Добірка наукової літератури з теми "Regularized approaches"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Regularized approaches".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Regularized approaches"
G.V., Suresh, and Srinivasa Reddy E.V. "Uncertain Data Analysis with Regularized XGBoost." Webology 19, no. 1 (January 20, 2022): 3722–40. http://dx.doi.org/10.14704/web/v19i1/web19245.
Повний текст джерелаTaniguchi, Michiaki, and Volker Tresp. "Averaging Regularized Estimators." Neural Computation 9, no. 5 (July 1, 1997): 1163–78. http://dx.doi.org/10.1162/neco.1997.9.5.1163.
Повний текст джерелаLuft, Daniel, and Volker Schulz. "Simultaneous shape and mesh quality optimization using pre-shape calculus." Control and Cybernetics 50, no. 4 (December 1, 2021): 473–520. http://dx.doi.org/10.2478/candc-2021-0028.
Повний текст джерелаEbadat, Afrooz, Giulio Bottegal, Damiano Varagnolo, Bo Wahlberg, and Karl H. Johansson. "Regularized Deconvolution-Based Approaches for Estimating Room Occupancies." IEEE Transactions on Automation Science and Engineering 12, no. 4 (October 2015): 1157–68. http://dx.doi.org/10.1109/tase.2015.2471305.
Повний текст джерелаFeng, Hesen, Lihong Ma, and Jing Tian. "A Dynamic Convolution Kernel Generation Method Based on Regularized Pattern for Image Super-Resolution." Sensors 22, no. 11 (June 1, 2022): 4231. http://dx.doi.org/10.3390/s22114231.
Повний текст джерелаRobitzsch, Alexander. "Implementation Aspects in Regularized Structural Equation Models." Algorithms 16, no. 9 (September 18, 2023): 446. http://dx.doi.org/10.3390/a16090446.
Повний текст джерелаRobitzsch, Alexander. "Comparing Robust Linking and Regularized Estimation for Linking Two Groups in the 1PL and 2PL Models in the Presence of Sparse Uniform Differential Item Functioning." Stats 6, no. 1 (January 25, 2023): 192–208. http://dx.doi.org/10.3390/stats6010012.
Повний текст джерелаLeen, Todd K. "From Data Distributions to Regularization in Invariant Learning." Neural Computation 7, no. 5 (September 1995): 974–81. http://dx.doi.org/10.1162/neco.1995.7.5.974.
Повний текст джерелаFeng, Huijie, Chunpeng Wu, Guoyang Chen, Weifeng Zhang, and Yang Ning. "Regularized Training and Tight Certification for Randomized Smoothed Classifier with Provable Robustness." Proceedings of the AAAI Conference on Artificial Intelligence 34, no. 04 (April 3, 2020): 3858–65. http://dx.doi.org/10.1609/aaai.v34i04.5798.
Повний текст джерелаZhang, Hong, Dong Lai Hao, and Xiang Yang Liu. "A Precoding Strategy for Massive MIMO System." Applied Mechanics and Materials 568-570 (June 2014): 1278–81. http://dx.doi.org/10.4028/www.scientific.net/amm.568-570.1278.
Повний текст джерелаДисертації з теми "Regularized approaches"
Schwarz, Stephan [Verfasser], Philipp [Gutachter] Junker, and Klaus [Gutachter] Hackl. "Efficient approaches for regularized damage models : variational modeling and numerical treatment / Stephan Schwarz ; Gutachter: Philipp Junker, Klaus Hackl ; Fakultät für Maschinenbau." Bochum : Ruhr-Universität Bochum, 2019. http://d-nb.info/1195220863/34.
Повний текст джерелаSpagnoli, Lorenzo. "COVID-19 prognosis estimation from CAT scan radiomics: comparison of different machine learning approaches for predicting patients survival and ICU Admission." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/23926/.
Повний текст джерелаSavino, Mary Edith. "Statistical learning methods for nonlinear geochemical problems." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASM032.
Повний текст джерелаIn this thesis, we propose two function estimation methods and a variable selection method in a multivariate nonparametric model as part of numerical simulations of geochemical systems, for a deep geological disposal facility of highly radioactive waste. More specifically, in Chapter 2, we present an active learning procedure using Gaussian processes to approximate unknown functions having several input variables. This method allows for the computation of the global uncertainty of the function estimation at each iteration and thus, cunningly selects the most relevant observation points at which the function to estimate has to be evaluated. Consequently, the number of observations needed to obtain a satisfactory estimation of the underlying function is reduced, limiting calls to geochemical reaction equations solvers and reducing calculation times. Additionally, in Chapter 3, we propose a non sequential function estimation method called GLOBER consisting in approximating the function to estimate by a linear combination of B-splines. In this approach, since the knots of the B-splines can be seen as changes in the derivatives of the function to estimate, they are selected using the generalized lasso. In Chapter 4, we introduce a novel variable selection method in a multivariate nonparametric model, ABSORBER, to identify the variables the unknown function really depends on, thereby simplifying the geochemical system. In this approach, we assume that the function can be approximated by a linear combination of B-splines and their pairwise interaction terms. The coefficients of each term of the linear combination are estimated using the usual least squares criterion penalized by the l2-norms of the partial derivatives with respect to each variable. The introduced approaches were evaluated and validated through numerical experiments and were all applied to geochemical systems of varying complexity. Comparisons with state-of-the-art methods demonstrated that our methods outperformed the others. In Chapter 5, the function estimation and variable selection methods were applied in the context of a European project, EURAD, and compared to methods devised by other scientific teams involved in the projet. This application highlighted the performance of our methods, particularly when only the relevant variables selected with ABSORBER were considered. The proposed methods have been implemented in R packages: glober and absorber which are available on the CRAN (Comprehensive R Archive Network)
Mak, Rachel Y. C. "Reducing Complexity| A Regularized Non-negative Matrix Approximation (NNMA) Approach to X-ray Spectromicroscopy Analysis." Thesis, Northwestern University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3669280.
Повний текст джерелаX-ray absorption spectromicroscopy combines microscopy and spectroscopy to provide rich information about the chemical organization of materials down to the nanoscale. But with richness also comes complexity: natural materials such as biological or environmental science specimens can be composed of complex spectroscopic mixtures of different materials. The challenge becomes how we could meaningfully simplify and interpret this information. Approaches such as principal component analysis and cluster analysis have been used in previous studies, but with some limitations that we will describe. This leads us to develop a new approach based on a development of non-negative matrix approximation (NNMA) analysis with both sparseness and spectra similarity regularizations. We apply this new technique to simulated spectromicroscopy datasets as well as a preliminary study of the large-scale biochemical organization of a human sperm cell. NNMA analysis is able to select major features of the sperm cell without the physically erroneous negative weightings or thicknesses in the calculated image which appeared in previous approaches.
Yu, Lixi. "Regularized efficient score estimation and testing (reset) approach in low-dimensional and high-dimensional GLM." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2301.
Повний текст джерелаGürol, Selime. "Solving regularized nonlinear least-squares problem in dual space with application to variational data assimilation." Thesis, Toulouse, INPT, 2013. http://www.theses.fr/2013INPT0040/document.
Повний текст джерелаThis thesis investigates the conjugate-gradient method and the Lanczos method for the solution of under-determined nonlinear least-squares problems regularized by a quadratic penalty term. Such problems often result from a maximum likelihood approach, and involve a set of m physical observations and n unknowns that are estimated by nonlinear regression. We suppose here that n is large compared to m. These problems are encountered for instance when three-dimensional fields are estimated from physical observations, as is the case in data assimilation in Earth system models. A widely used algorithm in this context is the Gauss-Newton (GN) method, known in the data assimilation community under the name of incremental four dimensional variational data assimilation. The GN method relies on the approximate solution of a sequence of linear least-squares problems in which the nonlinear least-squares cost function is approximated by a quadratic function in the neighbourhood of the current nonlinear iterate. However, it is well known that this simple variant of the Gauss-Newton algorithm does not ensure a monotonic decrease of the cost function and that convergence is not guaranteed. Removing this difficulty is typically achieved by using a line-search (Dennis and Schnabel, 1983) or trust-region (Conn, Gould and Toint, 2000) strategy, which ensures global convergence to first order critical points under mild assumptions. We consider the second of these approaches in this thesis. Moreover, taking into consideration the large-scale nature of the problem, we propose here to use a particular trust-region algorithm relying on the Steihaug-Toint truncated conjugate-gradient method for the approximate solution of the subproblem (Conn, Gould and Toint, 2000, pp. 133-139). Solving this subproblem in the n-dimensional space (by CG or Lanczos) is referred to as the primal approach. Alternatively, a significant reduction in the computational cost is possible by rewriting the quadratic approximation in the m-dimensional space associated with the observations. This is important for large-scale applications such as those solved daily in weather prediction systems. This approach, which performs the minimization in the m-dimensional space using CG or variants thereof, is referred to as the dual approach. The first proposed dual approach (Courtier, 1997), known as the Physical-space Statistical Analysis System (PSAS) in the data assimilation community starts by solving the corresponding dual cost function in m-dimensional space by a standard preconditioned CG (PCG), and then recovers the step in n-dimensional space through multiplication by an n by m matrix. Technically, the algorithm consists of recurrence formulas involving m-vectors instead of n-vectors. However, the use of PSAS can be unduly costly as it was noticed that the linear least-squares cost function does not monotonically decrease along the nonlinear iterations when applying standard termination. Another dual approach has been proposed by Gratton and Tshimanga (2009) and is known as the Restricted Preconditioned Conjugate Gradient (RPCG) method. It generates the same iterates in exact arithmetic as those generated by the primal approach, again using recursion formula involving m-vectors. The main interest of RPCG is that it results in significant reduction of both memory and computational costs while maintaining the desired convergence property, in contrast with the PSAS algorithm. The relation between these two dual approaches and the question of deriving efficient preconditioners (Gratton, Sartenaer and Tshimanga, 2011), essential when large-scale problems are considered, was not addressed in Gratton and Tshimanga (2009)
Pröchtel, Patrick. "Anisotrope Schädigungsmodellierung von Beton mit adaptiver bruchenergetischer Regularisierung Anisotropic damage modeling of concrete regularized by means of the adaptive fracture energy approach /." [S.l. : s.n.], 2008. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1224751435667-29771.
Повний текст джерелаTESEI, CLAUDIA. "Nonlinear analysis of masonry and concrete structures under monotonic and cyclic loading: a regularized multidirectional d+/d− damage model." Doctoral thesis, Politecnico di Torino, 2018. http://hdl.handle.net/11583/2710141.
Повний текст джерелаOlaya, Bucaro Orlando. "Exploring relevant features associated with measles nonvaccination using a machine learning approach." Thesis, Stockholms universitet, Sociologiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-184577.
Повний текст джерелаSalgado, Patarroyo Ivan Camilo. "Spatially Regularized Spherical Reconstruction: A Cross-Domain Filtering Approach for HARDI Signals." Thesis, 2013. http://hdl.handle.net/10012/7847.
Повний текст джерелаЧастини книг з теми "Regularized approaches"
Pillonetto, Gianluigi, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, and Lennart Ljung. "Regularization in Reproducing Kernel Hilbert Spaces." In Regularized System Identification, 181–246. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95860-2_6.
Повний текст джерелаPillonetto, Gianluigi, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, and Lennart Ljung. "Numerical Experiments and Real World Cases." In Regularized System Identification, 343–69. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95860-2_9.
Повний текст джерелаGraham, Lamar A. "Chapter 4. Derived verbs and future-conditional stem regularization in written Spanish in synchrony and diachrony." In Innovative Approaches to Research in Hispanic Linguistics, 82–105. Amsterdam: John Benjamins Publishing Company, 2023. http://dx.doi.org/10.1075/ihll.38.04gra.
Повний текст джерелаIto, Kazufumi, and Bangti Jin. "Regularized Linear Inversion with Randomized Singular Value Decomposition." In Mathematical and Numerical Approaches for Multi-Wave Inverse Problems, 45–72. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48634-1_5.
Повний текст джерелаLombardi, Michele, Federico Baldo, Andrea Borghesi, and Michela Milano. "An Analysis of Regularized Approaches for Constrained Machine Learning." In Trustworthy AI - Integrating Learning, Optimization and Reasoning, 112–19. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-73959-1_11.
Повний текст джерелаde Campos Souza, Paulo Vitor, Augusto Junio Guimaraes, Vanessa Souza Araujo, Thiago Silva Rezende, and Vinicius Jonathan Silva Araujo. "Using Fuzzy Neural Networks Regularized to Support Software for Predicting Autism in Adolescents on Mobile Devices." In Smart Network Inspired Paradigm and Approaches in IoT Applications, 115–33. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8614-5_7.
Повний текст джерелаSchulz, Volker H., and Kathrin Welker. "Shape Optimization for Variational Inequalities of Obstacle Type: Regularized and Unregularized Computational Approaches." In International Series of Numerical Mathematics, 397–420. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79393-7_16.
Повний текст джерелаPillonetto, Gianluigi, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, and Lennart Ljung. "Bias." In Regularized System Identification, 1–15. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95860-2_1.
Повний текст джерелаPillonetto, Gianluigi, Tianshi Chen, Alessandro Chiuso, Giuseppe De Nicolao, and Lennart Ljung. "Bayesian Interpretation of Regularization." In Regularized System Identification, 95–134. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95860-2_4.
Повний текст джерелаLuo, Ruiyan, Alejandra D. Herrera-Reyes, Yena Kim, Susan Rogowski, Diana White, and Alexandra Smirnova. "Estimation of Time-Dependent Transmission Rate for COVID-19 SVIRD Model Using Predictor–Corrector Algorithm." In Mathematical Modeling for Women’s Health, 213–37. Cham: Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-58516-6_7.
Повний текст джерелаТези доповідей конференцій з теми "Regularized approaches"
Safari, Habibollah, and Mona Bavarian. "Enhancing Polymer Reaction Engineering Through the Power of Machine Learning." In Foundations of Computer-Aided Process Design, 367–72. Hamilton, Canada: PSE Press, 2024. http://dx.doi.org/10.69997/sct.157792.
Повний текст джерелаBrault, Dylan, Thomas Olivier, Ferréol Soulez, and Corinne Fournier. "Automation of Gram stain imaging with multispectral in-line holography." In Digital Holography and Three-Dimensional Imaging, M3B.2. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.m3b.2.
Повний текст джерелаBudillon, Alessandra, Loic Denis, Clement Rambour, Gilda Schirinzi, and Florence Tupin. "Regularized SAR Tomography Approaches." In IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2020. http://dx.doi.org/10.1109/igarss39084.2020.9323807.
Повний текст джерелаXiao, Yichi, Zhe Li, Tianbao Yang, and Lijun Zhang. "SVD-free Convex-Concave Approaches for Nuclear Norm Regularization." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/436.
Повний текст джерелаMeshgi, Kourosh, Maryam Sadat Mirzaei, and Satoshi Sekine. "Uncertainty Regularized Multi-Task Learning." In Proceedings of the 12th Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis. Stroudsburg, PA, USA: Association for Computational Linguistics, 2022. http://dx.doi.org/10.18653/v1/2022.wassa-1.8.
Повний текст джерелаZhang, Lefei, Qian Zhang, Bo Du, Jane You, and Dacheng Tao. "Adaptive Manifold Regularized Matrix Factorization for Data Clustering." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/475.
Повний текст джерелаRajput, Shayam Singh, Deepak Rai, and K. V. Arya. "Robust Image watermarking using Tikhonov regularized image reconstruction technique." In 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI). IEEE, 2024. http://dx.doi.org/10.1109/iatmsi60426.2024.10502853.
Повний текст джерелаNarayan, Jyotindra, Hassène Gritli, and Santosha K. Dwivedy. "Lower Limb Joint Torque Estimation via Bayesian Regularized Backpropagation Neural Networks." In 2024 IEEE International Conference on Interdisciplinary Approaches in Technology and Management for Social Innovation (IATMSI). IEEE, 2024. http://dx.doi.org/10.1109/iatmsi60426.2024.10502709.
Повний текст джерелаLi, Jianxin, Haoyi Zhou, Pengtao Xie, and Yingchun Zhang. "Improving the Generalization Performance of Multi-class SVM via Angular Regularization." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/296.
Повний текст джерелаTomboulides, A., S. M. Aithal, P. F. Fischer, E. Merzari та A. Obabko. "A Novel Variant of the K-ω URANS Model for Spectral Element Methods: Implementation, Verification, and Validation in Nek5000". У ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting collocated with the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/fedsm2014-21926.
Повний текст джерелаЗвіти організацій з теми "Regularized approaches"
Da Gama Torres, Haroldo. Environmental Implications of Peri-urban Sprawl and the Urbanization of Secondary Cities in Latin America. Inter-American Development Bank, March 2011. http://dx.doi.org/10.18235/0008841.
Повний текст джерелаS.R. Hudson. A Regularized Approach for Solving Magnetic Differential Equations and a Revised Iterative Equilibrium Algorithm. Office of Scientific and Technical Information (OSTI), October 2010. http://dx.doi.org/10.2172/990749.
Повний текст джерела