMATION IN THEORY OF RADIATIVE TRANSITIONS IN SPECTRUM OF Li-LIKE CALCIUM." Photoelectronics, no. 24 (December 1, 2015): 88–93. http://dx.doi.org/10.18524/0235-2435.2015.24.158132.

Повний текст джерела
Анотація:
The combined relativistic quantum defect approximation and relativistic many-body perturbation theory with the zeroth order optimized approximation are applied to studying the Li-like calcium oscillator strengths of radiative transitions from ground state to the Rydberg states. New element in our scheme is an implementation of optimized relativistic quantum defect approximation to an energy approach frames. Comparison of calculated oscillator strengths with available theoretical and experimental (compillated) data is performed and a number of oscillator strengths are presented firstly.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

RING, P., H. ABUSARA, A. V. AFANASJEV, G. A. LALAZISSIS, T. NIKŠIĆ, and D. VRETENAR. "MODERN APPLICATIONS OF COVARIANT DENSITY FUNCTIONAL THEORY." International Journal of Modern Physics E 20, no. 02 (February 2011): 235–43. http://dx.doi.org/10.1142/s0218301311017570.

Повний текст джерела
Анотація:
Modern applications of Covariant Density Functional Theory (CDFT) are discussed. First we show a systematic investigation of fission barriers in actinide nuclei within constraint relativistic mean field theory allowing for triaxial deformations. In the second part we discuss a microscopic theory of quantum phase transitions (QPT) based on the relativistic generator coordinate method.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

YAMAMOTO, KUNIO. "DIFFICULTY OF BOUND STATE PROBLEMS IN RELATIVISTIC QUANTUM FIELD THEORY." Modern Physics Letters A 13, no. 02 (January 20, 1998): 87–89. http://dx.doi.org/10.1142/s0217732398000127.

Повний текст джерела
Анотація:
In the previous paper, it has been pointed out that, for any model with real bound state in relativistic quantum field theory, Feynman rules do not give the physical amplitude in which the effects of real bound state are considered. By investigating this fact, it is found that an important guiding principle indispensable to discuss real bound state problems is unknown. The way to investigate this principle is not within the framework of relativistic quantum field theory.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Erler, Jens. "Considerations Concerning the Little Group." Universe 9, no. 9 (September 15, 2023): 420. http://dx.doi.org/10.3390/universe9090420.

Повний текст джерела
Анотація:
I very briefly review both the historical and constructive approaches to relativistic quantum mechanics and relativistic quantum field theory, including remarks on the possibility of a non-vanishing photon mass, as well as a foolhardy speculation regarding dark matter.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Ziefle, Reiner Georg. "Newtonian quantum gravity and the derivation of the gravitational constant G and its fluctuations." Physics Essays 33, no. 4 (December 25, 2020): 387–94. http://dx.doi.org/10.4006/0836-1398-33.4.387.

Повний текст джерела
Анотація:
The theory of gravity “Newtonian quantum gravity” (NQG) is an ingeniously simple theory, because it precisely predicts so-called “general relativistic phenomena,” as, for example, that observed at the binary pulsar PSR B1913 + 16, by just applying Kepler’s second law on quantized gravitational fields. It is an irony of fate that the unsuspecting relativistic physicists still have to effort with the tensor calculations of an imaginary four-dimensional space-time. Everybody can understand that a mass that moves through space must meet more “gravitational quanta” emitted by a certain mass, if it moves faster than if it moves slower or rests against a certain mass, which must cause additional gravitational effects that must be added to the results of Newton's theory of gravity. However, today's physicists cannot recognize this because they are caught in Einstein's relativistic thinking and as general relativity can coincidentally also predict these quantum effects by a mathematically defined four-dimensional curvature of space-time. Advanced NQG is also able to derive the gravitational constant G and explains why G must fluctuate. The “string theory” tries to unify quantum physics with general relativity, but as the so-called “general relativistic” phenomena are quantum physical effects, it cannot be a realistic theory. The “energy wave theory” is lead to absurdity by the author.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії