Дисертації з теми "Reinforced concrete construction Ductility"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Reinforced concrete construction Ductility.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Reinforced concrete construction Ductility".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Gravina, Rebecca Jane. "Non-linear overload behaviour and ductility of reinforced concrete flexural members containing 500MPa grade steel reinforcement." Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phg777.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Includes corrigenda (inserted at front) and list of publications published as a result of this research. Includes bibliographical references (leaves 192-199) Investigates the overload behaviour and modes of collapse of reinforced concrete flexural members containing 500MPa grade reinforcing steel and evaluates the adequacy of current ductility requirements for design according to AS 3600 to ensure strength and safety.
2

Zaina, Mazen Said Civil &amp Environmental Engineering Faculty of Engineering UNSW. "Strength and ductility of fibre reinforced high strength concrete columns." Awarded by:University of New South Wales. School of Civil and Environmental Engineering, 2005. http://handle.unsw.edu.au/1959.4/22054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The main structural objectives in column design are strength and ductility. For higher strength concretes these design objectives are offset by generally poor concrete ductility and early spalling of the concrete cover. When fibres are added to the concrete the post peak characteristics are enhanced, both in tension and in compression. Most of the available experimental data, on fibre reinforced concrete and fibre reinforced high strength concrete columns, suggest that an improvement in both ductility and load carrying capacity due to the inclusion of the fibres. In this thesis the ductility and strength of fibre reinforced high strength concrete are investigated to evaluate the effect of the different parameters on the performance of columns. The investigation includes both experimental and the numerical approaches with 56 high strength fibre reinforced concrete columns being tested. The concrete strength ranged between 80 and 100 MPa and the columns were reinforced with 1, 2 or 2.6 percent, by weight, of end hooked steel fibres. The effect of corrugated Polypropylene fibres on the column performance was also examined. No early spalling of the cover was observed in any of the steel fibre reinforced column tested in this study. A numerical model was developed for analysis of fibre and non-fibre reinforced eccentrically loaded columns. The column is modelled as finite layers of reinforced concrete. Two types of layers are used, one to represent the hinged zone and the second the unloading portion of the column. As the concrete in the hinged layers goes beyond the peak for the stress verus strain in the concrete the section will continue to deform leading to a localised region within a column. The numerical model is compared with the test data and generally shows good correlation. Using the developed model, the parameters that affect ductility in fibre-reinforced high strength concrete columns are investigated and evaluated. A design model relating column ductility with confining pressure is proposed that includes the effects of the longitudinal reinforcement ratio, the loading eccentricity and the fibre properties and content and design recommendations are given.
3

Chen, Mantai, and 陈满泰. "Combined effects of strain gradient and concrete strength on flexural strength and ductility design of RC beams and columns." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/206429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The stress-strain relationship of concrete in flexure is one of the essential parameters in assessing the flexural strength and ductility of reinforced concrete (RC) structures. An overview of previous research studies revealed that the presence of strain gradient would affect the maximum concrete stress and respective strain developed in flexure. Previously, researchers have conducted experimental studies to investigate and quantify the strain gradient effect on maximum concrete stress and respective strain by developing two strain-gradient-dependent factors k3 and ko for modifying the flexural concrete stress-strain curve. In this study, the author established a new analytical concrete constitutive model to describe the stress-strain behavior of both normal-and high-strength concrete in flexure with the effect of strain gradient considered. Based on this, comprehensive parametric studies have been conducted to investigate the combined effects of strain gradient and concrete strength on flexural strength and ductility design of RC beams and columns with concrete strength up to 100 MP a by employing the strain-gradient-dependent concrete stress-strain curve using non-linear moment-curvature analysis. From the results of the parametric studies, it is evident that both the flexural strength and ductility of RC beams and columns are improved under strain gradient effect. A design value of ultimate concrete strain of 0.0032and anew equivalent rectangular concrete stress block incorporating the combined effects of strain gradient and concrete strength have been proposed and validated by comparing the proposed theoretical strength with the strength of 198 RC beams and 275 RC columns measured experimentally by other researchers. It is apparent from the comparison that the proposed equations can predict more accurately the flexural strength of RC beams and columns than the current RC design codes. Lastly, for practical engineering design purpose, design formulas and charts have been produced for flexural strength and ductility design of RC beams and columns incorporating the combined effects of strain gradient and concrete strength.
published_or_final_version
Civil Engineering
Master
Master of Philosophy
4

Chau, Siu-lee. "Effects of confinement and small axial load on flexural ductility of high-strength reinforced concrete beams." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B31997661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chau, Siu-lee, and 周小梨. "Effects of confinement and small axial load on flexural ductility of high-strength reinforced concrete beams." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B31997661.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Broms, Carl Erik. "Concrete flat slabs and footings : Design method for punching and detailing for ductility." Doctoral thesis, KTH, Brobyggnad inkl stålbyggnad, 2005. http://innopac.lib.kth.se/search/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (Ph.D.)--Royal Institute of Technology (Stockholm, Sweden), 2005.
"ISRN KTH/BKN/B-80-SE." "Dept. of Civil and Architectural Engineering, Division of Structural Design and Bridges, Royal Institute of Technology, Stockholm. " Includes bibliographical references. Available from the Royal Institute of Technology (Sweden) Library as a .pdf document http://www.lib.kth.se/main/eng/
7

Yuksel, Bahadir S. "Experimental Investigation Of The Seismic Behavior Of Panel Buildings." Phd thesis, METU, 2003. http://etd.lib.metu.edu.tr/upload/2/1070309/index.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Shear-wall dominant multi-story reinforced concrete structures, constructed by using a special tunnel form technique are commonly built in countries facing a substantial seismic risk, such as Chile, Japan, Italy and Turkey. In 1999, two severe urban earthquakes struck Kocaeli and Dü
zce provinces in Turkey with magnitudes (Mw) 7.4 and 7.1, respectively. These catastrophes caused substantial structural damage, casualties and loss of lives. In the aftermath of these destructive earthquakes, neither demolished nor damaged shear-wall dominant buildings constructed by tunnel form techniques were reported. In spite of their high resistance to earthquake excitations, current seismic code provisions including the Uniform Building Code and the Turkish Seismic Code present limited information for their design criteria. This study presents experimental investigation of the panel unit having H-geometry. To investigate the seismic behavior of panel buildings, two prototype test specimens which have H wall design were tested at the Structural Mechanics Laboratory at METU. The experimental work involves the testing of two four-story, 1/5-scale reinforced concrete panel form building test specimens under lateral reversed loading, simulating the seismic forces and free vibration tests. Free vibration tests before and after cracking were done to assess the differences between the dynamic properties of uncracked and cracked test specimens. A moment-curvature program named Waller2002 for shear walls is developed to include the effects of steel strain hardening, confinement of concrete and tension strength of concrete. The moment-curvature relationships of panel form test specimens showed that walls with very low longitudinal steel ratios exhibit a brittle flexural failure with very little energy absorption. Shear walls of panel form test specimens have a reinforcement ratio of 0.0015 in the longitudinal and vertical directions. Under gradually increasing reversed lateral loading, the test specimens reached ultimate strength, as soon as the concrete cracked, followed by yielding and then rupturing of the longitudinal steel. The displacement ductility of the panel form test specimens was found to be very low. Thus, the occurrence of rupture of the longitudinal steel, as also observed in analytical studies, has been experimentally verified. Strength, stiffness, energy dissipation and story drifts of the test specimens were examined by evaluating the test results.
8

Soesianawati, M. T. "Limited ductility design of reinforced concrete columns." Thesis, University of Canterbury. Department of Civil Engineering, 1986. http://hdl.handle.net/10092/3643.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This report describes an experimental and analytical investigation of the strength and ductility of reinforced concrete columns. Four columns of square cross-section were tested under axial compression loading and cyclic lateral loading applied at mid-height which simulated seismic loading. The main variable investigated was the quantity of transverse confining steel used, which ranged between 17 to 46 percent of the NZS 3101:1982 recommended quantity for ductile detailing. The experimental results are reported in the form of lateral loaddisplacement and lateral load-curvatures hysteresis loops, curvature profiles, transverse steel strain distributions and concrete compressive strains. The results are discussed and compared with the analytical predictions. A modified equation for the quantity of confining reinforcement in rectangular columns is recommended. Conclusions are made regarding the ductility available from columns containing substantially less transverse confining reinforcement than recommended by the New Zealand concrete design code.
9

Kim, SangHun Aboutaha Riyad S. "Ductility of carbon fiber-reinforced polymer (CFRP) strengthened reinforced concrete." Related Electronic Resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2003. http://wwwlib.umi.com/cr/syr/main.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lau, Tak-bun Denvid. "Flexural ductility improvement of FRP-reinforced concrete members." Click to view the E-thesis via HKUTO, 2006. http://sunzi.lib.hku.hk/hkuto/record/B38907756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Lau, Tak-bun Denvid, and 劉特斌. "Flexural ductility improvement of FRP-reinforced concrete members." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2006. http://hub.hku.hk/bib/B38907756.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Watson, Soesianawati. "Design of reinforced concrete frames of limited ductility." Thesis, University of Canterbury. Department of Civil Engineering, 1989. http://hdl.handle.net/10092/3745.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
An experimental programme was carried out to investigate the flexural strength and ductility. of reinforced concrete columns under simulated earthquake loading. The main variable examined was the quantity of transverse reinforcement for concrete confinement. The experimental results were described and compared with theoretical studies. It was found that to achieve adequate ductility in columns, the current New Zealand concrete design code NZS3101:1982 equations for concrete confinement need to be refined. Using design charts for ductility, which were previously derived from a theory for cyclic moment-curvature behaviour, a refined design equation to replace the current code equations is proposed. The inelastic dynamic response of frames of limited ductility was examined, and compared with the response of ductile frames. The analysis indicated that non-capacity designed frames, designed for seismic forces corresponding to a limited ductility demand, performed reasonably well. Although some plastic hinges did develop in the columns, the ductility demand was acceptable and can be achieved by appropriate detailing. As a result, some suggestions for the seismic design requirements of frames of limited ductility are presented.
13

Azizi, Abdul R. "Modelling moment redistribution in continuous reinforced concrete beams." Thesis, Durham University, 1996. http://etheses.dur.ac.uk/1578/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Davies, Paul. "Ductility and Deformability of FRP Strengthened Reinforced Concrete Structures." Thesis, University of South Wales, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.517957.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Wassouf, Mohamad. "Bond and ductility of concrete reinforced with various steel bars surface and ductility conditions." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6272/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Reinforced concrete is a wide field for researches and studies in civil engineering subject. It is due to the fact that reinforced concrete is the most widely used material for the infrastructure in the world. Reinforced concrete consists of two main materials: reinforcing steel and concrete, each of those two materials has its own effect on the performance of the structure. In this thesis, the change in RC performance due to different steel properties and specifications will be investigated. The study focuses on the bond interaction between steel and concrete and the flexural behaviour of RC beams. Pull-out forces have been exerted on the reinforcing bars in RC blocks to examine the impact of steel properties on the bond strength and failure mode of the blocks. In addition to that, flexural tests have been conducted on simply supported RC beams to investigate how reinforcement properties can affect the ductility of reinforced concrete. Comparison of results of the previous two tests with codes and analytical models have been carried out to verify the outcome of this research.
16

Ho, Yin Bon. "Enhancing the ductility of non-seismically designed reinforced concrete shear walls /." View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202006%20HO.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mostofinejad, Davood. "Ductility and moment redistribution in continuous FRP reinforced concrete beams." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp02/NQ26859.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Zahn, Franz August. "Design of reinforced concrete bridge columns for strength and ductility." Thesis, University of Canterbury. Department of Civil Engineering, 1985. http://hdl.handle.net/10092/2872.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Methods for the design of reinforced concrete bridge columns and piers for strength and ductility are considered. The investigations cover the following areas. An experimental investigation of the influence of reinforcing steel grade and amount of confining steel on the stress-strain behaviour of confined concrete is presented. The results are discussed and compared with theoretical models. Special attention is given to the possibility of fracture of the confining steel. An extensive experimental investigation into the ductile performance of a range of reinforced concrete columns is presented. The columns were subjected to constant axial load and cyclic lateral displacements. The test units included four square columns with the lateral load applied in the direction of a cross section diagonal, six circular hollow columns with different wall thickness to diameter ratios, and four columns with transverse reinforcement from Grade 380 steel. The available strength and ductility of the columns is discussed and compared with the performance of columns tested previously at the University of Canterbury, and with theoretical predictions using monotonic as well as cyclic moment-curvature analyses. The main variables for the solid columns were the influence of biaxial bending, the use of Grade 380 transverse steel for confinement, and the spacing between transverse bars along the column axis. The circular hollow columns were unconfined on the inside face of the tube wall, and the main variables were the influence of the axial load level and the wall thickness. The implications of the column test results, including the results of other investigations, for the design of reinforced concrete columns for strength and ductility are discussed and, where appropriate, used to calibrate theoretical models. In particular, the influence of cyclic loading on the strength deterioration of reinforced concrete columns with high axial loads is emphasized. More realistic definitions of the ideal flexural strength, of the flexural overstrength and of the yield curvature are suggested and, together with a set of criteria for the ultimate limit state, used to establish design charts for the available strength and ductility of reinforced concrete columns. A cyclic moment-curvature analysis was used for this purpose, incorporating cyclic stress-strain models for the concrete and for the steel, thus taking into account the cyclic strength deterioration observed for columns with high axial loads. Finally, a rational step-by-step design procedure is presented that will make less complex the task of considering the great number of variables involved in the seismic design of reinforced concrete columns for both strength and ductility.
19

Goodfellow, Roderick Gerald Charles. "Ductility of reinforced concrete flexural members constructed from high performance steel and concrete." Thesis, Imperial College London, 1999. http://hdl.handle.net/10044/1/7645.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Ozcan, Okan. "Improving Ductility And Shear Capacity Of Reinforced Concrete Columns With Carbon Fiber Reinforced Polymer." Phd thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/12611292/index.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The performance of reinforced concrete (RC) columns during recent earthquakes has clearly demonstrated the possible failures associated with inadequate confining reinforcement. The confinement reinforcement requirements of older codes were less stringent than present standards. Many studies were conducted by applying different retrofitting techniques for RC columns that have inadequate confinement reinforcement. A new retrofitting technique by means of Carbon Fiber Reinforced Polymer (CFRP) was developed and tested in many countries in the last decade. This technique is performed by CFRP wrapping the critical region of columns. The effectiveness of CFRP retrofitting technique was shown in many studies conducted worldwide. In Turkey, the frame members are considerably deficient from the seismic detailing point of view. Therefore, in order to use the CFRP retrofitting technique effectively in Turkey, experimental evidence is needed. This study investigates the performance of CFRP retrofitted RC columns with deficient confining steel and low concrete strength. It was concluded by experimental and analytical results that the CFRP retrofitting method can be implemented to seismically deficient columns. Moreover, two design approaches were proposed for CFRP retrofit design of columns considering safe design regulations.
21

Adwan, Osama K. "Engineering properties and structural behaviour of high strength reinforced concrete beams." Thesis, University of Abertay Dundee, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.360744.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Islam, Md Shahidul. "Shear capacity and flexural ductility of reinforced high- and normal-strength concrete beams." Thesis, Hong Kong : University of Hong Kong, 1996. http://sunzi.lib.hku.hk/hkuto/record.jsp?B1766536X.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Denton, Stephen Richard. "The strength of reinforced concrete slabs and the implications of limited ductility." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.274164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Shwani, Mohamed K. "Enhancing Ductility of One-way Concrete Slabs Reinforced With Welded Wire Reinforcement." DigitalCommons@USU, 2017. https://digitalcommons.usu.edu/etd/6894.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A series of research studies have recently identified an issue called strain localization in welded wire reinforced (WWR) members. This phenomenon reportedly concentrates strains at welded cross wire locations and severely limit ductility. Those that identified the phenomenon used it to imply that WWR is unsafe because it does not warn of failure. This dissertation is investigating details to mitigate the strain localization effect and demonstrate the WWR can be used safely. A moment curvature analysis is developed using Response2000 program and calibrated using experimental data. Parametric study was developed to present a recommendation of details and minimum reinforcement required for WWR slabs. The effect of different types of WWR coating on mechanical properties were investigated. The dissertation next examined the effects of strain rate on the mechanical properties of WWR and traditional rebar. In total, fifty four slabs have been constructed using WWR and rebar with various cross wire spacing, using a realistic design. The strain localization phenomenon was not demonstrated, but WWR slabs are somewhat less ductile than traditionally reinforced members. The WWR members were shown to provide adequate ductility for warning of impending failure visually and with a well-accepted ductility measure. The WWR members were also shown the ability of load redistribution. The effect of coating demonstrates that both galvanizing WWR and coating WWR with epoxy has a positive effect on mechanical properties, along with adding corrosion resistance. The effect of strain rate shows that increase in loading rate tend to increase the yield and ultimate stresses and percent area reduction, however the loading rate increase does not have a significant effect on elastic modulus, elongation and uniform elongation.
25

Lyon, Jeffrey G. "FRP CONFINED REINFORCED CONCRETE CIRCULAR CROSS SECTION SEISMIC APPLICATIONS." DigitalCommons@CalPoly, 2009. https://digitalcommons.calpoly.edu/theses/149.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In recent earthquakes, structures have not performed as well as expected resulting in a need for better means of retrofitting and improvements in seismic design. Fiber Reinforced Polymers (FRP), as a material with potential to increase strength and ductility of columns in conjunction with capacity design methodology, has promise for seismic design. By investigating the displacement, ductility, and flexural strength properties of FRP confined reinforced concrete circular cross sections, this study analyzes the seismic applications of FRP confinement. The study is performed by incorporating an FRP confined concrete stress-strain model into a developed Moment-Curvature and PM Interaction software. This software conducts a comparison between traditional steel and FRP confined sections while performing parameter studies on the 28-day unconfined concrete compressive strength, longitudinal reinforcing ratio, cross section diameter, FRP confinement jacket thickness-cross section diameter ratio, and FRP confinement system design variables. These studies validate FRP’s performance for seismic applications resulting in several design recommendations to increase displacement capacity, ductility, and flexural strength and, thus, seismic performance.
26

Islam, Mohammad M. "Moment redistribution in reinforced concrete beams and one-way slabs using 500 MPa steel." Thesis, Curtin University, 2002. http://hdl.handle.net/20.500.11937/631.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the Australian Standard, AS 3600-2001, the neutral axis parameter Ku is used as a convenient, but approximate, parameter to design for moment redistribution in building frames. The research work reported herein was conducted to obtain complete information regarding moment redistribution of beams and one-way slabs using 500 MPa steel reinforcement.A computer based iterative numerical method was developed to analyse reinforced two-span continuous concrete beams and one-way slabs. The method takes into account the material and geometrical non-linearities in the calculations. The deflected shape of the beam and one-way slab was calculated by dividing the span length into a number of rigid segments. The program also calculates the failure load and extent of moment redistribution. The analytical method was verified against the test results reported in the literature. The analytical results for load-deflection graphs and moment redistribution showed a good agreement with the test results.A parametric study was conducted using analytical method. The results of this study showed that moment redistribution depends not only on the neutral axis parameter (Ku) but also on the ratio of neutral axis parameter (Ku-/Ku+), ultimate steel strain (ªsu) and concrete compressive strength (fc).
27

Lau, Shuk-lei. "Rehabilitation of reinforced concrete beam-column joints using glass fibre reinforced polymer sheets." Click to view the E-thesis via HKUTO, 2005. http://sunzi.lib.hku.hk/hkuto/record/B32001630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Plumb, Alex David. "Seismic Behavior of GFRP-Reinforced Concrete Beams and Moment Frames." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The use of fiber reinforced polymer (FRP) bars as internal reinforcement for concrete structures has grown in frequency within the past thirty years, owing mainly to the material’s resistance to corrosion. This development is prevalent in coastal regions where the chemical attack from seawater can weaken steel reinforcement, the traditional reinforcing material in concrete. However, a large obstacle remains in replacing all steel reinforcement with FRP reinforcement in these areas: coastal regions are some of the most seismically active areas in the world. Research on FRP bars shows they behave linear-elastically and exhibit brittle, as opposed to ductile, failure. This is impractical for acceptable seismic design, where the ductile performance of the structure is advantageous to absorb the earthquake loads. Due to this, the outlook for FRP reinforced concrete in seismic zones is seemingly limited. But recent research, although from a small sample size, has shown promising results. This research aims to build upon these findings and expand the knowledge of FRP reinforced concrete performance under seismic loads, especially for beams and moment frames. An analytical study was performed to examine (i) the cross-section of a hybrid glass (G)FRP-steel-reinforced beam through moment-curvature analysis and (ii) two concrete moment frames with GFRP-reinforced beams and steel-reinforced columns subjected to simulated seismic loading through pushover analysis. The performance of the primarily GFRP reinforced concrete design was evaluated by parameters such as curvature ductility (9.0), structural ductility (2.1 and 5.0), and lateral drift. The results showed significant potential for the use of GFRP in seismically active regions.
29

Abdulkadir, Ramzi I. "Strength and ductility of concrete columns reinforced with welded wire fabric and/or rebars." Thesis, University of Ottawa (Canada), 1991. http://hdl.handle.net/10393/6020.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Research was carried out to investigate the characteristics of concrete confined by welded wire fabric. The column reinforcement consisted of only welded wire fabric, without the use of any reinforcing bars. The increase in confinement was relatively small. The ductility enhancement was also limited. It was concluded that, unless special size welded wire fabric was used to have adequate percentage of steel, the standard size mesh was not suitable for use as column reinforcement. The test results were compared against analytical predictions obtained from the use of Saatcioglu and Razvi model for confined concrete. Having established the validity of the model, a parametric study was carried out to establish the significance of confinement parameters for columns reinforced with welded wire fabric, reinforcing bars, and a combination of the two. It was found that the combined use of reinforcing bars and welded wire fabric offered the optimum solution, where the bars formed the main reinforcement, and the mesh provided superior concrete confinement. (Abstract shortened by UMI.)
30

Carlin, Brian Patrick. "Investigation of the Strength and Ductility of Reinforced Concrete Beams Strengthed with CFRP Laminates." Thesis, Virginia Tech, 1998. http://hdl.handle.net/10919/36546.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The use of fiber reinforced plastics (FRP) in repairing and strengthening bridges has been researched in recent years. In particular, attaching unidirectional FRP to the tension face of reinforced concrete beams has provided an increase in stiffness and load capacity of the structure. However, due to the brittle nature of the unidirectional FRP, the ductility of the beam decreases. One possible solution to this problem is the use of cross-ply or off-axis FRP laminates. This thesis focuses on the investigation of the flexural behavior of reinforced concrete beams strengthened with one of two different FRP orientations (0°/90° and ±45°). More particularly, the change in strength and ductility of the beams as the number of FRP layers are altered is investigated. Seven under-reinforced concrete beams were constructed and tested to failure. With the exception of the control beam, each specimen was applied with two, three, or four layers of either 0°/90° and ±45° FRP orientations. To predict the flexural behavior of the specimens, a theoretical model was derived using basic concepts, past research, and the tested properties of the concrete, steel reinforcement, and FRP. Also, two methods were used to analyze the ductility of the tested beams. Along with the test details of each specimen; the moment, deflection, CFRP strain, crack patterns, and mode of failure are discussed. The results included an increase in load capacity with respect for the number of CFRP layers applied for both orientations. Also, the ductility of the beams were reduced by adding CFRP orientations.
Master of Science
31

Yosefani, Anas. "Flexural Strength, Ductility, and Serviceability of Beams that Contain High-Strength Steel Reinforcement and High-Grade Concrete." PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Utilizing the higher capacity steel in design can provide additional advantages to the concrete construction industry including a reduction of congestion, improved concrete placement, reduction in the required reinforcement and cross sections which would lead to savings in materials, shipping, and placement costs. Using high-strength reinforcement is expected to impact the design provisions of ACI 318 code and other related codes. The Applied Technology Council (ATC-115) report "Roadmap for the Use of High-Strength Reinforcement in Reinforced Concrete Design" has identified key design issues that are affected by the use of high-strength reinforcement. Also, ACI ITG-6, "Design Guide for the Use of ASTM A1035 Grade 100 Steel Bars for Structural Concrete" and NCHRP Report 679, "Design of Concrete Structures Using High-Strength Steel Reinforcement" have made progress towards identifying how code provisions in ACI 318 and AASHTO could be changed to incorporate high-strength reinforcement. The current research aims to provide a closer investigation of the behavior of beams reinforced with high-strength steel bars (including ASTM A615 Grade 100 and ASTM A1035 Grades 100 and 120) and high-strength concrete up to 12000 psi. Focus of the research is on key design issues including: ductility, stiffness, deflection, and cracking. The research includes an extensive review of current literature, an analytical study and conforming experimental tests, and is directed to provide a number of recommendations and design guidelines for design of beams reinforced with high-strength concrete and high-strength steel. Topics investigated include: strain limits (tension-controlled and compression-controlled, and minimum strain in steel); possible change for strength reduction factor equation for transition zone (Φ); evaluation of the minimum reinforcement ratio (þmin); recommendations regarding limiting the maximum stress for the high-strength reinforcement; and prediction of deflection and crack width at service load levels. Moreover, this research includes long-term deflection test of a beam made with high grade concrete and high-strength steel under sustained load for twelve months to evaluate the creep deflection and to insure the appropriateness of the current ACI 318 time-dependent factor, λ, which does not consider the yield strength of reinforcement and the concrete grade.
32

Lau, Shuk-lei, and 劉淑妮. "Rehabilitation of reinforced concrete beam-column joints using glass fibre reinforced polymer sheets." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2005. http://hub.hku.hk/bib/B32001630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Tanaka, Hitoshi. "Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns." Thesis, University of Canterbury. Civil Engineering, 1990. http://hdl.handle.net/10092/1241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis is concerned with the effects of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns. The contents of the chapters are summarized as follows. In Chapter one, the general problems in seismic design are discussed and earthquake design methods based on the ductile design approach are described. Japanese, New Zealand and United States design codes are compared. Finally, the scope of this research project is outlined. In Chapter two, after reviewing previous research on confined concrete, the factors which affect the effectiveness of lateral confinement are discussed. Especially the effects of the yield strength of transverse reinforcement, the compressive strength of plain concrete and the strain gradient in the column section due to bending are discussed based on tests which were conducted by the author et al at Kyoto University and Akashi Technological College, Japan. In the axial compression tests on spirally reinforced concrete cylinders (150 mm in diameter by 300 mm in height), the yield strength of transverse reinforcement and the compressive strength of plain concrete were varied from 161 MPa to 1352 MPa and from 17 MPa to 60 MPa, respectively, as experimental parameters. It is found that, when high strength spirals are used as confining reinforcement, the strength and ductility of the confined core concrete are remarkably enhanced but need to be estimated assuming several failure modes which could occur. These are based on the observations that concrete cylinders with high strength spirals suddenly failed at a concrete compressive strain of 2 to 3.5 % due to explosive crushing of the core concrete between the spiral bars or due to bearing failure of the core concrete immediately beneath the spiral bars, while the concrete cylinders with ordinary strength spirals failed in a gentle manner normally observed. In addition, eccentric loading tests were conducted on concrete columns with 200 mm square section confined by square spirals. It is found that the effectiveness of confining reinforcement is reduced by the presence of the strain gradient along the transverse section of column. In Chapter three, the effectiveness of transverse reinforcement with various types of anchorage details which simplify the fabrication of reinforcing cages are investigated. Eight reinforced concrete columns, with either 400 mm or 550 mm square cross sections, were tested subjected to axial compression loading and cyclic lateral loading which simulated a severe earthquake. The transverse reinforcement consisted of arrangements of square perimeter hoops with 135° end hooks, cross ties with 90° and 135° or 180° end hooks, and 'U' and 'J' shaped cross ties and perimeter hoops with tension splices. Conclusions are reached with regard to the effectiveness of the tested anchorage details in the plastic hinge regions of columns designed for earthquake resistance. In Chapter four, the effectiveness of interlocking spirals as transverse reinforcement is studied. Firstly, the general aspects and the related problems of interlocking spirals to provide adequate ductility in the potential plastic hinge region of columns are discussed, referring to the provisions in the New Zealand code,the CALTRANS (California Transportation Authority) code and other related codes. Secondly, based on those discussions, a design method to securely interlock the spirals is proposed. Thirdly, the effectiveness of interlocking spirals is assessed based on column tests conducted as part of this study. Three columns with interlocking spirals and, for comparison, one rectangular column with rectangular hoopsandcross ties, were tested under cyclic horizontal loading which simulated a severe earthquake. The sections of those columns were 400 mm by 600 mm. In Chapter five, analytical models to investigate the buckling behaviour of longitudinal reinforcement restrained by cross ties with 90° and 135° end hooks and by peripheral hoops are proposed. The analyzed results using the proposed models compare well with the experimental observations described in Chapter three. Using those proposed models, a method to check the effectiveness of cross ties with 90° and 135° end hooks is proposed for practical design purposes. In Chapter six, a theory for the prediction of the ultimate longitudinal compressive concrete strain at the stage of first hoop fracture referred to as the "Energy Balance Theory", which has been developed by Mander, Priestley and Park at University of Canterbury, is introduced. After discussing the problems in the "Energy Balance Theory", a modified theory for the prediction of the ultimate longitudinal compressive concrete strain at the stage of first hoop fracture is proposed. The predictions from the modified theory are found to compare well with previous experimental results.
34

Neela, Subhashini. "Flexural Behavior of Basalt FRP Bar Reinforced Concrete Members With and Without Polypropylene Fiber." University of Akron / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=akron1291084015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Islam, Mohammad M. "Moment redistribution in reinforced concrete beams and one-way slabs using 500 MPa steel." Curtin University of Technology, Department of Civil Engineering, 2002. http://espace.library.curtin.edu.au:80/R/?func=dbin-jump-full&object_id=13212.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In the Australian Standard, AS 3600-2001, the neutral axis parameter Ku is used as a convenient, but approximate, parameter to design for moment redistribution in building frames. The research work reported herein was conducted to obtain complete information regarding moment redistribution of beams and one-way slabs using 500 MPa steel reinforcement.A computer based iterative numerical method was developed to analyse reinforced two-span continuous concrete beams and one-way slabs. The method takes into account the material and geometrical non-linearities in the calculations. The deflected shape of the beam and one-way slab was calculated by dividing the span length into a number of rigid segments. The program also calculates the failure load and extent of moment redistribution. The analytical method was verified against the test results reported in the literature. The analytical results for load-deflection graphs and moment redistribution showed a good agreement with the test results.A parametric study was conducted using analytical method. The results of this study showed that moment redistribution depends not only on the neutral axis parameter (Ku) but also on the ratio of neutral axis parameter (Ku-/Ku+), ultimate steel strain (ªsu) and concrete compressive strength (fc).
36

Araba, Almahdi M. A. A. "Behaviour of continuous concrete beams reinforced with hybrid GFRP/steel bars." Thesis, University of Bradford, 2017. http://hdl.handle.net/10454/16920.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Mahjoub-Moghaddas, Hamid. "Tensile and shear impact strength of concrete and fibre reinforced concrete." Thesis, Cardiff University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261439.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

黃玉平 and Yuping Huang. "Nonlinear analysis of reinforced concrete structures." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31233090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Huang, Yuping. "Nonlinear analysis of reinforced concrete structures /." [Hong Kong] : University of Hong Kong, 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13458917.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

MACHADO, MARCELIA GOMES. "EXPERIMENTAL STUDY ON DUCTILITY OF REINFORCED CONCRETE BEAMS STRENGTHENED IN FLEXURE WITH CARBON FIBER COMPOSITES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2004. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=5867@1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
COORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Este trabalho experimental tem como objetivo estudar a ductilidade de vigas retangulares de concreto armado reforçadas à flexão utilizando compósitos com tecido de fibras de carbono. No estudo realizado são apresentados os conceitos clássicos de ductilidade e é proposta uma nova sistemática para obtenção do índice de ductilidade, baseada nas considerações da energia elástica e da energia inelástica. A ductilidade é determinada por meio de um índice energético, que se caracteriza como uma forma mais eficiente para a determinação e análise da ductilidade em elementos estruturais. O programa experimental consistiu no ensaio de sete vigas bi-apoiadas, sendo uma viga de referência e as demais reforçadas à flexão com tecido de fibras de carbono. Todas as vigas possuem as mesmas características mecânicas e geométricas e foram dimensionadas de modo a garantir a ruptura por flexão. A viga de referência, a primeira ensaiada, não foi reforçada e serviu para comparações de incremento de rigidez e resistência após a aplicação do reforço. As vigas reforçadas foram divididas em dois grupos. O grupo A é constituído de duas vigas, reforçadas inicialmente com uma e duas camadas de tecido de fibra de carbono. O grupo B é constituído por quatro vigas que foram reforçadas após um carregamento inicial. Neste grupo, duas vigas foram reforçadas com uma camada de tecido de fibra de carbono e as outras duas foram reforçadas com duas camadas de tecido de fibras de carbono, correspondendo à mesma área total de reforço das anteriores. Todas as vigas foram concretadas, instrumentadas e ensaiadas no Laboratório de Estruturas e Materiais da PUC-Rio. Os ensaios das vigas do grupo B foram realizados com as vigas pré-ensaiadas, reforçadas sob deformação constante e em seguida levadas à ruptura. A deformação foi mantida constante durante a aplicação e o período de cura do reforço. Os resultados obtidos em termos de carga, flecha, momento, curvatura, ductilidade energética e rotação plástica foram analisados. Os estudos realizados mostraram que o reforço com compósitos de fibras de carbono é uma técnica eficaz, que as vigas apresentam ductilidade adequada e que os índices energéticos propostos são adequados para este tipo de estudo.
The objective of this experimental work is to study the ductility of reinforced concrete beams strengthened in flexure using externally bonded carbon fiber fabric composites. This study presents the classic concepts of ductility and proposes a new systematic to obtain the ductility index, which is based on the considerations of elastic and inelastic energy. The ductility was determined by an energetic index, which has seen to be a more efficient method to establish and analyze the ductility of structural elements. The experimental program consisted of seven beams tests. One was used as a control beam without external reinforcement and the others were strengthened with carbon fibers in order to resist flexural load. All the beams had the same mechanical and geometrical characteristics and were designed to fail in flexure. The control beam was not strengthened and its purpose was to compare the stiffness increase and resistance after the strength. The strengthened beams were divided in two groups. Group A was constituted by two beams, initially strengthened by one and two layers of carbon fiber fabric. Group B was formed by four beams which were strengthened after the application of an initial load. In this group, two beams were strengthened by one layer of carbon fiber fabric and the other two were strengthened by two layers, which corresponded to the same area of the others. All the beams were cast, instrumented and tested in the Structural and Materials Laboratory at PUC-Rio. Group B tests were performed with the pretested beams strengthened under constant strain, and then loaded up to rupture. The strain was kept constant during the application and cure of the external reinforcement. The results obtained in terms of load, deflection, resistant moment, curvature, energetic ductility indexes and plastic rotation were analyzed. The study showed that the reinforcement using carbon fiber fabric composites is an efficient technique, the beams presented adequate ductility and the proposed energetic ductility indexes are consistent formulae for this kind of study.
41

Peng, Jun, and 彭军. "Strain gradient effects on flexural strength and ductility design of normal-strength RC beams and columns." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48329630.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The stress-strain characteristics of concrete developed in flexure is very important for flexural strength design of reinforced concrete (RC) members. In current RC design codes, the stress-strain curve of concrete developed in flexure is obtained by scaling down the uni-axial stress-strain curve to account for the strain gradient effect. Therefore, the maximum concrete stress that can be developed under flexure is smaller than its uni-axial strength, and the use of which always underestimates the flexural strength of RC beams and columns even though the safety factors for materials are taken as unity. Furthermore, the value of strength underestimation was different for RC beams and columns, which indicates that the extent of strain gradient will affect the maximum concrete stress and stress-strain curve developed under flexure. To investigate the maximum concrete stress, 29 column specimens were fabricated and tested in this study. They were divided into 9 groups, each of which was poured from the same batch of concrete and contained specimens with identical cross-section properties. In each group, one specimen was tested under concentric load while the rest was/were subjected to eccentric or horizontal load. To study the strain gradient effects, the ratio of the maximum concrete compressive stress developed in the eccentrically/horizontally loaded specimens to the maximum uni-axial compressive stress developed in the counterpart concentrically loaded specimens, denoted by k3, is determined based on axial force and moment equilibriums. Subsequently, the concrete stress block parameters and the equivalent rectangular concrete stress block parameters are determined. It is found that the ratios of the maximum and equivalent concrete stress to uni-axial cylinder strength, denoted respectively by k3 and , depend significantly on strain gradient, while that of the depth of stress block to neutral axis depth, denoted by , remains relatively constant with strain gradient. Design equations are proposed to relate and  with strain gradient for strength calculation, whose applicability is verified by comparing the strengths of RC beams and columns tested by various researchers with their theoretical strengths predicted by the proposed parameters and those evaluated based on provisions of RC codes. Based on the test results, the stress-strain curve of normal-strength concrete (NSC) developed under strain gradient is derived using least-square method by minimising the errors between the theoretical axial load and moment and the respective measured values. Two formulas are developed to derive the flexural stress-strain curve, whose applicability is verified by comparing the predicted strength with those measured by other researchers. Lastly, the application of the proposed stress-block parameters and stress-strain curve of NSC will be illustrated by developing some charts for flexural strength design of NSC beams and columns. The application will further be extended to develop strength-ductility charts for NSC beams and columns, which enable simultaneous design of strength and ductility. By adopting the proposed design charts, the flexural strength design, as well as that of the plastic hinge forming mechanism during extreme events, will be more accurate. The resulting design will be safer, more environmentally friendly and cost effective.
published_or_final_version
Civil Engineering
Doctoral
Doctor of Philosophy
42

Ho, Ching-ming Johnny, and 何正銘. "Inelastic design of reinforced concrete beams and limited ductilehigh-strength concrete columns." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2003. http://hub.hku.hk/bib/B27500305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Bliuc, Radu Aerospace Civil &amp Mechanical Engineering Australian Defence Force Academy UNSW. "Particularities of the structural behaviour of reinforced high strength concrete slabs." Awarded by:University of New South Wales - Australian Defence Force Academy. School of Aerospace, Civil and Mechanical Engineering, 2004. http://handle.unsw.edu.au/1959.4/38749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The introduction of high strength concrete in construction demanded an assessment of the current methods of structural design. In the case of the slabs, the benefits brought about by concretes of higher strength could translate into design of slender sections. Theoretically these sections could be prone to excessive deflections. The flexural behaviour of such structural elements should be carefully assessed. The present thesis addresses a series of particular issues such as deflection at service loads, crack formation and development of tension stiffening and ductility. An experimental program on large-scale samples was conducted. Six one way and four two way slabs made of reinforced high strength concrete were tested under simulated and accurately measured equally distributed loads. Different loading stages were recorded. Crack formation, crack patterns and yield line disposition were observed. The main characteristics of concrete that influence the deflection behaviour were assessed based on collected data and on available literature results. Statistical methods were employed in order to refine empirical equations that help in the design of slabs. To improve the calculation of deflection of slabs a new equation for the effective moment of inertia was proposed. The new formula was integrated into a method of calculating deflection and verified against experimental results. Limits of the use of high strength concrete in slabs were investigated by means of a parametric study. This was designed to answer some questions as: which would be the most important characteristics of high-strength concrete that influence the design and up to what value of strength would the beneficial effect on deflection exhaust its effectiveness. Models based on the refined empirical equations for different concrete parameters were proposed. Another area that has been studied was the ductility of high strength concrete slabs. An analytical comparative study of the ductility of slabs reinforced with steel of different ductility class was conducted. Results were critically appraised and discussed.
44

Adhikari, Sudeep. "Mechanical and Structural Characterization of Mini-Bar Reinforced Concrete Beams." University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1386682169.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Wong, Koon-Wan. "Non-linear behaviour of reinforced concrete frames /." Title page, contents and abstract only, 1989. http://web4.library.adelaide.edu.au/theses/09PH/09phw872.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Pichardo, C., C. Pichardo, W. Tovar, and V. I. Fernandez-Davila. "Evaluation of the curvature ductility ratio of a circular cross-section of concrete reinforced with GFRP bars." Institute of Physics Publishing, 2020. http://hdl.handle.net/10757/651796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The present study deals with the use of fiberglass reinforced polymer bars (GFRP) as a replacement for the common steel of a reinforced concrete circular pile, in order to avoid the corrosion of durability of reinforcing bars and thus improve them. The comparative analysis was carried out between a pile reinforced with GFRP and another with steel, where the ductility was evaluated by obtaining moment-curvature diagram. As a result, said idealized moment-curvature diagrams and ductility indices are presented, concluding the ductility of the section reinforced with GFRP in 20% more than that of steel.
47

Olonisakin, Akinwumi Adeyemi. "Reinforced concrete slabs with partial lateral edge restraint." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.325008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Eilers, Michael G. Thiagarajan Ganesh. "Ductility behavior of concrete flexural members reinforced with a hybrid combination of GFRP and mild steel." Diss., UMK access, 2006.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis (M.S.)--School of Computing and Engineering. University of Missouri--Kansas City, 2006.
"A thesis in civil engineering." Typescript. Advisor: Ganesh Thiagarajan. Vita. Title from "catalog record" of the print edition Description based on contents viewed Oct. 30, 2007. Includes bibliographical references (leaves 70-71). Online version of the print edition.
49

Ali, Mir Mazher Carleton University Dissertation Engineering Civil and Environmental. "A new concept in achieving ductility in FRP reinforced concrete members; an analytical and experimental study." Ottawa, 1995.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Betaque, Andrew D. "Evaluation of software for analysis and design of reinforced concrete structures." Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-09192009-040235/.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії