Добірка наукової літератури з теми "Relatively hyperbolic group"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Relatively hyperbolic group".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Relatively hyperbolic group"

1

BOWDITCH, B. H. "RELATIVELY HYPERBOLIC GROUPS." International Journal of Algebra and Computation 22, no. 03 (May 2012): 1250016. http://dx.doi.org/10.1142/s0218196712500166.

Повний текст джерела
Анотація:
In this paper we develop some of the foundations of the theory of relatively hyperbolic groups as originally formulated by Gromov. We prove the equivalence of two definitions of this notion. One is essentially that of a group admitting a properly discontinuous geometrically finite action on a proper hyperbolic space, that is, such that every limit point is either a conical limit point or a bounded parabolic point. The other is that of a group which admits a cofinite action on a connected fine hyperbolic graph. We define a graph to be "fine" if there are only finitely many circuits a given length containing any given edge, and we develop some of the properties of this notion. We show how a relatively hyperbolic group can be assumed to act on a proper hyperbolic space of a particular geometric form. We define the boundary of a relatively hyperbolic group, and show that the limit set of any geometrically finite action of the group is equivariantly homeomorphic to this boundary. This generalizes a result of Tukia for geometrically finite kleinian groups. We also describe when the boundary is connected.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

BELEGRADEK, IGOR, and ANDRZEJ SZCZEPAŃSKI. "ENDOMORPHISMS OF RELATIVELY HYPERBOLIC GROUPS." International Journal of Algebra and Computation 18, no. 01 (February 2008): 97–110. http://dx.doi.org/10.1142/s0218196708004305.

Повний текст джерела
Анотація:
We generalize some results of Paulin and Rips-Sela on endomorphisms of hyperbolic groups to relatively hyperbolic groups, and in particular prove the following. • If G is a nonelementary relatively hyperbolic group with slender parabolic subgroups, and either G is not co-Hopfian or Out (G) is infinite, then G splits over a slender group. • If H is a nonparabolic subgroup of a relatively hyperbolic group, and if any isometric H-action on an ℝ-tree is trivial, then H is Hopfian. • If G is a nonelementary relatively hyperbolic group whose peripheral subgroups are finitely generated, then G has a nonelementary relatively hyperbolic quotient that is Hopfian. • Any finitely presented group is isomorphic to a finite index subgroup of Out (H) for some group H with Kazhdan property (T). (This sharpens a result of Ollivier–Wise).
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Mihalik, M., and E. Swenson. "Relatively hyperbolic groups with semistable fundamental group at infinity." Journal of Topology 14, no. 1 (December 3, 2020): 39–61. http://dx.doi.org/10.1112/topo.12178.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gerasimov, Victor, and Leonid Potyagailo. "Similar Relatively Hyperbolic Actions of a Group." International Mathematics Research Notices 2016, no. 7 (June 30, 2015): 2068–103. http://dx.doi.org/10.1093/imrn/rnv170.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bumagin, Inna. "Time complexity of the conjugacy problem in relatively hyperbolic groups." International Journal of Algebra and Computation 25, no. 05 (August 2015): 689–723. http://dx.doi.org/10.1142/s0218196715500162.

Повний текст джерела
Анотація:
If u and v are two conjugate elements of a hyperbolic group then the length of a shortest conjugating element for u and v can be bounded by a linear function of the sum of their lengths, as was proved by Lysenok in [Some algorithmic properties of hyperbolic groups, Izv. Akad. Nauk SSSR Ser. Mat. 53(4) (1989) 814–832, 912]. Bridson and Haefliger showed in [Metrics Spaces of Non-Positive Curvature (Springer-Verlag, Berlin, 1999)] that in a hyperbolic group the conjugacy problem can be solved in polynomial time. We extend these results to relatively hyperbolic groups. In particular, we show that both the conjugacy problem and the conjugacy search problem can be solved in polynomial time in a relatively hyperbolic group, whenever the corresponding problem can be solved in polynomial time in each parabolic subgroup. We also prove that if u and v are two conjugate hyperbolic elements of a relatively hyperbolic group then the length of a shortest conjugating element for u and v is linear in terms of their lengths.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

TRAN, HUNG CONG. "RELATIONS BETWEEN VARIOUS BOUNDARIES OF RELATIVELY HYPERBOLIC GROUPS." International Journal of Algebra and Computation 23, no. 07 (November 2013): 1551–72. http://dx.doi.org/10.1142/s0218196713500367.

Повний текст джерела
Анотація:
Suppose a group G is relatively hyperbolic with respect to a collection ℙ of its subgroups and also acts properly, cocompactly on a CAT(0) (or δ-hyperbolic) space X. The relatively hyperbolic structure provides a relative boundary ∂(G, ℙ). The CAT(0) structure provides a different boundary at infinity ∂X. In this paper, we examine the connection between these two spaces at infinity. In particular, we show that ∂(G, ℙ) is G-equivariantly homeomorphic to the space obtained from ∂X by identifying the peripheral limit points of the same type.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Fujiwara, Koji. "Asymptotically isometric metrics on relatively hyperbolic groups and marked length spectrum." Journal of Topology and Analysis 07, no. 02 (March 26, 2015): 345–59. http://dx.doi.org/10.1142/s1793525315500132.

Повний текст джерела
Анотація:
We prove asymptotically isometric, coarsely geodesic metrics on a toral relatively hyperbolic group are coarsely equal. The theorem applies to all lattices in SO (n, 1). This partly verifies a conjecture by Margulis. In the case of hyperbolic groups/spaces, our result generalizes a theorem by Furman and a theorem by Krat. We discuss an application to the isospectral problem for the length spectrum of Riemannian manifolds. The positive answer to this problem has been known for several cases. Most of them have hyperbolic fundamental groups. We do not solve the isospectral problem in the original sense, but prove the universal covers are (1, C)-quasi-isometric if the fundamental group is a toral relatively hyperbolic group.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dahmani, François, and Vincent Guirardel. "Recognizing a relatively hyperbolic group by its Dehn fillings." Duke Mathematical Journal 167, no. 12 (September 2018): 2189–241. http://dx.doi.org/10.1215/00127094-2018-0014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

DAHMANI, FRANÇOIS. "PARABOLIC GROUPS ACTING ON ONE-DIMENSIONAL COMPACT SPACES." International Journal of Algebra and Computation 15, no. 05n06 (October 2005): 893–906. http://dx.doi.org/10.1142/s0218196705002530.

Повний текст джерела
Анотація:
Given a class of compact spaces, we ask which groups can be maximal parabolic subgroups of a relatively hyperbolic group whose boundary is in the class. We investigate the class of one-dimensional connected boundaries. We get that any non-torsion infinite finitely-generated group is a maximal parabolic subgroup of some relatively hyperbolic group with connected one-dimensional boundary without global cut point. For boundaries homeomorphic to a Sierpinski carpet or a 2-sphere, the only maximal parabolic subgroups allowed are virtual surface groups (hyperbolic, or virtually ℤ + ℤ).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

FUKAYA, TOMOHIRO, and SHIN-ICHI OGUNI. "THE COARSE BAUM–CONNES CONJECTURE FOR RELATIVELY HYPERBOLIC GROUPS." Journal of Topology and Analysis 04, no. 01 (March 2012): 99–113. http://dx.doi.org/10.1142/s1793525312500021.

Повний текст джерела
Анотація:
We study a group which is hyperbolic relative to a finite family of infinite subgroups. We show that the group satisfies the coarse Baum–Connes conjecture if each subgroup belonging to the family satisfies the coarse Baum–Connes conjecture and admits a finite universal space for proper actions. If the group is torsion-free, then it satisfies the analytic Novikov conjecture.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Relatively hyperbolic group"

1

Mole, Adam [Verfasser], and Arthur [Akademischer Betreuer] Bartels. "A flow space for a relatively hyperbolic group / Adam Mole ; Betreuer: Arthur Bartels." Münster : Universitäts- und Landesbibliothek Münster, 2013. http://d-nb.info/1141680874/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hume, David S. "Embeddings of infinite groups into Banach spaces." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:e38f58ec-484c-4088-bb44-1556bc647cde.

Повний текст джерела
Анотація:
In this thesis we build on the theory concerning the metric geometry of relatively hyperbolic and mapping class groups, especially with respect to the difficulty of embedding such groups into Banach spaces. In Chapter 3 (joint with Alessandro Sisto) we construct simple embeddings of closed graph manifold groups into a product of three metric trees, answering positively a conjecture of Smirnov concerning the Assouad-Nagata dimension of such spaces. Consequently, we obtain optimal embeddings of such spaces into certain Banach spaces. The ideas here have been extended to other closed three-manifolds and to higher dimensional analogues of graph manifolds. In Chapter 4 we give an explicit method of embedding relatively hyperbolic groups into certain Banach spaces, which yields optimal bounds on the compression exponent of such groups relative to their peripheral subgroups. From this we deduce that the fundamental group of every closed three-manifold has Hilbert compression exponent one. In Chapter 5 we prove that relatively hyperbolic spaces with a tree-graded quasi-isometry representative can be characterised by a relative version of Manning's bottleneck property. This applies to the Bestvina-Bromberg-Fujiwara quasi-trees of spaces, yielding an embedding of each mapping class group of a closed surface into a finite product of simplicial trees. From this we obtain explicit embeddings of mapping class groups into certain Banach spaces and deduce that these groups have finite Assouad-Nagata dimension. It also applies to relatively hyperbolic groups, proving that such groups have finite Assouad-Nagata dimension if and only if each peripheral subgroup does.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Genevois, Anthony. "Cubical-like geometry of quasi-median graphs and applications to geometric group theory." Thesis, Aix-Marseille, 2017. http://www.theses.fr/2017AIXM0569/document.

Повний текст джерела
Анотація:
La classe des graphes quasi-médians est une généralisation des graphes médians, ou de manière équivalente, des complexes cubiques CAT(0). L'objectif de cette thèse est d'introduire ces graphes dans le monde de la théorie géométrique des groupes. Dans un premier temps, nous étendons la notion d'hyperplan définie dans les complexes cubiques CAT(0), et nous montrons que la géométrie d'un graphe quasi-médian se réduit essentiellement à la combinatoire de ses hyperplans. Dans la deuxième partie de notre texte, qui est le cœur de la thèse, nous exploitons la structure particulière des hyperplans pour démontrer des résultats de combinaison. L'idée principale est que si un groupe agit d'une bonne manière sur un graphe quasi-médian de sorte que les stabilisateurs de cliques satisfont une certaine propriété P de courbure négative ou nulle, alors le groupe tout entier doit satisfaire P également. Les propriétés que nous considérons incluent : l'hyperbolicité (éventuellement relative), les compressions lp (équivariantes), la géométrie CAT(0) et la géométrie cubique. Finalement, la troisième et dernière partie de la thèse est consacrée à l'application des critères généraux démontrés précédemment à certaines classes de groupes particulières, incluant les produits graphés, les groupes de diagrammes introduits par Guba et Sapir, certains produits en couronne, et certains graphes de groupes. Les produits graphés constituent notre application la plus naturelle, où le lien entre le groupe et son graphe quasi-médian associé est particulièrement fort et explicite; en particulier, nous sommes capables de déterminer précisément quand un produit graphé est relativement hyperbolique
The class of quasi-median graphs is a generalisation of median graphs, or equivalently of CAT(0) cube complexes. The purpose of this thesis is to introduce these graphs in geometric group theory. In the first part of our work, we extend the definition of hyperplanes from CAT(0) cube complexes, and we show that the geometry of a quasi-median graph essentially reduces to the combinatorics of its hyperplanes. In the second part, we exploit the specific structure of the hyperplanes to state combination results. The main idea is that if a group acts in a suitable way on a quasi-median graph so that clique-stabilisers satisfy some non-positively curved property P, then the whole group must satisfy P as well. The properties we are interested in are mainly (relative) hyperbolicity, (equivariant) lp-compressions, CAT(0)-ness and cubicality. In the third part, we apply our general criteria to several classes of groups, including graph products, Guba and Sapir's diagram products, some wreath products, and some graphs of groups. Graph products are our most natural examples, where the link between the group and its quasi-median graph is particularly strong and explicit; in particular, we are able to determine precisely when a graph product is relatively hyperbolic
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Yaman, Asli. "Boundaries of relatively hyperbolic groups." Thesis, University of Southampton, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zarka, Benjamin. "La propriété de décroissance rapide hybride pour les groupes discrets." Electronic Thesis or Diss., Université Côte d'Azur, 2023. http://www.theses.fr/2023COAZ4057.

Повний текст джерела
Анотація:
Un groupe finiment engendré G a la propriété RD lorsque l'algèbre de Sobolev du groupe H^s(G) s'injecte dans la C^*-algèbre réduite C^*_r(G). Cette inclusion permet de contrôler la norme de l'opérateur de convolution sur l^2(G) par des normes l^2 pondérées, et induit des isomorphismes en K-théorie. Il est connu que la présence de sous-groupes moyennables à croissance sur-polynomiale est une obstruction à cette propriété. Parallèlement à cela, on dispose toujours d'une inclusion canonique de l^1(G) dans C^*_r(G), mais cette estimation est en général moins fine que celle donnée par RD, et l'existence d'isomorphismes de K-théorie découlant de cette inclusion est un problème généralement ouvert qui est souvent issu de la combinaison des conjectures de Bost et Baum-Connes. C'est pourquoi, dans cette thèse, nous présenterons une version relative de la propriété RD appelée propriété RD_H basée sur une interpolation entre les normes l^1 et l^2 paramétrée par un sous-groupe H de G. Nous verrons que cette propriété peut être vue comme une généralisation aux cas des sous-groupes non distingués du fait que le quotient G/H ait la propriété RD. Nous étudierons certaines propriétés géométriques liées à l'espace G/H permettant de déduire ou d'infirmer la propriété RD_H. En particulier, nous nous pencherons sur le cas où H est un sous-groupe co-moyennable de G et le cas où G est un groupe relativement hyperbolique par rapport au sous-groupe H. Nous montrerons que la propriété RD_H nous permet d'obtenir une famille d'isomorphismes en K-théorie paramétrée par le choix du sous-groupe H, et d'obtenir une borne inférieure concernant la probabilité de retour dans le sous-groupe H d'une marche aléatoire symétrique. Une autre partie de la thèse est consacrée à l'existence d'un isomorphisme entre les groupes de K-théorie des algèbres l^1(G) et C^*_r(G) où l'on prouve la véracité de ce résultat pour certains produits semi-directs en combinant deux types de suites exactes sans faire intervenir les conjectures de Bost et Baum-Connes
A finitely generated group G has the property RD when the Sobolev space H^s(G) embeds in the group reduced C^*-algebra C^*_r(G). This embedding induces isomorphisms in K-theory, and allows to upper-bound the operator norm of the convolution on l^2(G) by weighted l^2 norms. It is known that if G contains an amenable subgroup with superpolynomial growth, then G cannot have property RD. In another hand, we always have the canonical inclusion of l^1(G) in C^*_r(G), but this estimation is generally less optimal than the estimation given by the property RD, and in most of cases, it needs to combine Bost and Baum-Connes conjectures to know if that inclusion induces K-theory isomorphisms. That's the reason why, in this thesis, we define a relative version of property RD by using an interpolation norm between l^1 and l^2 which depends on a subgroup H of G, and we call that property: property RD_H. We will see that property RD_H can be seen as an analogue for non-normal subgroups to the fact that G/H has property RD, and we will study what kind of geometric properties on G/H can imply or deny the property RD_H. In particular, we care about the case where H is a co-amenable subgroup of G, and the case where G is relatively hyperbolic with respect to H. We will show that property RD_H induces isomorphisms in K-theory, and gives us a lower bound concerning the return probability in the subgroup H for a symmetric random walk. Another part of the thesis is devoted to show that if G is a certain kind of semi-direct product, the inclusion l^1(G)subset C^*_r(G) induces isomorphisms in K-theory, we prove this statement by using two types of exact sequences without using Bost and Baum-Connes conjectures
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Bigdely, Hadi. "Subgroup theorems in relatively hyperbolic groups and small- cancellation theory." Thesis, McGill University, 2013. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=119606.

Повний текст джерела
Анотація:
In the first part, we study amalgams of relatively hyperbolic groups and also therelatively quasiconvex subgroups of such amalgams. We prove relative hyperbolicityfor a group that splits as a finite graph of relatively hyperbolic groups with parabolicedge groups; this generalizes a result proved independently by Dahmani, Osin andAlibegovic. More generally, we prove a combination theorem for a group that splitsas a finite graph of relatively hyperbolic groups with total, almost malnormal andrelative quasiconvex edge groups. Moreover, we provide a criterion for detectingquasiconvexity of subgroups in relatively hyperbolic groups that split as above. As anapplication, we show local relative quasiconvexity of any f.g. group that is hyperbolicrelative to Noetherian subgroups and has a small-hierarchy. Studying free subgroupsof relatively hyperbolic groups, we reprove the existence of a malnormal, relativelyquasiconvex, rank 2 free subgroup F in a non-elementary relatively hyperbolic groupG. Using this result and with the aid of a variation on a result of Arzhantseva, weshow that if G is also torsion-free then "generically" any subgroup of F is aparabolic,malnormal in G and quasiconvex relative to P and therefore hyperbolically embedded.As an application, generalizing a result of I. Kapovich, we prove that for any f.g.,non-elementary, torsion-free group G that is hyperbolic relative to P, there exists agroup G∗ containing G such that G∗ is hyperbolic relative to P and G is not relativelyquasiconvex in G∗ .In the second part, we investigate the existence of F2 × F2 in the non-metric small-cancellation groups. We show that a C(6)-T(3) small-cancellation group cannotcontain a subgroup isomorphic to F2 × F2 . The analogous result is also proven in theC(3)-T(6) case.
Dans la premiere partie, nous etudions les amalgames de groupes relativement hyperboliques et egalement les sous-groupes relativement quasiconvexes de ces amalgames. Nous prouvons l'hyperbolicie relative pour un groupe qui se separe comme un graphe fini de groupes relativement hyperboliques avec des groupes d'aretes paraboliques, ce qui generalise un resultat prouve independamment par Dahmani,Osin et Alibegovic. Nous l'etendons au cas ou les groupes d'aretes sont totalaux, malnormal et relativement quasiconvexes. En outre, nous fournissons un critere de detection de quasiconvexite relative des sous-groupes dans les groupes hyperboliques qui divisent. Comme application, nous montrons la quasiconvexite locale relative d'un groupe qui est relativement hyperbolique a certains sous-groupes noetheriens et qui a une petite hierarchie. Nous etudions egalement les sous-groupes libres de groupes relativement hyperboliques, et reprouvons l'existence d'un sous-groupe libre, malnormal, relativement quasiconvexe F2 dans un groupe non- elementaire relativement hyperbolique G. En combinant ce resultat avec une variation sur un theoremede Arzhantseva, nous montrons que si G est aussi sans-torsion, "generiquement" tout sous-groupe de F2 est aparabolique, malnormal dans G et quasiconvexe par rapport a P. Comme application, nous montrons que pour tout groupe G non-elementaire, sans-torsion, qui est hyperbolique par rapport a P, il existe un groupe G∗ contenant G tel que G∗ est hyperbolique par rapport a P et G n'est pas quasiconvexe dans G∗. Dans la deuxieme partie, nous etudions l'existence de sous-groupe F2 × F2 dans desgroupes a petite simplification. Nous montrons que les groupes C(6) ne peuvent pas contenir un sous-groupe isomorphe a F2 × F2 . Le resultat analogue est egalement prouve dans le dossier C(3)-T(6) affaire.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

O'Connor, Zoe Ann. "Length bounds for the conjugacy search problem in relatively hyperbolic groups, limit groups and residually free groups." Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2819.

Повний текст джерела
Анотація:
In this thesis we prove conjugacy length bounds for several classes of groups. We use geometric and algebraic methods to show that there is a polynomial conjugacy length bound for relatively hyperbolic groups, a linear multiple conjugacy length bound for limit groups, and a polynomial multiple conjugacy length bound for nitely presented residually free groups.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Richer, Émilie. "Relative hyperbolicity of graphs of free groups with cyclic edge groups." Thesis, McGill University, 2006. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=101170.

Повний текст джерела
Анотація:
We prove that any finitely generated group which splits as a graph of free groups with cyclic edge groups is hyperbolic relative to certain finitely generated subgroups, known as the peripheral subgroups. Each peripheral subgroup splits as a graph of cyclic groups. Any graph of free groups with cyclic edge groups is the fundamental group of a graph of spaces X where vertex spaces are graphs, edge spaces are cylinders and attaching maps are immersions. We approach our theorem geometrically using this graph of spaces.
We apply a "coning-off" process to peripheral subgroups of the universal cover X̃ → X obtaining a space Cone(X̃) in order to prove that Cone (X̃) has a linear isoperimetric function and hence satisfies weak relative hyperbolicity with respect to peripheral subgroups.
We then use a recent characterisation of relative hyperbolicity presented by D.V. Osin to serve as a bridge between our linear isoperimetric function for Cone(X̃) and a complete proof of relative hyperbolicity. This characterisation allows us to utilise geometric properties of X in order to show that pi1( X) has a linear relative isoperimetric function. This property is known to be equivalent to relative hyperbolicity.
Keywords. Relative hyperbolicity; Graphs of free groups with cyclic edge groups, Relative isoperimetric function, Weak relative hyperbolicity.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rippy, Scott Randall. "Applications of hyperbolic geometry in physics." CSUSB ScholarWorks, 1996. https://scholarworks.lib.csusb.edu/etd-project/1099.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vonseel, Audrey. "Hyperbolicité et bouts des graphes de Schreier." Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAD025/document.

Повний текст джерела
Анотація:
Cette thèse est consacrée à l'étude de la topologie à l'infini d'espaces généralisant les graphes de Schreier. Plus précisément, on considère le quotient X/H d'un espace métrique géodésique propre hyperbolique X par un groupe quasi-convexe-cocompact H d'isométries de X. On montre que ce quotient est un espace hyperbolique. Le résultat principal de cette thèse indique que le nombre de bouts de l'espace quotient X/H est déterminé par les classes d'équivalence sur une sphère de rayon explicitement calculable. Dans le cadre de la théorie des groupes, on montre que l'on peut construire explicitement des groupes et des sous-groupes pour lesquels il n'existe pas d'algorithme permettant de déterminer le nombre de bouts relatifs. Si le sous-groupe est quasi-convexe, on donne un algorithme permettant de calculer le nombre de bouts relatifs
This thesis is devoted to the study of the topology at infinity of spaces generalizing Schreier graphs. More precisely, we consider the quotient X/H of a geodesic proper hyperbolic metric space X by a quasiconvex-cocompact group H of isometries of X. We show that this quotient is a hyperbolic space. The main result of the thesis indicates that the number of ends of the quotient space X/H is determined by equivalence classes on a sphere of computable radius. In the context of group theory, we show that one can construct explicitly groups and subgroups for which there are no algorithm to determine the number of relative ends. If the subgroup is quasiconvex, we give an algorithm to compute the number of relative ends
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Relatively hyperbolic group"

1

Relatively hyperbolic groups: Intrinsic geometry, algebraic properties, and algorithmic problems. Providence, R.I: American Mathematical Society, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ninul, Anatolij Sergeevič. Tensor Trigonometry. Moscow, Russia: Fizmatlit Publisher, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ninul, Anatolij Sergeevič. Tenzornaja trigonometrija: Teorija i prilozenija / Theory and Applications /. Moscow, Russia: Mir Publisher, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Relatively hyperbolic group"

1

Ramsay, Arlan, and Robert D. Richtmyer. "Connections with the Lorentz Group of Special Relativity." In Introduction to Hyperbolic Geometry, 242–53. New York, NY: Springer New York, 1995. http://dx.doi.org/10.1007/978-1-4757-5585-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kharlampovich, Olga, and Pascal Weil. "On the Generalized Membership Problem in Relatively Hyperbolic Groups." In Fields of Logic and Computation III, 147–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48006-6_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

"Relatively Hyperbolic Case." In The Structure of Groups with a Quasiconvex Hierarchy, 281–303. Princeton University Press, 2021. http://dx.doi.org/10.2307/j.ctv1574pr6.19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

"The relatively hyperbolic setting." In From Riches to Raags: 3-Manifolds, Right-Angled Artin Groups, and Cubical Geometry, 125–28. Providence, Rhode Island: American Mathematical Society, 2012. http://dx.doi.org/10.1090/cbms/117/15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

"Chapter Fifteen Relatively Hyperbolic Case." In The Structure of Groups with a Quasiconvex Hierarchy, 281–303. Princeton University Press, 2021. http://dx.doi.org/10.1515/9780691213507-016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Relatively hyperbolic group"

1

HOFFMANN, MICHAEL, DIETRICH KUSKE, FRIEDRICH OTTO, and RICHARD M. THOMAS. "SOME RELATIVES OF AUTOMATIC AND HYPERBOLIC GROUPS." In Semigroups, Algorithms, Automata and Languages. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776884_0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії