Добірка наукової літератури з теми "Relation extractor"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Relation extractor".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Relation extractor"
Yuan, Yujin, Liyuan Liu, Siliang Tang, Zhongfei Zhang, Yueting Zhuang, Shiliang Pu, Fei Wu, and Xiang Ren. "Cross-Relation Cross-Bag Attention for Distantly-Supervised Relation Extraction." Proceedings of the AAAI Conference on Artificial Intelligence 33 (July 17, 2019): 419–26. http://dx.doi.org/10.1609/aaai.v33i01.3301419.
Повний текст джерелаKim, Kuekyeng, Yuna Hur, Gyeongmin Kim, and Heuiseok Lim. "GREG: A Global Level Relation Extraction with Knowledge Graph Embedding." Applied Sciences 10, no. 3 (February 10, 2020): 1181. http://dx.doi.org/10.3390/app10031181.
Повний текст джерелаOliveira Neto, Waldemar de, Antonio Saraiva Muniz, Maria Anita Gonçalves da Silva, Cesar de Castro, and Clovis Manuel Borkert. "Boron extraction and vertical mobility in Paraná State oxisol, Brazil." Revista Brasileira de Ciência do Solo 33, no. 5 (October 2009): 1259–67. http://dx.doi.org/10.1590/s0100-06832009000500019.
Повний текст джерелаZhang, Congle, Stephen Soderland, and Daniel S. Weld. "Exploiting Parallel News Streams for Unsupervised Event Extraction." Transactions of the Association for Computational Linguistics 3 (December 2015): 117–29. http://dx.doi.org/10.1162/tacl_a_00127.
Повний текст джерелаLi, Bo, Jiyu Wei, Yang Liu, Yuze Chen, Xi Fang, and Bin Jiang. "Few-Shot Relation Extraction on Ancient Chinese Documents." Applied Sciences 11, no. 24 (December 17, 2021): 12060. http://dx.doi.org/10.3390/app112412060.
Повний текст джерелаToma, Claudia Crina, Teresa Casacchia, Claudia D`ippolito, and Giancarlo Statti. "Ficus carica SSP Dottato Buds by Intercropping Different Species: Metabolites, Antioxidant Activity and Endogenous Plant Hormones (IAA, ABA)." Revista de Chimie 68, no. 7 (August 15, 2017): 1628–31. http://dx.doi.org/10.37358/rc.17.7.5731.
Повний текст джерелаMarcheggiani, Diego, and Ivan Titov. "Discrete-State Variational Autoencoders for Joint Discovery and Factorization of Relations." Transactions of the Association for Computational Linguistics 4 (December 2016): 231–44. http://dx.doi.org/10.1162/tacl_a_00095.
Повний текст джерелаDowling, AJ, and CJ Howitt. "Effects of extraction technique on concentrations of soluble salts in soil saturation extracts." Soil Research 25, no. 2 (1987): 137. http://dx.doi.org/10.1071/sr9870137.
Повний текст джерелаWu, Ming-Jui, Wei-Ling Chen, Chung-Dann Kan, Fan-Ming Yu, Su-Chin Wang, Hsiu-Hui Lin, and Chia-Hung Lin. "Dysfunction Screening in Experimental Arteriovenous Grafts for Hemodialysis Using Fractional-Order Extractor and Color Relation Analysis." Cardiovascular Engineering and Technology 6, no. 4 (August 4, 2015): 463–73. http://dx.doi.org/10.1007/s13239-015-0239-5.
Повний текст джерелаOLALERE, OLUSEGUN ABAYOMI. "COMPARATIVE STUDY OF PULSED MICROWAVE AND HYDRODISTILLATION EXTRACTION OF PIPERINE OIL FROM BLACK PEPPER." IIUM Engineering Journal 18, no. 2 (December 1, 2017): 87–93. http://dx.doi.org/10.31436/iiumej.v18i2.802.
Повний текст джерелаДисертації з теми "Relation extractor"
Філоненко, О. В., Олена Петрівна Черних та Олександр Миколайович Шеін. "Фільтрування інтернет спаму за допомогою обробки природної мови". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2017. http://repository.kpi.kharkov.ua/handle/KhPI-Press/43684.
Повний текст джерелаScheible, Silke. "Computational treatment of superlatives." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/4153.
Повний текст джерелаHachey, Benjamin. "Towards generic relation extraction." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3978.
Повний текст джерелаNUNES, THIAGO RIBEIRO. "BUILDING RELATION EXTRACTORS THROUGH DISTANT SUPERVISION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=21588@1.
Повний текст джерелаCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Um problema conhecido no processo de construção de extratores de relações semânticas supervisionados em textos em linguagem natural é a disponibilidade de uma quantidade suficiente de exemplos positivos para um conjunto amplo de relações-alvo. Este trabalho apresenta uma abordagem supervisionada a distância para construção de extratores de relações a um baixo custo combinando duas das maiores fontes de informação estruturada e não estruturada disponíveis na Web, o DBpedia e a Wikipedia. O método implementado mapeia relações da ontologia do DBpedia de volta para os textos da Wikipedia para montar um conjunto amplo de exemplos contendo mais de 100.000 sentenças descrevendo mais de 90 relações do DBpedia para os idiomas Inglês e Português. Inicialmente, são extraídas sentenças dos artigos da Wikipedia candidatas a expressar relações do DBpedia. Após isso, esses dados são pré-processados e normalizados através da filtragem de sentenças irrelevantes. Finalmente, extraem-se características dos exemplos para treinamento e avaliação de extratores de relações utilizando SVM. Os experimentos realizados nos idiomas Inglês e Português, através de linhas de base, mostram as melhorias alcançadas quando combinados diferentes tipos de características léxicas, sintáticas e semânticas. Para o idioma Inglês, o extrator construído foi treinado em um corpus constituído de 90 relações com 42.471 exemplos de treinamento, atingindo 81.08 por cento de medida F1 em um conjunto de testes contendo 28.773 instâncias. Para Português, o extrator foi treinado em um corpus de 50 relações com 200 exemplos por relação, resultando em um valor de 81.91 por cento de medida F1 em um conjunto de testes contendo 18.333 instâncias. Um processo de Extração de Relações (ER) é constituído de várias etapas, que vão desde o pré-processamento dos textos até o treinamento e a avaliação de detectores de relações supervisionados. Cada etapa pode admitir a implementação de uma ou várias técnicas distintas. Portanto, além da abordagem, este trabalho apresenta, também, detalhes da arquitetura de um framework para apoiar a implementação e a realização de experimentos em um processo de ER.
A well known drawback in building machine learning semantic relation detectors for natural language is the availability of a large number of qualified training instances for the target relations. This work presents an automatic approach to build multilingual semantic relation detectors through distant supervision combining the two largest resources of structured and unstructured content available on the Web, the DBpedia and the Wikipedia resources. We map the DBpedia ontology back to the Wikipedia to extract more than 100.000 training instances for more than 90 DBpedia relations for English and Portuguese without human intervention. First, we mine the Wikipedia articles to find candidate instances for relations described at DBpedia ontology. Second, we preprocess and normalize the data filtering out irrelevant instances. Finally, we use the normalized data to construct SVM detectors. The experiments performed on the English and Portuguese baselines shows that the lexical and syntactic features extracted from Wikipedia texts combined with the semantic features extracted from DBpedia can significantly improve the performance of relation detectors. For English language, the SVM detector was trained in a corpus formed by 90 DBpedia relations and 42.471 training instances, achieving 81.08 per cent of F-Measure when applied to a test set formed by 28.773 instances. The Portuguese detector was trained with 50 DBpedia relations and 200 examples by relation, being evaluated in 81.91 per cent of F-Measure in a test set containing 18.333 instances. A Relation Extraction (RE) process has many distinct steps that usually begins with text pre-processing and finish with the training and the evaluation of relation detectors. Therefore, this works not only presents an RE approach but also an architecture of a framework that supports the implementation and the experiments of a RE process.
Minard, Anne-Lyse. "Extraction de relations en domaine de spécialité." Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00777749.
Повний текст джерелаAugenstein, Isabelle. "Web relation extraction with distant supervision." Thesis, University of Sheffield, 2016. http://etheses.whiterose.ac.uk/13247/.
Повний текст джерелаJean-Louis, Ludovic. "Approches supervisées et faiblement supervisées pour l’extraction d’événements et le peuplement de bases de connaissances." Thesis, Paris 11, 2011. http://www.theses.fr/2011PA112288/document.
Повний текст джерелаThe major part of the information available on the web is provided in textual form, i.e. in unstructured form. In a context such as technology watch, it is useful to present the information extracted from a text in a structured form, reporting only the pieces of information that are relevant to the considered field of interest. Such processing cannot be performed manually at large scale, given the large amount of data available. The automated processing of this task falls within the Information extraction (IE) domain.The purpose of IE is to identify, within documents, pieces of information related to facts (or events) in order to store this information in predefined data structures. These structures, called templates, aggregate fact properties - often represented by named entities - concerning an event or an area of interest.In this context, the research performed in this thesis addresses two problems:identifying information related to a specific event, when the information is scattered across a text and several events of the same type are mentioned in the text;reducing the dependency to annotated corpus for the implementation of an Information Extraction system.Concerning the first problem, we propose an original approach that relies on two steps. The first step operates an event-based text segmentation, which identifies within a document the text segments on which the IE process shall focus to look for the entities associated with a given event. The second step focuses on template filling and aims at selecting, within the segments identified as relevant by the event-based segmentation, the entities that should be used as fillers, using a graph-based method. This method is based on a local extraction of relations between entities, that are merged in a relation graph. A disambiguation step is then performed on the graph to identify the best candidates to fill the information template.The second problem is treated in the context of knowledge base (KB) population, using a large collection of texts (several millions) from which the information is extracted. This extraction also concerns a large number of relation types (more than 40), which makes the manual annotation of the collection too expensive. We propose, in this context, a distant supervision approach in order to use learning techniques for this extraction, without the need of a fully annotated corpus. This distant supervision approach uses a set of relations from an existing KB to perform an unsupervised annotation of a collection, from which we learn a model for relation extraction. This approach has been evaluated at a large scale on the data from the TAC-KBP 2010 evaluation campaign
Afzal, Naveed. "Unsupervised relation extraction for e-learning applications." Thesis, University of Wolverhampton, 2011. http://hdl.handle.net/2436/299064.
Повний текст джерелаLoper, Edward (Edward Daniel) 1977. "Applying semantic relation extraction to information retrieval." Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/86521.
Повний текст джерелаImani, Mahsa. "Evaluating open relation extraction over conversational texts." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/45978.
Повний текст джерелаКниги з теми "Relation extractor"
Hudson, R. A. Extraction and grammatical relations. London: The author, 1987.
Знайти повний текст джерелаXu, Fei-Yu. Bootstrapping relation extraction from semantic seeds. Saarbrücken: German Research Center for Artificial Intelligence, 2008.
Знайти повний текст джерелаPetrucci, Alessandra, and Rosanna Verde, eds. SIS 2017. Statistics and Data Science: new challenges, new generations. Florence: Firenze University Press, 2017. http://dx.doi.org/10.36253/978-88-6453-521-0.
Повний текст джерелаRietbergen, Simon. Conservation concerns relating to the diversification of species extracted for timber. London: The Institute, 1991.
Знайти повний текст джерелаHigginson, Francis. Extracts from Francis Higginson: A brief relation of the irreligion of the northern Quakers. Oxford: E. Warren, 1999.
Знайти повний текст джерелаHoxha, Enver. The superpowers, 1959-1984: Extracts from the political diary. Tiranë: 8 Nëntori, 1986.
Знайти повний текст джерелаParliament, Great Britain. Canada: Copies or extracts of correspondence relative to the affairs of Canada. [London: HMSO, 2001.
Знайти повний текст джерелаChikyū Ondanka Mondai ni Kansuru Chōsakai Japan. Kokkai. Sangiin. Kokusai. Research report on international affairs and global warming issues: Interim report (extracts). Tokyo: Research Committee on International Affairs and Global Warming Issues, House of Councillors, 2008.
Знайти повний текст джерелаBarlow, Alfred E. Report on the origin, geological relations and composition of the nickel and copper deposits of the Sudbury mining district, Ontario, Canada. Ottawa: S.E. Dawson, 1997.
Знайти повний текст джерелаParliament, Great Britain. Copies or extracts of correspondence relative to the reunion of the provinces of Upper and Lower Canada. [London: HMSO, 2001.
Знайти повний текст джерелаЧастини книг з теми "Relation extractor"
Rossiello, Gaetano, Alfio Gliozzo, Nicolas Fauceglia, and Giovanni Semeraro. "Latent Relational Model for Relation Extraction." In The Semantic Web, 283–97. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21348-0_19.
Повний текст джерелаDenecke, Kerstin. "Relation Extraction." In Health Web Science, 75–81. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20582-3_9.
Повний текст джерелаCastelli, Vittorio, and Imed Zitouni. "Relation Extraction." In Natural Language Processing of Semitic Languages, 279–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-45358-8_9.
Повний текст джерелаSoni, Ameet, Dileep Viswanathan, Jude Shavlik, and Sriraam Natarajan. "Learning Relational Dependency Networks for Relation Extraction." In Inductive Logic Programming, 81–93. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63342-8_7.
Повний текст джерелаRendle, Steffen, Christine Preisach, and Lars Schmidt-Thieme. "Learning to Extract Relations for Relational Classification." In Advances in Knowledge Discovery and Data Mining, 1062–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-01307-2_114.
Повний текст джерелаSowa, John F. "Relating Templates to Language and Logic." In Information Extraction, 76–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48089-7_5.
Повний текст джерелаKordjamshidi, Parisa, Paolo Frasconi, Martijn Van Otterlo, Marie-Francine Moens, and Luc De Raedt. "Relational Learning for Spatial Relation Extraction from Natural Language." In Inductive Logic Programming, 204–20. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31951-8_20.
Повний текст джерелаElsahar, Hady, Elena Demidova, Simon Gottschalk, Christophe Gravier, and Frederique Laforest. "Unsupervised Open Relation Extraction." In Lecture Notes in Computer Science, 12–16. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-70407-4_3.
Повний текст джерелаBarrière, Caroline. "Pattern-Based Relation Extraction." In Natural Language Understanding in a Semantic Web Context, 205–29. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41337-2_11.
Повний текст джерелаAddisu, Matusala, Danilo Avola, Paola Bianchi, Paolo Bottoni, Stefano Levialdi, and Emanuele Panizzi. "Annotating Significant Relations on Multimedia Web Documents." In Multimedia Information Extraction, 401–17. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118219546.ch24.
Повний текст джерелаТези доповідей конференцій з теми "Relation extractor"
Liu, Lihan, and Pengfei Li. "Transformer with Local-feature Extractor for Relation Extraction." In 2021 International Joint Conference on Neural Networks (IJCNN). IEEE, 2021. http://dx.doi.org/10.1109/ijcnn52387.2021.9534183.
Повний текст джерелаYang, Dongdong, Senzhang Wang, and Zhoujun Li. "Ensemble Neural Relation Extraction with Adaptive Boosting." In Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/630.
Повний текст джерелаYu, Bowen, Zhenyu Zhang, Tingwen Liu, Bin Wang, Sujian Li, and Quangang Li. "Beyond Word Attention: Using Segment Attention in Neural Relation Extraction." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/750.
Повний текст джерелаTakahashi, Hideharu, Hiroshige Kikura, Kenji Takeshita, and Masanori Aritomi. "Visualization of Dispersed Phase Flow in Centrifugal Extractor Using Taylor-Couette Vortex Flow." In ASME/JSME 2011 8th Thermal Engineering Joint Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/ajtec2011-44403.
Повний текст джерелаYuan, Yue, Xiaofei Zhou, Shirui Pan, Qiannan Zhu, Zeliang Song, and Li Guo. "A Relation-Specific Attention Network for Joint Entity and Relation Extraction." In Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/561.
Повний текст джерелаStickley, Daniel. "Relating Relations: Meta-Relation Extraction from Online Health Forum Posts." In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Student Research Workshop. Stroudsburg, PA, USA: Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.eacl-srw.18.
Повний текст джерелаBarbirato, João Gabriel Melo, Livy Real, and Helena de Medeiros Caseli. "Relation extraction in structured and unstructured data: a comparative investigation on smartphone titles in the e-commerce domain." In Simpósio Brasileiro de Tecnologia da Informação e da Linguagem Humana. Sociedade Brasileira de Computação, 2021. http://dx.doi.org/10.5753/stil.2021.17789.
Повний текст джерелаZhang, Ningyu, Xiang Chen, Xin Xie, Shumin Deng, Chuanqi Tan, Mosha Chen, Fei Huang, Luo Si, and Huajun Chen. "Document-level Relation Extraction as Semantic Segmentation." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/551.
Повний текст джерелаPerera, Lokukaluge P., Brage Mo, and Matthias P. Nowak. "Visualization of Relative Wind Profiles in Relation to Actual Weather Conditions of Ship Routes." In ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/omae2017-61120.
Повний текст джерелаKuang, Jun, Yixin Cao, Jianbing Zheng, Xiangnan He, Ming Gao, and Aoying Zhou. "Improving Neural Relation Extraction with Implicit Mutual Relations." In 2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020. http://dx.doi.org/10.1109/icde48307.2020.00093.
Повний текст джерелаЗвіти організацій з теми "Relation extractor"
Do, Quang X. Background Knowledge in Learning-Based Relation Extraction. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada565270.
Повний текст джерелаWard, Katrina, Jonathan Bisila, and Kelsey Cairns. Survey of Current State of the Art Entity-Relation Extraction Tools. Office of Scientific and Technical Information (OSTI), May 2020. http://dx.doi.org/10.2172/1630263.
Повний текст джерелаWard, Katrina, Jonathan Bisila, and Kelsey Cairns. Survey of Current State of the Art Entity-Relation Extraction Tools. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1662019.
Повний текст джерелаDorr, Bonnie, and Terry Gaasterland. Summarization-Inspired Temporal-Relation Extraction: Tense-Pair Templates and Treebank-3 Analysis. Fort Belvoir, VA: Defense Technical Information Center, December 2006. http://dx.doi.org/10.21236/ada460392.
Повний текст джерелаJames, Mark, Tania Mendo, Hannah Ladd-Jones, Paddy McCann, Swithun Crowe, Alexander James Coram, and Simon Northridge. Scottish Inshore Fisheries Integrated Data System (SIFIDS): work package 5 final report identifying fishing activities and their associated drivers. Edited by Mark James and Hannah Ladd-Jones. Marine Alliance for Science and Technology for Scotland (MASTS), 2019. http://dx.doi.org/10.15664/10023.23451.
Повний текст джерелаDelgado, María. Political Advocacy in Colombia: Impact Evaluation of the “Building peace by securing rights for victims of conflict and violence in Colombia” project. Oxfam GB, October 2021. http://dx.doi.org/10.21201/2021.8120.
Повний текст джерелаShenker, Moshe, Paul R. Bloom, Abraham Shaviv, Adina Paytan, Barbara J. Cade-Menun, Yona Chen, and Jorge Tarchitzky. Fate of Phosphorus Originated from Treated Wastewater and Biosolids in Soils: Speciation, Transport, and Accumulation. United States Department of Agriculture, June 2011. http://dx.doi.org/10.32747/2011.7697103.bard.
Повний текст джерелаCastillo Parrilla, José Antonio. The Legal Regulation of Digital Wealth: Commerce, Ownership and Inheritance of Data. Universitätsbibliothek J. C. Senckenberg, Frankfurt am Main, 2021. http://dx.doi.org/10.21248/gups.64581.
Повний текст джерелаGantzer, Clark J., Shmuel Assouline, and Stephen H. Anderson. Synchrotron CMT-measured soil physical properties influenced by soil compaction. United States Department of Agriculture, February 2006. http://dx.doi.org/10.32747/2006.7587242.bard.
Повний текст джерелаSaldanha, Ian J., Wangnan Cao, Justin M. Broyles, Gaelen P. Adam, Monika Reddy Bhuma, Shivani Mehta, Laura S. Dominici, Andrea L. Pusic, and Ethan M. Balk. Breast Reconstruction After Mastectomy: A Systematic Review and Meta-Analysis. Agency for Healthcare Research and Quality (AHRQ), July 2021. http://dx.doi.org/10.23970/ahrqepccer245.
Повний текст джерела