Статті в журналах з теми "Refractory materials"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Refractory materials.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Refractory materials".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Albrecht, Gelon, Stefan Kaiser, Harald Giessen, and Mario Hentschel. "Refractory Plasmonics without Refractory Materials." Nano Letters 17, no. 10 (September 8, 2017): 6402–8. http://dx.doi.org/10.1021/acs.nanolett.7b03303.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Vakhula, Orest, Myron Pona, Ivan Solokha, Oksana Koziy, and Maria Petruk. "Ceramic Protective Coatings for Cordierite-Mullite Refractory Materials." Chemistry & Chemical Technology 15, no. 2 (May 15, 2021): 247–53. http://dx.doi.org/10.23939/chcht15.02.247.

Повний текст джерела
Анотація:
The issue of cordierite-mullite refractories protection from the influence of aggressive factors is considered. The interaction between the components of protective coatings has been studied. It has been investigated that in the systems based on poly(methylphenylsiloxane) filled with magnesium oxide, alumina and quartz sand, the synthesis of cordierite (2MgO•2Al2O3•5SiO2), mullite (3Al2O3•2SiO2) or magnesium aluminate spinel (MgO•Al2O3) is possible. The basic composition of the protective coating, which can be recommended for the protection of cordierite-mullite refractory, is proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Suvorov, S. A. "Elastic refractory materials." Refractories and Industrial Ceramics 48, no. 3 (May 2007): 202–7. http://dx.doi.org/10.1007/s11148-007-0060-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Simon, Franz-Georg, Burkart Adamczyk, and Gerd Kley. "Refractory Materials from Waste." MATERIALS TRANSACTIONS 44, no. 7 (2003): 1251–54. http://dx.doi.org/10.2320/matertrans.44.1251.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ismailov, M. B., and Zh A. Gabayev. "SHS of refractory materials." Journal of Engineering Physics and Thermophysics 65, no. 5 (1994): 1131–33. http://dx.doi.org/10.1007/bf00862048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dudnik, E. V., A. V. Shevchenko, A. K. Ruban, Z. A. Zaitseva, V. M. Vereshchaka, V. P. Red’ko, and A. A. Chekhovskii. "Refractory and ceramic materials." Powder Metallurgy and Metal Ceramics 46, no. 7-8 (July 2007): 345–56. http://dx.doi.org/10.1007/s11106-007-0055-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vakhula, Orest, Myron Pona, Ivan Solokha, and Igor Poznyak. "Research of Corrosive Destruction Mechanism of Cordierite-Mullite Refractory Materials." Chemistry & Chemical Technology 4, no. 1 (March 20, 2010): 81–84. http://dx.doi.org/10.23939/chcht04.01.081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Seifert, Severin, Sebastian Dittrich, and Jürgen Bach. "Recovery of Raw Materials from Ceramic Waste Materials for the Refractory Industry." Processes 9, no. 2 (January 26, 2021): 228. http://dx.doi.org/10.3390/pr9020228.

Повний текст джерела
Анотація:
Products of the refractory industry are key for the production of heavy industry goods such as steel and iron, cement, aluminum and glass. Corresponding industries are dependent on thermal processes to manufacture their products, which in turn would not be possible if there were no refractory materials, such as refractory bricks or refractory mixes. For the production of refractory materials, primary raw materials or semi-finished products such as corundum, bauxite or zircon are used. Industrial recycling of refractory raw materials would reduce dependencies, conserve resources and reduce global CO2 emissions. Today, only a small quantity of the refractory materials used can be recycled because raw materials (regenerates) obtained from end-of-life materials are of insufficient quality. In this study, regenerates from different refractory waste products could be obtained using the innovative processing method of electrodynamic fragmentation. It was shown that these regenerates have a high chemical purity and are therefore of high quality. It could be confirmed that the use of these regenerates in refractory materials does not affect the characteristic properties, such as refractoriness and mechanical strength. Thus, electrodynamic fragmentation is a process, which is able to provide high-quality raw materials for the refractory industry from used materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Cai Li, and Xiao Qing Song. "Fabrication and Properties of New Building Materials by Reutilization Refractory Materials." Applied Mechanics and Materials 507 (January 2014): 388–91. http://dx.doi.org/10.4028/www.scientific.net/amm.507.388.

Повний текст джерела
Анотація:
The utilization of domestic waste refractory materials are reviewed, and points out that China exists to the comprehensive utilization of waste refractory material in question, discusses the necessity of recycling of waste refractory material; focuses on the composite insulation board has the advantages of organic heat preservation material strength coefficient of heat conductivity of inorganic insulation materials of high and low flame retardant, for example discusses the feasibility of waste refractory materials used in building materials field, comprehensive recycling of waste refractory material resources and corresponding to focus attention on the utilization of the problems put forward their views.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mukasyan, A. S., and J. D. E. White. "Combustion joining of refractory materials." International Journal of Self-Propagating High-Temperature Synthesis 16, no. 3 (September 2007): 154–68. http://dx.doi.org/10.3103/s1061386207030089.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Joswiak, D. J., D. E. Brownlee, A. N. Nguyen, and S. Messenger. "Refractory materials in comet samples." Meteoritics & Planetary Science 52, no. 8 (June 12, 2017): 1612–48. http://dx.doi.org/10.1111/maps.12877.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Opachina, R. "Magnohrom: Producer of refractory materials." Refractories and Industrial Ceramics 40, no. 3-4 (March 1999): 174–75. http://dx.doi.org/10.1007/bf02762377.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Coughanowr, Corinne A., Bernard A. Dissaux, Rolf H. Muller, and Charles W. Tobias. "Electrochemical machining of refractory materials." Journal of Applied Electrochemistry 16, no. 3 (May 1986): 345–56. http://dx.doi.org/10.1007/bf01008844.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Averkov, E. I., and V. N. Zapechnikov. "Radiation properties of refractory materials." Refractories 31, no. 1-2 (January 1990): 82–90. http://dx.doi.org/10.1007/bf01282493.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Hong-Xia, LI. "Development Overview of Refractory Materials." Journal of Inorganic Materials 33, no. 2 (2018): 198. http://dx.doi.org/10.15541/jim20170582.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Bazhin, V. Yu, D. V. Makushin, and Yu N. Gagulin. "Contemporary aluminum electrolyzer refractory materials." Refractories and Industrial Ceramics 49, no. 5 (September 2008): 334–35. http://dx.doi.org/10.1007/s11148-009-9093-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Antusch, Steffen, Jens Reiser, Jan Hoffmann, and Alexandru Onea. "Refractory Materials for Energy Applications." Energy Technology 5, no. 7 (April 5, 2017): 1064–70. http://dx.doi.org/10.1002/ente.201600571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Fleuriault, Camille, Joseph Grogan, and Jesse White. "Refractory Materials for Metallurgical Uses." JOM 70, no. 11 (August 21, 2018): 2420–21. http://dx.doi.org/10.1007/s11837-018-3096-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

HIRAOKA, Yutaka. "Joining of Refractory Metals and Refractory Metal-Based Composite Materials." Journal of Smart Processing 4, no. 2 (2015): 73–78. http://dx.doi.org/10.7791/jspmee.4.73.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Aksel'rod, L. M., and E. V. Panov. "Circular economy as applied to refractory materials." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 80, no. 4 (May 20, 2024): 104–13. http://dx.doi.org/10.32339/10.32339/0135-5910-2024-4-104-113.

Повний текст джерела
Анотація:
The closed-loop economy concerning refractory materials is implemented through systematic involvement in post-operational usage in thermal, including metallurgical, units as secondary (by-product) raw materials. This is one of today's trends in resource and energy economics, reducing carbon footprint and CO2 emissions, decreasing waste with subsequent disposal in landfills. Purified scrap of refractory materials is used as supplementary materials in metallurgical processes, commonly referred to as scrap utilization when used as fluxes to adjust slag composition in metallurgical units, molded materials for welding in converters, refractory fillers in the production of unformed materi-als for sections lining working outside the aggressive influence of molten metal and slag, etc. For these purposes, the scrap is sorted into grades, crushed and screened, occasionally incorporating other products. Refractory scrap after ser-vice in metallurgical units usually has higher impurity content, higher porosity, and contains fragmented remnants of the refractory structure. Recycling refractory scrap may additionally involve technological methods for extracting impurities (enrichment) with subsequent use of the recyclate directly in refractory production, partially replacing primary raw materials. In this case, research work with involvement of qualified specialists and the entire body of knowledge in creating new refractory materials is necessary. Practice has shown that qualified involvement of recyclate in manufacturing processes of high-quality refractories is accompanied by solving non-standard tasks and requires a special approach, including the issue of removing introduced or formed foreign materials in refractory material during its operation. Enrichment is an effective direction for cleaning refractory scrap, extracting quality materials during processing of waste from mining enterprises, materials of technogenic origin to obtain recyclate of necessary quality. The enrichment technology is selected based on the set tasks. Recyclate quality for use alongside primary raw materials must guarantee refractory manufacturers meet the corresponding requirements of end-users. An original technology of recyclate enrichment during its selective grinding with product separation using air-gravitational and centrifugal-air classification has been developed
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Aksel'rod, L. M., and E. V. Panov. "Circular economy as applied to refractory materials." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 80, no. 4 (May 20, 2024): 104–13. http://dx.doi.org/10.32339/0135-5910-2024-4-104-113.

Повний текст джерела
Анотація:
The closed-loop economy concerning refractory materials is implemented through systematic involvement in post-operational usage in thermal, including metallurgical, units as secondary (by-product) raw materials. This is one of today's trends in resource and energy economics, reducing carbon footprint and CO2 emissions, decreasing waste with subsequent disposal in landfills. Purified scrap of refractory materials is used as supplementary materials in metallurgical processes, commonly referred to as scrap utilization when used as fluxes to adjust slag composition in metallurgical units, molded materials for welding in converters, refractory fillers in the production of unformed materi-als for sections lining working outside the aggressive influence of molten metal and slag, etc. For these purposes, the scrap is sorted into grades, crushed and screened, occasionally incorporating other products. Refractory scrap after ser-vice in metallurgical units usually has higher impurity content, higher porosity, and contains fragmented remnants of the refractory structure. Recycling refractory scrap may additionally involve technological methods for extracting impurities (enrichment) with subsequent use of the recyclate directly in refractory production, partially replacing primary raw materials. In this case, research work with involvement of qualified specialists and the entire body of knowledge in creating new refractory materials is necessary. Practice has shown that qualified involvement of recyclate in manufacturing processes of high-quality refractories is accompanied by solving non-standard tasks and requires a special approach, including the issue of removing introduced or formed foreign materials in refractory material during its operation. Enrichment is an effective direction for cleaning refractory scrap, extracting quality materials during processing of waste from mining enterprises, materials of technogenic origin to obtain recyclate of necessary quality. The enrichment technology is selected based on the set tasks. Recyclate quality for use alongside primary raw materials must guarantee refractory manufacturers meet the corresponding requirements of end-users. An original technology of recyclate enrichment during its selective grinding with product separation using air-gravitational and centrifugal-air classification has been developed
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Balaev, А. D., and Ya M. Pitak. "Thermal insulation refractory materials and products (review)." Scientific research on refractories and technical ceramics, no. 122-123 (December 27, 2023): 81–92. http://dx.doi.org/10.35857/2663-3566.122-123.09.

Повний текст джерела
Анотація:
A literature review of manufacturing technologies, properties, and applications of thermal insulation refractory materials and products was carried out. It was shown that thermal insulation refractory materials are relevant for modern industry and science, as they contribute to solving many problems related to improving the efficiency, safety, and ecology of various technological processes. They are a promising object of research and development, as they are constantly being adapted to different operating conditions. Various methods of porosization (swelling (foaming); evaporation or burning of the pore­forming agent; loose packing; contact monolithization; bulk monolithization; and creation of combined structures) were shown to produce lightweight insulating refractories. A separate part of the review was devoted to fiber refractory materials and products as the most modern and relevant materials. The technologies for obtaining both refractory glass fibers and polycrystalline fibers, their properties, and applications were described. Based on the literature review on the classification, manufacturing technologies, and applications of thermal insulation refractory materials and products, the main directions of further research in the field of refractory fiber thermal insulation were identified.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Mansurov, Zulkhair A., and Sergey M. Fomenko. "Carbonaceous Refractory Materials on SHS-Technology." Advances in Science and Technology 88 (October 2014): 94–103. http://dx.doi.org/10.4028/www.scientific.net/ast.88.94.

Повний текст джерела
Анотація:
This study contains results of carbonaceous SHS-refractory materials application for binding of the graphite products and melting of metals in the induction furnaces. The opportunity of producing strong graphite-graphite bond up to 5 MPa by means of the carbonaceous refractory material that demonstrated high chemical stability in the aggressive liquid metals and alloys environment has been shown. The results of the industrial tests of melting crucibles made of carbonaceous SHS-refractory materials have been presented in the case of aluminium melting. It has been shown that such crucibles stability is 5-6 times higher than that of standard graphite crucibles in aluminium melting conditions. The obtained research results testify that developed carbonaceous material is applied for lining of the induction furnace of melting unit is allow to increase the number of nonferrous metals (bronze) melting cycles from 5 to 6 times in comparison with the traditional graphite crucible melting. High chemical stability of the material to oxidizing environment as well as to metal melts is provided by formation of high-melting compounds in the carbonaceous exothermic systems during SHS-process.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Niedzialek, Scott E., Gregory C. Stangle, and Yoshinari Kaieda. "Combustion-synthesized functionally gradient refractory materials." Journal of Materials Research 8, no. 8 (August 1993): 2026–34. http://dx.doi.org/10.1557/jmr.1993.2026.

Повний текст джерела
Анотація:
Functionally Gradient Materials (FGM's) are soon to be used in a variety of important commercial applications; joining and thermal barrier coatings are two of the most widely studied. FGM's of the TiC/NiAl and the TiC/Ni3Al systems were fabricated using a one-step, self-propagating high-temperature synthesis (SHS) and densification method. It was observed that ignition of the starting mixture for these two systems was affected by the initial sample temperature and the external pressure that was applied to the sample during the ignition stage. Quality of the final product (e.g., porosity, grain size, cracking and microcracking, etc.) depends on a number of factors during this one-step operation. Reaction temperature control is important and is necessary to minimize residual porosity of the final product. Particle size of reactant powders, as well as applied pressure, also has an effect on the resulting microstructure. If careful reaction temperature control is achieved, along with optimum reactant powder size and applied pressure, an FGM of minimal porosity is obtained without residual macrocracks. Further, this method can easily be used to fabricate an FGM with a highly precise composition and material properties gradient. Finally, this process results in FGM's of similar quality when compared to those prepared by existing fabrication methods at only a fraction of the cost. Most importantly, it is expected that this process can be scaled up with relative ease.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Goberis, S. "Thermal Stability of Unshaped Refractory Materials." Refractories and Industrial Ceramics 44, no. 6 (November 2003): 427–30. http://dx.doi.org/10.1023/b:refr.0000016783.12573.36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Rutman, D. S., E. V. Belyaeva, and V. I. Sizov. "Prospective refractory materials for vacuum electrometallurgy." Refractories 28, no. 7-8 (July 1987): 357–61. http://dx.doi.org/10.1007/bf01400023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Yatsenko, N. D., and E. O. Rat’kova. "Refractory Ceramics Based on Local Materials." Glass and Ceramics 62, no. 1-2 (January 2005): 16–18. http://dx.doi.org/10.1007/s10717-005-0021-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Chen, Xin, and Dayakar Penumadu. "Characterizing microstructure of refractory porous materials." Journal of Materials Science 41, no. 11 (April 12, 2006): 3403–15. http://dx.doi.org/10.1007/s10853-005-5342-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Olander, D. R. "Laser-pulse-vaporization of refractory materials." Pure and Applied Chemistry 62, no. 1 (January 1, 1990): 123–38. http://dx.doi.org/10.1351/pac199062010123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Palčo, Štefan, and Frantisek Tomšů. "Refractory Materials, Furnaces and Thermal Insulations." Interceram - International Ceramic Review 67, no. 4 (July 2018): 12–15. http://dx.doi.org/10.1007/s42411-018-0025-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Palčo, Štefan, and Frantisek Tomšů. "Refractory Materials, Furnaces and Thermal Insulations." Interceram - International Ceramic Review 67, S1 (September 2018): 18–21. http://dx.doi.org/10.1007/s42411-018-0042-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Cölle, D., M. Jung, H. Gross, and A. Belyanin. "Cement-free spinel-based refractory materials." Refractories and Industrial Ceramics 46, no. 4 (July 2005): 256–59. http://dx.doi.org/10.1007/s11148-006-0020-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Tabereaux, Alton T. "Reviewing advances in cathode refractory materials." JOM 44, no. 11 (November 1992): 20–26. http://dx.doi.org/10.1007/bf03222837.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Boccaccini, D. N., M. Cannio, T. D. Volkov-Husoviæ, E. Kamseu, M. Romagnoli, P. Veronesi, C. Leonelli, I. Dlouhy, and A. R. Boccaccini. "Service life prediction for refractory materials." Journal of Materials Science 43, no. 12 (June 2008): 4079–90. http://dx.doi.org/10.1007/s10853-007-2315-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Zemlyanoi, K. G., and A. R. Khafizova. "Synthetic raw materials - possibility to increase refractory materials resistance." IOP Conference Series: Materials Science and Engineering 966 (November 14, 2020): 012045. http://dx.doi.org/10.1088/1757-899x/966/1/012045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Il'in, G. I. "The recycling materials using in the refractory production." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 7 (December 25, 2018): 13–16. http://dx.doi.org/10.17073/1683-4518-2018-7-13-16.

Повний текст джерела
Анотація:
The investigating results are given for the ferrouschromium slags using as the refractory materials to prepare the refractory concretes. The temperature range of their application was defned. It was established that the magnesia oxide addition considerably reduced the Chromium VI formation during service in composition of the refractory materials manufactured on base of the ferrous-chromium slags. Ref. 5. Tab. 4.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Klyushnikov, A. M., E. N. Selivanov, K. V. Pikulin, V. V. Belyaev, A. B. Lebed', and L. Yu Udoeva. "The periclase-chromite refractory decomposition by the action of the pulverized coal and gas medium in course of copper-sulfide raw materials processing." NOVYE OGNEUPORY (NEW REFRACTORIES), no. 12 (December 25, 2018): 31–36. http://dx.doi.org/10.17073/1683-4518-2018-12-31-36.

Повний текст джерела
Анотація:
The investigating results are given for the periclase-chromite refractories' composition and structure which are in contact with the pulverized coal and gas medium in the coppersulfide smelting furnaces. The high-temperature burnt copper concentrate and the sulfur dioxide gas suspensions combined action changes the surface and deep refractories layers chemical composition, with that the impurities content reach the value in weight percent: Fe 54,0, Cu 7,2, Zn 6,4, S 1,8. The refractory's surface layer saturation with the iron and non-ferrous metals oxides decreases the porosity and gives rise to low-melting compositions and eutectics. The refractory decomposition is induced by the shelling of the refractory surface layers with the filled porous taking place in course of the heating-cooling cycling because of the phase's thermal linear expansion coefficients. When the spent refractory disposal, it is feasible to separate mechanically the surface layer for the non-ferrous metals extracting, the rest part can be used for obtaining the refractory powder of various purpose.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Olasupo, O. A., and J. O. Borode. "Development of Insulating Refractory Ramming Mass from Some Nigerian Refractory Raw Materials." Journal of Minerals and Materials Characterization and Engineering 08, no. 09 (2009): 667–78. http://dx.doi.org/10.4236/jmmce.2009.89058.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Šolc, Marek, and Štefan Markulik. "The Effect of Corrosive Medium CaCl2 on the Quality of Shaped Refractory Materials." Advanced Materials Research 849 (November 2013): 26–31. http://dx.doi.org/10.4028/www.scientific.net/amr.849.26.

Повний текст джерела
Анотація:
The article describes the quality refractory materials, the main requirements for quality of lining bricks and chemical and physical wear factors, which influence the quality of refractory materials. Another part of the article describes the corrosive effect of medium CaCl2 for refractory materials. The results of the experimental part are evaluated macroscopic, microscopic analysis, and then was defined the penetration of elements Ca and Cl into the refractory materials. At the end of the article, is discussion to the results of impact melt CaCl2 for refractory materials.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Lisovsky, Anatoly F. "Deconsolidation of Polycrystalline Skeletons in Sintered Composite Materials." Materials Science Forum 624 (June 2009): 43–56. http://dx.doi.org/10.4028/www.scientific.net/msf.624.43.

Повний текст джерела
Анотація:
The present review covers the deconsolidation aspects of refractory polycrystalline skeletons for composites based on refractory particles with a metal binder. The thermodynamics of the process has been highlighted. The criterion for deconsolidation is established and the mechanism has been described.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Zabolotskii, A. V., and V. T. Khadyev. "Nanomaterials in the production of refractory materials." Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 76, no. 8 (September 3, 2020): 873–77. http://dx.doi.org/10.32339/0135-5910-2020-8-873-875.

Повний текст джерела
Анотація:
On June 17, 2020 the International Scientific and Practical Online Conference “Current Trends in Application of Nano-Materials in Production of Refractories” was held. The conference was organized by “Magnezit” Group in cooperation with Wuhan University of Science and Technology, Fund of infrastructure and educational programs of ROSNANO group and National Research Technological University MISiS (Moscow). Leading specialists of practical work and experts from universities of Russia, China, Lithuania, the Netherlands and the USA delivered reports. Results of studies obtained in research laboratories and at industrial sites were presented by authors of 9 reports. The conference brought together about 300 participants, at that more than 60 participants had a chance to take part in the discussions and put questions to the speakers, and 200 listeners were observing the event by on-line transmission.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Young, D. J. "Gas Corrosion of High Performance Refractory Materials." Materials Science Forum 34-36 (January 1991): 651–55. http://dx.doi.org/10.4028/www.scientific.net/msf.34-36.651.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Mikhailova, T. V. "Occupational health at enterprises producing refractory materials." Ukrainian Journal of Occupational Health 2005, no. 2 (June 30, 2005): 71–79. http://dx.doi.org/10.33573/ujoh2005.02.071.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Kakroudi, Mahdi Ghassemi, and Shahin Khameneh Asl. "High Temperature Elastic Properties of Refractory Materials." Materials Science Forum 673 (January 2011): 59–64. http://dx.doi.org/10.4028/www.scientific.net/msf.673.59.

Повний текст джерела
Анотація:
A pulse-echo technique, based on ultrasonic "long-bar" mode (LBM) velocity measurements, working up to 1700°C is described. Magnetostrictive transducers and ultrasonic lines used in a 40-350 kHz frequency range are detailed. The conditions of choice of fundamental parameters (frequency, line geometry, sample size) are discussed in relation with the nature and the microstructure of the materials under test. This technique can be used to study the variations of elastic moduli of materials at high temperature.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Yao, Yu, Jin Zhou, Zhengqi Liu, Xiaoshan Liu, Guolan Fu, and Guiqiang Liu. "Refractory materials and plasmonics based perfect absorbers." Nanotechnology 32, no. 13 (January 6, 2021): 132002. http://dx.doi.org/10.1088/1361-6528/abd275.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Rieth, Michael, and Andreas Hoffmann. "Impact Bending Tests on Selected Refractory Materials." Advanced Materials Research 59 (December 2008): 101–4. http://dx.doi.org/10.4028/www.scientific.net/amr.59.101.

Повний текст джерела
Анотація:
The possible use of tungsten alloys as structural materials in future fusion reactor divertors strongly depend on their ductile-to-brittle transition temperature (DBTT). The present paper gives an overview on different rod and plate materials fabricated by PLANSEE. It is demonstrated that DBTT is clearly improved compared to commercially available standard materials. Moreover, the significant impact of the microstructure on fracture mode and on toughness is discussed in detail.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Skurikhin, V. V. "New Refractory Materials and Products for Metallurgy." Metallurgist 48, no. 5/6 (May 2004): 281–85. http://dx.doi.org/10.1023/b:mell.0000042829.08401.14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Herique, A., J. Gilchrist, W. Kofman, and J. Klinger. "Dielectric properties of comet analog refractory materials." Planetary and Space Science 50, no. 9 (August 2002): 857–63. http://dx.doi.org/10.1016/s0032-0633(02)00060-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Brookes, Kenneth JA. "Focus on hard and refractory materials advances." Metal Powder Report 56, no. 9 (September 2001): 14–19. http://dx.doi.org/10.1016/s0026-0657(01)80512-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Bernard, Claude, and R. Madar. "Thermodynamic analysis and deposition of refractory materials." Surface and Coatings Technology 49, no. 1-3 (December 1991): 208–14. http://dx.doi.org/10.1016/0257-8972(91)90057-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії