Дисертації з теми "Récupération d’énergie piézoélectrique"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Récupération d’énergie piézoélectrique.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-22 дисертацій для дослідження на тему "Récupération d’énergie piézoélectrique".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Salamon, Natalia. "Développement de systèmes de récupération d’énergie thermique." Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAI011/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L’objectif du présent travail a été de concevoir et de fabriquer des dispositifs sur silicium pour convertir de l’énergie thermique en une énergie électrique en utilisant le changement de phase liquide-gaz dans le but de générer une variation subite de pression suivie d’une conversion d’énergie mécanique vers une énergie électrique à l’aide d’un piézoélectrique. La construction des dispositifs a dû rester simple, avec des matériaux courants et en respectant des limites dimensionnelles. Empreinte inférieure à un diamètre de 20 mm et une épaisseur en dessous des 2 mm.Les prototypes fabriqués sont composés de 3 plaques en silicium, contenant une chambre d’évaporation, une chambre de condensation et un canal réunissant les deux. Un transducteur piézoélectrique a été reporté sur la chambre de condensation et assure l’étanchéité ainsi que la génération d’énergie électrique.Le processus de conception inclut plusieurs étapes, dont la définition de la géométrie et du type de fluide de travail utilisé en tant qu’agent thermique. Le travail effectué a permis de sélectionner le type de piézoélectrique, sa taille ainsi que sa méthode d’intégration. Une étude a également été conduite pour déterminer la méthode optimale d’assemblage des plaques en silicium.La réalisation pratique des dispositifs a été orientée vers la sélection des meilleurs procédés technologiques pour la fabrication des structures. Toutes les expériences ont été conduites en salle blanche avec utilisation de l’oxydation humide, la photolithographie, la gravure KOH, ainsi que d’une technique d’assemblage des plaques silicium avec utilisation de la résine SU-8 comme couche intermédiaire. En plus, quelques outils spécifiques ont été conçus lors du présent travail, pour faciliter la fabrication des dispositifs, dont un système sous vide dédié à l’assemblage des plaques en silicium.Les dispositifs ont été testés afin d’établir leur mécanisme d’oscillation thermique ainsi que leurs propriétés électriques. L’influence tu taux de remplissage et de la température de surface chaude sur le signal en sortie ont également été étudiées. Le calcul de l’énergie générée a aussi été effectué. Dans la dernière partie de l’étude, des étapes d’optimisation pour les dispositifs développés dans le présent travail sont proposées
The goal of the present work was to design and fabricate a fully silicon oscillating device that converts thermal energy into electricity, applying phenomena of liquid to gas phase-change and piezoelectricity. It should be characterized by simplicity of construction, small size, and ease of manufacture. The diameter should not exceed 2 cm, while the thickness should be within 2 mm.The device was composed of three Si wafers comprising evaporation and condensing chambers, and the channel connecting these two elements. A PZT-based transducer mounted on top of the structure was applied to ensure energy conversion.The design process included the establishment of the device geometry, the type of the working fluid enclosed inside the system, a type, size and assembly technique of a piezoelectric element, as well as a bonding method of several silicon elements of the device.The practical realization of the designed prototypes was aimed at selecting the most suitable technological processes for structure fabrication. All the experiments had been performed in a clean room environment and employed wet oxidation, photolithography, a well-known, easily available wet chemical etching in KOH solution, and a silicon bonding technique with the use of SU-8 photoresist as an intermediate layer. Additionally, during the practical work a few tools have been designed and developed to enhance the device fabrication, amongst which a vacuum pump dedicated to bond the three silicon wafers as structural elements of the prototypesThe fabricated prototypes were tested in terms of oscillation mechanism and electrical properties. The influence of the filling ratio and the hot temperature value on the generated signal was established. Additionally, the power range of the prototypes has been evaluated. In the last part of the study, optimization steps for the devices developed in the present work have been proposed
2

Gusarov, Boris. "PVDF polymères piézoélectriques : caractérisation et application pour la récupération d’énergie thermique." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT091/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les travaux de cette thèse portent sur la caractérisation du polymères piézoélectriques de PVDF et celles de ses composites avec un alliage à mémoire de forme, pour des applications de récupération l'énergie thermique. Tout d'abord, une discussion est donnée sur les avancées actuelles des technologies de récupération d'énergie ainsi que leurs intérêts économiques. Des valeurs typiques de l'énergie pouvant être générée sont estimées, ainsi que des énergies nécessaires pour certaines applications.Une attention particulière est accordée aux principes de fonctionnement des matériaux pyroélectriques et piézoélectriques. Le PVDF et l'alliage à mémoire de forme NiTiCu sont également introduits.Des techniques de caractérisation adaptées sont introduites pour par voie direct caractériser le PVDF en tant que générateur de charges électriques, et son aptitude à la récolte de l'énergie thermique. Puisque le PVDF est un matériau très souple, la flexion à quatre points, la flexion sur tube, et la machine de traction sont utilisés pour étudier sa réponse piézoélectriques directe en mode quasi-statique, ainsi que les changements de propriétés piézoélectriques sous contrainte. Des mesures d'auto-décharge sous différents champs électriques appliqués, températures et contraintes sont effectuées pour étudier la stabilité du matériau.Un concept de récupération d'énergie utilisant des composites de matériaux fonctionnels de familles différentes est introduit. Ici, le couplage entre un matériau piézo-/pyroélectrique et un alliage à mémoire de forme est proposé. Le voltage pyroélectrique simple est combiné avec un voltage piézoélectrique induit par la transformation de phase de l'alliage à mémoire de forme, pour augmenter l'énergie totale générée par le système en chauffant. Une preuve de concept est présentée d'abord pour un matériau semi-flexible basé sur une céramique PZT, et ensuite pour le PVDF qui est entièrement flexible.Enfin, un circuit de gestion d'énergie a été conçu et intégré au récupérateur d'énergie en PVDF. Les hauts pics de tension générés lors du chauffage or refroidissement sont abaissés par un convertisseur de type buck à deux étages jusqu'au une tension de sortie utile stable. L'énergie de sortie est utilisée pour alimenter une carte d'émission sans fil. Ainsi, une chaîne complète de génération d'énergie, exploitant des variations de température et allant jusqu'au l'émission de données représentatives de l'événement thermique survenu est présentée.Les résultats de ces travaux concernent un large spectre d'applications potentiels, particulièrement les capteurs autonomes sans fil, et des objets de l'Internet of Things, avec une flexibilité mécanique élevée, une épaisseur réduite et de faible coût de maintenance
This work deals with the characterization of piezoelectric polymers PVDF and its composites with shape memory alloys, for thermal energy harvesting applications. First, we discuss current advancements on energy harvesting technologies as well as their economical interests. Typical values of energy that can be generated are given together with energies typically needed for applications.Particular attention is given to the functioning principles of pyroelectric and piezoelectric materials. PVDF and shape memory alloy NiTiCu are also introduced.Custom characterization techniques are introduced to characterize PVDF piezoelectric properties relevant to generator applications and to evaluate its suitability for thermal energy harvesting. Since PVDF is a very flexible material, four-point bending, tube bending and a tensile machine experiments are used to study its piezoelectric response in quasi-static mode, as well as changes in piezoelectric properties with increased strain. Self-discharge measurements under various applied electric fields, temperatures and strains are performed to study the stability of material.A concept of composite energy harvesting, utilizing two materials of different families, is introduced. Here, we propose the coupling of piezo-/pyroelectric material and shape memory alloy. The pure pyroelectric voltage is combined with generated piezoelectric voltage, induced by shape memory alloy transformation, to increase the total energy generated by the system during heating. The proof of concept is shown first for ceramic PZT-based semi-flexible material and then for fully flexible PVDF.Finally, a power management circuit was designed and integrated with the PVDF energy harvester. High generated voltage peaks at heating are lowered by a two-step buck converter to a useful stable output voltage. Output energy are used to power a wireless emission card. Thus, a complete power generation chain from temperature variations to data emission is presented.The results of this work concern a wide range of applications, especially modern autonomous wireless sensors and Internet of Things objects, with low profile, high mechanical flexibility and low maintenance costs
3

Gusarova, Elena. "Dispositifs souples pour la récupération d’énergie à base de matériaux organiques piezoélectriques P(VDF-TrFE) imprimés." Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAT139/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le but de cette thèse était d’étudier des solutions innovantes pour la récupération d’énergie pour pouvoir alimenter de manière autonome les futurs capteurs et nœuds communicants sans fil de l’Internet des Objets (IoT pour Internet of Things). Le travail s’est focalisé sur des matériaux piézoélectriques souples et sur une approche composite et multiphysique. L’objectif est de récupérer de l’énergie à partir de déformations directes ou induites provenant de sources à la fois mécaniques et thermiques et en particulier de sources négligées jusqu’alors (lentes et de faibles intensités). L’idée maitresse est l’hybridation de plusieurs matériaux fonctionnels avec un cœur du système constitué par des microgénérateurs piézoélectriques (et pyroélectriques) imprimés nécessaires à la génération de charges électriques. L’originalité de ce travail est d’avoir réalisé un système de récupération d’énergie entièrement flexible, au format d’une carte de crédit et compatible avec de plus grandes dimensions, en utilisant des copolymères piézoélectriques de P(VDF-TrFE) sous forme d’encres. Ce matériau est flexible et particulièrement résistant, ce qui le rend attractif pour desapplications mettant en jeu formes complexes, notamment, courbes. Un autre avantage du copolymère de P(VDF-TrFE) est qu’il ne nécessite pas de pré-déformation mécanique comme pour le polymère PVDF et il commence à être aujourd’hui disponible sous forme d’encres pour l’électronique imprimée, ce qui simplifiera et réduira les coûts de fabrication à termes.En premier, nous décrivons le procédé de fabrication par sérigraphie des microgénérateurs en P(VDF-TrFE), suivi par les caractérisations ferroélectriques puis piézoélectriques des dispositifs. A cet effet, nous avons développé des techniques de mesures originales en circuit ouvert qui ont été testées et validées au préalable avec des échantillons dePVDF commercial. La dernière étape a été de réaliser un prototype de récupération d’énergie thermique flexible de faible encombrement (sans radiateur). Cela a été réalisé en hybridant les microgénérateurs précédemment fabriqués avec des feuilles d’alliages à mémoire de forme thermique à base de NiTi, qui est un matériau sensible à un seuil de température donnée.Les résultats phares de cette étude sont : 1) le dépôt multicouches de P(VDF-TrFE)combiné au dépôt d’une électrode souple en PEDOT:PSS, β) l’établissement des caractéristiques ferroélectriques et piézoélectriques en fonction de l’épaisseur de P(VDFTrFE) et enfin γ) la détermination d’un coefficient g31 supérieur à la normale avec0.15 V·m/N. Aussi, nous avons démontré la capacité de ces microgénérateurs à délivrer des tensions utiles de l’ordre de 10 V avec ici une densité d’énergie de proche de 500 μJ/cm3, ces valeurs étant limitées aux conditions de test utilisées.Nous concluons ce travail sur une preuve de concept fonctionnelle de récupérateur d’énergie thermique flexible apte à détecter ou utiliser des variations lentes et faibles de température à partir de sources élémentaires, produisant pour l’instant γ7 V (correspondant à95 μJ) à 65 ºC, et qui à termes pourront être l’air ambiant (chaud ou froid) ou la chaleur de la peau
This work aims to study innovative solutions for energy harvesting applicable toautonomous wireless sensors for IoT (Internet of Things). It is focused on flexiblepiezoelectric composite materials and a multi-physical approach. The objective is to harvestenergy via strain-induced phenomena from both mechanical and thermal sources, andparticularly sources neglected so far (slow and low). The main idea is the hybridization ofdifferent functional materials with the core of the system being screen printed piezo/pyroelectricmicrogenerators, mandatory to generate electrical charges. The originality of thiswork is to realize large area flexible energy harvesting systems by using ink-basedpiezoelectric copolymers of polyvinylidene fluoride P(VDF-TrFE). This material is veryflexible and durable which makes it attractive for applications in systems with complexshapes. Another benefit of P(VDF-TrFE) is that it does not need to be pre-stretched as PVDFand it is now available in inks for printable electronics which can simplify and reduce theprice of the fabrication process.We first describe the fabrication process of the screen printed P(VDF-TrFE)microgenerators, followed by ferroelectric and piezoelectric characterizations. For thispurpose we have developed optimized methods in open-circuit conditions adapted for flexiblesystems tested and validated on commercial bulk PVDF. The last step was to realize a lowprofile thermal flexible energy harvester prototype (no radiator). It was done by hybridizationof the fabricated microgenerators and foils of shape memory NiTi-based alloy, which is afunctional material sensitive to a given temperature threshold.The key outcomes of this work are: 1) the successful deposition of multilayers ofP(VDF-TrFE) and organic PEDOT:PSS electrode, 2) dielectric, ferroelectric and directpiezoelectric constants reported as a function of film thickness, and 3) the g31 direct voltagecoefficient, measured for the first time, and showing the record value of 0.15 V·m/N. Also,we have demonstrated that in open-circuit conditions, the microgenerators can produce auseful strain-induced voltage of 10 V with an energy density close to 500 μJ/cm3, these valuesbeing limited by the experimental set-up.The concept of thermal energy harvesting composite based on thin film screen printedP(VDF-TrFE) microgenerators was realized and demonstrated to be effective. We concludewith a functional prototype of flexible energy harvester, able to detect non-continuous slowthermal events and producing 37 V (corresponding to 95 μJ) at 65 ºC
4

Clementi, Giacomo. "LiNbO3 films : intégration pour la récupération de l'énergie piézoélectrique et pyroélectrique." Thesis, Bourgogne Franche-Comté, 2020. http://www.theses.fr/2020UBFCD057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette thèse fait partie du projet ENHANCE (Piezoelectric Energy Harvesters for Self-Powered Automotive Sensors : from Advanced Lead-Free Materials to Smart Systems) du réseau de formation innovant Marie Sklodowska-Curie, qui est lié à la récupération d'énergie pour les applications automobiles, en particulier de l'énergie vibratoire et thermique pour les capteurs autoalimentés. Dans cette thèse, nous avons étudié le matériau piézoélectrique sans plomb LiNbO3 comme transducteur pour les applications de récupération d'énergie, en mettant l'accent sur ses propriétés matérielles optimisées et son interface électronique.Nous avons exploré toutes les voies possibles de micro-fabrication des films LiNbO3, avec des approches top-down ou bottom-up, afin d'obtenir des films LiNbO3 de haute qualité. Nous avons présenté à la fois des films PIMOCVD qui peuvent être développés de manière texturée sur des substrats de silicium, et des films épais de monocristaux LiNbO3 Au-Au colleés au silicium ou au métal. Nous avons optimisé le couplage et les propriétés électro-mécaniques des transducteurs LiNbO3 par des simulations par éléments finis et l'étude de l'orientation. Finalement, nous avons démontré expérimentalement que LiNbO3 (YXl)/128° est la meilleure orientation pour les applications de récupération d'énergie vibratoire. Enfin, nous avons atteint une densité de puissance normalisée de 371,2 µW.cm^-3.g^-2.Hz^-1 en utilisant la structure composite proposée qui vibre à la fréquence de résonance, ce qui est parmi les meilleures valeurs même par rapport aux matériaux à base de plomb (et autres matériaux sans plomb) disponibles dans le commerce.En outre, nous avons satisfait l'objectif de fournir une tension de sortie redressée dans la gamme 1-3 V à partir de transducteurs sans plomb, obtenant pour des systèmes de dimensions compactes (< 1 cm^3), une figure de mérite piézoélectrique de 26,6 GJ/m^3 avec un facteur de qualité mécanique considérable (> 100), et des fréquences opérationnelles dans la gamme de 10-500 Hz disponibles dans les véhicules
This thesis is a part of the Marie Sklodowska-Curie Innovative Training Network (ITN) ENHANCE project (Piezoelectric Energy Harvesters for Self-Powered Automotive Sensors: from Advanced Lead-Free Materials to Smart Systems), which is related to energy harvesting for automotive applications, specifically for vibrational and thermal harvesting for self-powered sensors. In this thesis, we investigated lead-free LiNbO3 piezoelectric material as transducer for energy harvesting applications, with special focus regarding its optimized material properties and electronic interface.We explored all the possible routes of micro-fabrication for LiNbO3 films, with top-down or bottom-up approaches, in order to achieve high quality LiNbO3 films. We presented both PIMOCVD films which can be grown textured on silicon substrates, and thick films from single crystal LiNbO3 Au-Au bonded to silicon or metal. We optimized the coupling and electro-mechanical properties of the LiNbO3 transducers by finite element simulations and orientation study. Eventually, we demonstrated experimentally that LiNbO3 (YXl)/128° is the best orientation for vibrational energy harvesting applications. Finally, we attained a normalized power density of 371.2 µW.cm^-3.g^-2.Hz^-1 by using the proposed composite structure vibrating at resonance frequency, that is among best values even compared to lead-based (and other lead-free) materials commercially available.Furthermore, we fulfilled the objective to provide rectified output voltage in 1-3 V range from Pb-free harvesters, achieving for systems of compact dimensions (< 1 cm^3), a piezoelectric figure of merit of 26.6 GJ/m^3 with considerable mechanical quality factor (> 100), and operational frequencies in the range of 10-500 Hz available in vehicles
5

Belhora, Fouad. "Couplage multiphysique à l’aide d’électret application à la récupération d’énergie." Thesis, Lyon, INSA, 2013. http://www.theses.fr/2013ISAL0141/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les matériaux actifs, tels que les matériaux piézoélectriques et électrostrictifs, sont couramment utilisés dans la conception de dispositifs exploitant leurs propriétés respectives. La propriété principale de ces matériaux réside dans le fort couplage entre les comportements électrique et mécanique (piézoélectricité). Dans la majorité des cas, ces matériaux sont utilisés séparément. L’utilisation combinée de ces matériaux permet la réalisation de dispositifs innovants basés sur l’effet électrostrictifs: l’apparition d’une polarisation électrique induite par une contrainte mécanique et réciproquement l’apparition d’une déformation mécanique sous l’action d’un champ électrique. Les applications « support » concernent les capteurs et les actionneurs. L’étude de ce couplage passe par la caractérisation de ces matériaux, puis par la mise en place de modèles décrivant finement leurs comportements et enfin par le développement d’outils pour la conception. L’objectif de la thèse est de remplacer le matériau céramique, rigide et à faible déformation, par un film polymère nanocomposite électroactifs, présentant des grandes déformations et forces d'actionnement sous champ électrique modéré grâce à l'incorporation dans la matrice polymère de micro et nano-objets (charge) conducteurs ou semi-conducteurs. De plus, pour des applications plus spécifiques de la récupération d’énergie, la charge du film polymère par des micro et nano-objets conducteurs sera également étudiée. Idéalement, il serait très intéressant de réaliser un matériau multifonctionnel, sensible à la fois à une stimulation mécanique (propriétés de détection et/ou de récupération d’énergie par couplage électromécanique)
In the last decades, direct energy conversion devices for medium and low grades waste heat have received significant attention due to the necessity to develop more energy efficient engineering systems. A great deal of research has in recent years been carried out on harvesting energy using piezoelectric, electrostatic, electromagnetic , and thermoelectric ,transduction, with the aim of harvesting enough energy to enable data transmission. For this purpose, piezoelectric elements have been extensively used in the past; however they present high rigidity and limited mechanical strain abilities as well as delicate manufacturing process for complex shapes, making them unsuitable in many applications. Thus, recent trends in both industrial and research fields have focused on electrostrictive polymers for electromechanical energy conversion. This interest is explained by many advantages such as high productivity, flexibility, and processability. Hence, electrostrictive polymer films are much more suitable for energy harvesting devices requiring high flexibilities, such as systems in smart textiles and mobile or autonomous devices. Electrostrictive polymers can also be obtained in many different shapes and over large surfaces. . In the last years, electrostrictive polymers have been investigated as electroactive materials for energy harvesting. However for scavenging energy a static field is necessary, since this material is isotope, there is no permanent polarization compare to piezoelectric material. A solution for avoid this problem; concern the hybridization of electrostrictive polymer with electret. Finally, the implementation of electrostrictive materials is much simpler for small-scale systems (MEMS). Hence, several studies have analyzed the energy conversion performance of electrostrictive polymers, both in terms of actuation and energy harvesting
6

Mousselmal, Hadj Daoud. "Conception de dispositifs piézoélectriques de récupération d’énergie utilisant des structures multidirectionnelles et nanostructurés." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ces travaux de thèse portent sur le développement de nouveaux systèmes piézoélectriques récupérateurs d’énergie à partir de vibrations mécaniques environnementales. L’objectif recherché est d’apporter des solutions à certaines contraintes fortes liées à la miniaturisation de ces systèmes, en vue de leur intégration en technologie MEMS. Les 2 axes majeurs suivis lors de ces travaux sont :(i) la nanostructuration par porosification du substrat silicium. Ce procédé permet de créer des zones fonctionnalisées possédant des propriétés locales de masse volumique et de rigidité plus faibles que celles du substrat silicium. Ceci permet d’une part d’améliorer le coefficient de couplage électromécanique global de la structure et, d’autre part, de maintenir la fréquence de résonance du mode fonctionnel dans une gamme fréquentielle basse (< que 1KHz) compatible avec le spectre de nombreuses sources vibratoires usuelles. Une série de modélisation par éléments finis d’un convertisseur type (poutre avec masse sismique) a établi les paramètres dimensionnels optimaux de la zone nanostructurée. L’efficacité de ce procédé de nanostructuration localisée a ensuite été évaluée expérimentalement sur des membranes en silicium. Il a été observé une réduction de la fréquence de résonance du mode fondamental, tout en minimisant les pertes par un choix judicieux de l’emplacement et de la largeur de la zone poreuse. (ii) Le développement de dispositifs récupérateurs à sensibilité multidirectionnelle. Ces dispositifs permettent de récupérer l’énergie quel que soit la direction de la sollicitation externe. Ils exploitent 3 modes propres distincts de flexion sollicités chacun par une composante particulière (ax, ay ou az) du vecteur accélération caractéristique de la sollicitation. Ces dispositifs basés sur une structure planaire de type double poutres orthogonales avec masse sismique centrale sont facilement intégrables et peuvent être déclinés de l’échelle centimétrique à l’échelle millimétrique en utilisant dans ce cas les technologies de type MEMS. Un modèle analytique simple a d’abord mis à jour les mécanismes énergétiques qui permettent d’obtenir une quantité d’énergie constante lorsque le dispositif est soumis à un vecteur sollicitation de direction quelconque. L’optimisation du coefficient de couplage électromécanique de chaque mode fonctionnel, ainsi que l’ajustement de leur fréquence de résonance ont été obtenu à l’aide d’un modèle à éléments finis. L’ensemble de ces résultats théoriques a été expérimentalement validé à l’aide de prototypes centimétriques
This thesis work focuses on the development of new piezoelectric energy recovery systems from environmental mechanical vibration. The goal is to provide solutions to some strong constraints on the miniaturization of these systems, their integration in MEMS technology. The 2 major lines followed in this work are: (i) the nanostructuring by porosification silicon substrate. This method allows to create functionalized areas having local properties of density and lower rigidity than those of the silicon substrate. This allows on the one hand to improve the overall electromechanical coupling coefficient of the structure and, secondly, to maintain the resonant frequency of the operational mode in a low frequency range (< 1KHz) compatible with the spectrum of Many conventional vibratory sources. A series of finite element modeling of a type converter (beam with seismic mass) established the optimum dimensional parameters of nanostructured area. The effectiveness of this localized nanostructuring method was then evaluated experimentally on silicon membranes. It was observed a reduction of the resonance frequency of the fundamental mode, while minimizing losses by a judicious choice of the location and the width of the porous zone. (Ii) The development of recovery devices multidirectional sensitivity. These devices allow to recover energy regardless of the direction of the external load. They use 3 different eigenmodes bending each solicited by a particular component (ax, ay and az) vector solicitation characteristic acceleration. These devices based on a planar structure type double orthogonal beams with central seismic mass can be easily integrated and can be broken down to centimeter scale at the millimeter scale using in this case the MEMS technologies. A simple analytical model was first updated energy mechanisms that enable a constant amount of energy when the device is subjected to a bias vector in any direction. The optimization of the electromechanical coupling coefficient of each functional mode, and the adjustment of their resonance frequency were obtained using a finite element model. All these theoretical results has been experimentally validated using centimeter prototypes
7

Diab, Daher. "Capteur acoustique sphérique autonome : étude du dispositif de récupération d'énergie vibratoire." Thesis, Valenciennes, 2017. http://www.theses.fr/2017VALE0037/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Un nouveau capteur acoustique sphérique autonome est proposé. Il est destiné à être immergé dans un milieu liquide ou pâteux pour mesurer certaines propriétés physiques du milieu et récupérer l'énergie vibratoire ambiante pour assurer son autonomie. Le capteur est composé de deux coquilles hémisphériques en plexiglas et d'une bague piézoélectrique en PZ26 fixée entre les deux coquilles. Cette structure peut être utilisée aussi bien en excitateur que capteur. Un modèle de simulation de la récupération d'énergie vibratoire a été développé en considérant seulement deux modes de vibration: mode épaisseur et mode radial. Pour chaque mode, le comportement de l’anneau est décrit par un circuit électromécanique équivalent reliant les ports mécaniques (forces et vitesses) au port électrique (tension et courant). Ce choix est guidé par la possibilité de combiner la partie électromécanique avec l'électronique qui traite l'énergie directement dans un simulateur basé sur Spice. Pour valider cette approche, une simulation par éléments finis a été réalisée et comparée aux résultats produits par le circuit électromécanique. Les fréquences de résonance ont également été vérifiées expérimentalement avec un analyseur d'impédance. Toutes ces vérifications donnent des résultats en très bon accord avec le modèle électromécanique proposé en termes de fréquences de résonance, de tension et de puissance collectées. Enfin, plusieurs validations expérimentales sont présentées avec un prototype de capteur sphérique. Ces validations montrent l’adéquation des prédictions avec les résultats expérimentaux. Finalement, un test du circuit de récupération est effectué en situation réelle
A new spherical autonomous acoustic sensor is proposed. It is intended to be immersed in a liquid or pasty medium to measure some physical properties of the medium and should harvest ambient energy to ensure its autonomy. The sensor is composed of two Plexiglas half-spherical shells and a PZ26 piezoelectric ring clamped between the two shells. This structure can be used as well as in exciter or sensor. A simulation model of vibrational energy harvesting has been developed considering only two modes of vibration: thickness and radial modes. For each mode, the ring behavior is described by an equivalent electromechanical circuit connecting the mechanical ports (forces and velocities) to the electrical port (voltage and current). This choice is guided by the possibility to combine the electromechanical part with the electronics that process the energy directly in a Spice based simulator. To validate this approach, a finite elements simulation was realized and compared to the electromechanical circuit results. Resonance frequencies were also verified experimentally with an impedance analyzer. All these verifications give results in very good agreement with the proposed electromechanical model, as well as in terms of resonant frequencies, harvested voltage and power. Finally several experimental investigations are presented with a prototype of spherical sensor. These validations show the adequacy of the predictions with the experimental results. Finally, a test of the harvesting circuit is done in real situation
8

Lafarge, Barbara. "Modélisation, simulation et mise en œuvre d'un système de récupération d'énergie : application à un amortisseur semi-actif autonome." Thesis, Valenciennes, 2018. http://www.theses.fr/2018VALE0023/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce travail est consacré à l’étude et à la mise au point de récupérateurs d’énergie intégrés à une suspension automobile afin par exemple d’alimenter soit un microcontrôleur, soit des capteurs, soit de réaliser le contrôle santé des pièces ou encore de rendre l’amortisseur au sein d’une suspension d’un véhicule semi-actif autonome en fonction du niveau d’énergie disponible. Compte tenu des types de déplacement disponible dans la suspension, il est naturel de s’orienter vers des techniques électromagnétiques pour la récupération d’énergie liée aux grands déplacements et vers des techniques piézoélectriques pour les vibrations. L’utilisation de tels systèmes s’avère cependant complexe et un certain nombre de points techniques doivent être résolus pour les mettre en œuvre. En premier lieu, une parfaite connaissance des techniques de conversion piézoélectrique et électromagnétique est nécessaire. Dans ce but, le langage Bond Graph est utilisé et appliqué avec succès sur l’ensemble du système de suspension ainsi que sur les récupérateurs d’énergie en raison de sa capacité à traduire les effets physiques et les échanges énergétiques au sein de systèmes multiphysiques. D’autre part, des confrontations simulation/expérience sont réalisées en laboratoire sur chacun des récupérateurs d’énergie piézoélectrique et électromagnétique, afin de s’assurer du bon fonctionnement de ces systèmes lors de leurs intégrations dans un véhicule réel. Ainsi, des défauts de nature différente comme la force magnétique déformant le mouvement de translation de l’amortisseur, la mauvaise conduction des lignes de champ magnétique ou les endommagements du matériau piézoélectrique lors d’essais répétés, sont analysés dans les premiers démonstrateurs afin d'être ensuite corrigés. Enfin, un modèle global de suspension automobile intégrant simultanément les deux sous-systèmes de récupération d’énergie est étudié. Afin de compléter cette analyse, une modélisation du circuit de restitution et du stockage d’énergie est également proposée et permet une étude qualitative et quantitative des performances des systèmes de récupération d’énergie piézoélectrique et électromagnétique. Les résultats issus de ces modèles sont exploités dans le but de concevoir des récupérateurs d’énergie s’adaptant au mieux au domaine de l'automobile. Pour conclure, des tests sur route avec le récupérateur d’énergie piézoélectrique démontrent la validité de l’analyse théorique et la faisabilité des techniques développées
This work is devoted to the study and the development of energy harvesters integrated in an automobile suspension, for example to supply either a microcontroller or sensors, or to perform an health check of parts or render semi-active the shock absorber within a suspension of an autonomous vehicle according to the level of energy available. Given the types of displacement available in the suspension, it is natural to move towards electromagnetic techniques for energy recovery related to large displacements and to piezoelectric techniques for vibrations. However, the use of such systems is complex and a number of technical issues need to be addressed to implement them. First, a perfect knowledge of piezoelectric and electromagnetic conversion techniques is required. To this end, the Bond Graph language is used and successfully applied to the entire suspension system as well as energy harvesters because of its ability to translate physical effects and energy exchanges into multiphysics systems. Furthermore, simulation / experiment confrontations are carried out in the laboratory on each of the piezoelectric and electromagnetic energy harvesters, to ensure the proper functioning of these systems during their integration into a real vehicle. Thus, defects of different nature such as the magnetic force deforming the translation movement of the damper, the poor conduction of the magnetic field lines or the damage of the piezoelectric material during repeated tests, are analyzed in the first demonstrators in order to be corrected. Finally, a global model of automobile suspension simultaneously integrating the two subsystems of energy recovery is studied. To complete this analysis, a modeling of the circuit of restitution and energy storage is also proposed and allows a qualitative and quantitative study of the performances of piezoelectric and electromagnetic energy recovery systems. The results from these models are used to design energy recovery systems that best fit the automotive field. To conclude, road tests with the piezoelectric energy harvesters demonstrate the validity of the theoretical analysis and the feasibility of the techniques developed
9

Ben, Achour Mohamed Aymen. "Etude des propriétés piézoélectriques du polymère biosourcé PLA pour la récupération d'énergie vibratoire." Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2021. http://www.theses.fr/2021UPHF0025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La potentialité des films PLA produits par extrusion et étirés uniaxialement par MDO à partir des grades industriels a été investiguée pour la récupération d’énergie vibratoire par effet piézoélectrique. Une technique de caractérisation du coefficient piézoélectrique plus adaptée aux films polymères a été testée et validée sur un film piézoélectrique commercial de PVDF, puis utilisée pour évaluer le coefficient piézoélectrique d14 des films PLA. Une étude physico-chimique a été menée afin de comprendre les relations entre les observables piézoélectriques des films PLA et les modifications structurales (orientation moléculaire, cristallinité et nature des phases cristallines) apportées par les conditions d’élaboration des films. Un banc de test de récupération d’énergie reposant sur l’application des déformations de traction dynamiques a été utilisé pour évaluer la capacité des PLAs à convertir des vibrations mécaniques en énergie électrique. Une comparaison avec du PVDF commercial a été réalisée. Un modèle électro-mécanique équivalent a été développé et a permis de décrire l’évolution de la puissance électrique récupérée en fonction des conditions de sollicitations mécaniques pour différents grades de PLA ainsi que pour le PVDF. Ce modèle étant validé, a été utilisé pour prédire l’effet de la variation des différents paramètres intrinsèques (qualités mécaniques et piézoélectriques des polymères) et extrinsèques (conditions de sollicitations mécaniques et adaptation d’impédance électrique). Enfin, pour de futures applications, nous avons évalué la potentialité du PLA (sous forme de film ou de textile) pour des applications comme capteur de déformation, de force dynamique et de chocs mais aussi pour l’émission et la réception ultrasonore
The potentiality of PLA films produced by extrusion and uniaxial stretching by MDO of industrial grades has been investigated for the energy harvesting by piezoelectric transformation. A piezoelectric coefficient characterization technique suitable for polymer films was tested and validated on a commercial PVDF piezoelectric film. It was then used to evaluate the d14 coefficient of PLA films. A study on the effect of structural parameters of the PLAs on their piezoelectric behaviour was carried out. An energy recovery test bench based on the application of dynamic tensile strains was used to assess the capability of PLAs to convert mechanical vibrations into electrical energy. A comparison with commercial PVDF was carried out. An equivalent electro-mechanical model was developed and made it possible to describe the evolution of power as a function of mechanical stress conditions for different grades of PLA as well as for PVDF. This model, was used to predict the effect of the variation of the various intrinsic parameters (mechanical and piezoelectric qualities of polymers) and extrinsic (characteristics of the vibratory source and electrical impedance matching). Finally, for future applications, we evaluated the potentiality of PLA (in film or textile form) for applications as a dynamic deformation, dynamic force and shock sensor and also for ultrasonic emission and reception
10

Maaroufi, Seifeddine. "Conception et réalisation d’un banc pour l’étude de fiabilité des micros dispositifs piézoélectriques de récupération d’énergie dédiés aux implants cardiaques." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLS187/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Dans le cadre de cette thèse de doctorat, nous présentons la conception et la réalisation d’un banc dédié à l’étude de la fiabilité de structures piézoélectriques et plus précisément des micro-dispositifs de récupération d'énergie destinés aux implants médicaux autonomes actifs (stimulateurs cardiaques de nouvelle génération). Les structure étudiées se présentent sous la forme d’un bimorphe piézoélectrique encastré-libre comportant une masse sismique à leur extrémité. Une bonne compréhension du vieillissement des matériaux et des modes de défaillance mécanique et électrique est essentielle pour ce type de système où la vie du patient au sein duquel est implanté le dispositif est directement mise en jeu. Pour étudier la fiabilité et la durabilité de la partie active du récupérateur, nous proposons d'établir une nouvelle méthodologie de vieillissement accélérée via un banc d'essai dédié où l'environnement et les stimuli peuvent être contrôlés avec précision sur une large période de temps. Une caractérisation électromécanique des structures est périodiquement réalisée via l’extraction d’une série d’indicateurs (force de blocage, raideur, tension en régime harmonique) au sein même du banc tout au long du vieillissement. Il est donc ainsi possible d'identifier les différents modes de défaillance potentiels et d’étudier leurs impacts sur le bon fonctionnement du système
Within the framework of this PhD we present the design and realization of a bench dedicated to the study of the reliability of piezoelectric structures and more precisely micro-devices of energy harvesting for the new generation of active and autonomous medical implants. The structures studied are in the form of a free-clamped piezoelectric bimorph having a seismic mass at their tip. A good understanding of the aging of the materials and of the mechanical and electrical failure modes is essential for this type of system where the life of the patient implanted by this device is directly involved. To study the reliability and durability of the active part of the harvester, we propose to establish a new accelerated aging methodology via a dedicated test bench where the environment and stimuli can be controlled accurately over a large period of time. An electromechanical characterization of the structures is periodically carried out by the extraction of a series of indicators (blocking force, stiffness, tension in harmonic regime) within the bench throughout the aging process. Therefore it is possible to identify the different potential failure modes and to study their impact on the proper functioning of the system
11

Sridi, Mohamed. "Développement d'un système d'alimentation d'un noeud de capteur sans fils à partir d'un récupérateur piézoélectrique pour des applications dans l'automobile." Mémoire, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/6732.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le développement intensif de l’électronique à très faible consommation énergétique et des technologies de communication sans fils ont permis l’apparition des nœuds de capteur sans fils dans plusieurs domaines. Un nœud de capteur sans fils devrait être un système autonome. Néanmoins, les batteries sont utilisés jusqu’à aujourd’hui pour son alimentation. L’utilisation des batteries comme source d’énergie présente des défis majeurs tels que le coût de remplacement et d’entretien. L’objectif de ce projet est de valider la possibilité d’alimentation d’un nœud de capteur sans fils à partir de l’énergie vibratoire à travers un récupérateur piézoélectrique. Un système d’alimentation complet d’un nœud de capteur sans fils contient le transducteur piézoélectrique, une unité de gestion de puissance et un élément de stockage. Ce mémoire de maîtrise présente les travaux élaborés dans le but de définir une configuration bien adaptée d’un système d’alimentation autonome complet. La réalisation de ce projet a nécessité le développement d’un démonstrateur expérimental du système en se basant sur des composants commerciaux. Ce démonstrateur a permis de valider la faisabilité du système de récupération d’énergie vibratoire pour des excitations qui peuvent exister dans le domaine de l’automobile en termes de fréquence de résonance et amplitudes d’accélération. Tout d’abord, les besoins énergétiques du nœud de capteur à alimenter et du circuit de gestion de puissance sélectionné ont été caractérisés expérimentalement en établissant une communication entre le nœud et une station de base. À partir de ces résultats, le transducteur piézoélectrique et l’élément de stockage adéquats ont été déterminés. Dans notre cas, le transducteur piézoélectrique choisi est soumis à une excitation harmonique d’amplitude 0.3 g et de fréquence de 65.8 Hz. Il alimentait le nœud de capteur sans fils développé opérant à une période de transmission de 17s à travers le circuit de gestion de puissance de faibles pertes favorisant le transfert optimal d’énergie entre l’entrée et la sortie du système. La fonctionnalité du système a été mise en évidence et une méthodologie comportant les différentes considérations à tenir en compte lors de développement de ce type de système a été proposée. Il est démontré que l’étude énergétique du système est un atout pour son développement. En effet, le design du transducteur piézoélectrique doit être fait de telle façon que la puissance générée par le récupérateur piézoélectrique soit supérieure à la puissance requise par le reste du système. Pour cela, la source de vibration doit être caractérisée en termes de fréquence et amplitude d’accélération. La puissance totale requise par le nœud de capteur et le circuit de gestion de puissance doit être déterminée. Le dimensionnent de l’élément de stockage doit aussi tenir compte de l’énergie totale requise par la charge.
12

Huet, Florian. "Développement de structures hybrides électromécaniques pour micro-sources d'énergie : générateurs piézoélectriques linéaires et non linéaires." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAA029/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La mise en œuvre de réseaux de capteurs communicants dans des installations industrielles, dans les transports ou le bâtiment apparaît comme un axe de développement qui permettrait d'augmenter les performances globales de ces systèmes.Par une supervision et une exploitation adaptées des informations collectées (température, niveau vibratoire, humidité, etc.), la fiabilité et les performances énergétiques pourraient être optimisées.La diminution régulière de la consommation des nouvelles générations de capteurs sans fil engendre un fort intérêt scientifique pour l'alimentation de ceux-ci de manière autonome. Ainsi, une thématique de recherche spécifique est apparue il y a une dizaine d'années : la réalisation de micro-sources d'énergie pour l'alimentation de capteurs communicants.Ces travaux de recherche proposent l'exploration des performances d'une structure de micro-générateur originale pour la récupération de l'énergie des vibrations : l'"Hybrid Fluid Diaphragm" (HFD).Le concept de l'HFD consiste à encapsuler un fluide incompressible entre deux membranes.Le fluide se comporte comme une masse inertielle qui induit une fréquence de résonance compatible avec les vibrations ambiantes dont les fréquences sont généralement inférieures à quelques centaines de Hertz.Ces membranes en P(VDF-TrFE), un polymère piézoélectrique, ont été réalisées spécifiquement pour assurer la conversion optimale des sollicitations mécaniques (flexion/tension) en énergie électrique.Une modélisation multiphysique qui intègre les comportements fluidiques, mécaniques et électriques, la réalisation et la caractérisation de deux générateurs HFD sont détaillées.Le premier prototype met en œuvre des membranes piézoélectriques monomorphes (monocouche) tandis que le deuxième exploite des membranes piézoélectriques bimorphes (double couche) optimisées.Les puissances générées apparaissent suffisantes pour envisager l'alimentation de capteurs et leurs géométries permettent d'imaginer des scénarios potentiels d'intégration dans des applications réalistes
The implementation of wireless sensor nodes in industrial installations, transport or building is a potential route to increase the performances of these systems.By a proper supervision and exploitation of the collected information (temperature, vibratory level, humidity, etc.) the reliability and the energy performances can be increased. With the regular reduction of the power requirements for new generations of wireless sensors nodes, a strong scientific interest to develop autonomous power supply has raised.In this framework, a specific research topic appeared about ten years ago: ambient energy harvesting.The present work investigates the performances of an original micro-generator architecture for vibration energy harvesting: the “Hybrid Fluid Diaphragm” (HFD).The concept of HFD consists in encapsulating an incompressible fluid between two flexible membranes. The fluid behaves as an inertial mass which leads to a resonant frequency suitable for ambient vibrations whose spectrum is usually lower than a few hundred Hertz.These membranes are made of P(VDF-TrFE), a piezoelectric polymer, and are designed to ensure the optimal conversion of the mechanical solicitations (flexion/stretch) into electrical energy.A multiphysic modeling which integrates the fluid, the mechanical and the electric coupled behaviors is proposed.The realization and the characterization of two HFD's generators are detailed.A first prototype implements single layer piezoelectric membranes, whereas a second one uses optimized double layer membranes.The generated power appears to be sufficient to consider the power supply of wireless sensor nodes operating in intermittent transmitting mode. The very simple geometry of the proposed generators is favorable to their integration in realistic applications
13

Mamouri, Lakhdar. "Architecture mixte pour le suivi du point de puissance maximal d'un système de récupération d'énergie piézoélectrique." Electronic Thesis or Diss., Strasbourg, 2023. http://www.theses.fr/2023STRAD065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'essor de l'Internet des Objets amène une multiplication des objets connectés, mais leur alimentation pose problème. Les batteries traditionnelles, limitées et peu durables, impactent l'environnement. La récupération d'énergie environnementale, notamment l'énergie vibratoire via la piézoélectricité, se présente comme une solution. Cette thèse se concentre sur des algorithmes MPPT pour optimiser cette conversion énergétique, tenant compte des fluctuations des sources vibratoires. Un modèle système optimisé réduit les ressources de simulation, et une approche FOCV améliorée diminue les composants. Les résultats expérimentaux confirment la précision du modèle, tandis qu'un nouvel algorithme, l'AFOCV, démontre une efficacité remarquable, même à faible tension, améliorant significativement les performances des systèmes piézoélectriques
The rise of the Internet of Things leads to an increase in interconnected objects, but their power supply poses a challenge. Conventional batteries, limited and not long-lasting, have environmental implications. Environmental energy harvesting, specifically vibrational energy through piezoelectricity, emerges as a solution. This thesis focuses on MPPT algorithms to optimize this energy conversion, considering fluctuations in vibrational sources. An optimized system model reduces simulation resources, and an enhanced FOCV approach decreases components. Experimental results validate the model's accuracy, while a new algorithm, AFOCV, demonstrates remarkable efficiency, even at low voltage, significantly enhancing piezoelectric system performance
14

Hinchet, Ronan. "Electromechanical study of semiconductor piezoelectric nanowires. Application to mechanical sensors and energy harvesters." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENT013/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les systèmes intelligents sont le résultat combiné de différentes avancées en microélectronique et en particulier de l’augmentation des puissances de calcul, la diminution des consommations d’énergie, l'ajout de nouvelles fonctionnalités et de moyens de communication et en particulier à son intégration et application dans notre vie quotidienne. L'évolution du domaine des systèmes intelligents est prometteuse, et les attentes sont élevées dans de nombreux domaines : pour la surveillance dans l'industrie, les transports, les infrastructures et l'environnement, ainsi que dans le logement, l'électronique grand public et les services de soins de santé, mais aussi dans les applications pour la défense et l’aérospatial. Aujourd’hui, l'intégration de plus en plus de fonctions dans les systèmes intelligents les conduisent vers un problème énergétique où l'autonomie devient le principal problème. Par conséquent, il existe un besoin croissant en capteurs autonomes et sources d'alimentation. Le développement de dispositifs de récupération d’énergie et de capteurs autoalimentés est une façon de répondre à ce problème énergétique. Parmi les technologies étudiées, la piézoélectricité a l'avantage d'être compatible avec l'industrie des MEMS. De plus elle génère des tensions élevées et elle possède un fort couplage direct entre les physiques mécaniques et électriques. Parmi les matériaux piézoélectriques, les nanofils (NFs) semi-conducteurs piézoélectriques pourraient être une option prometteuse car ils présentent des propriétés piézoélectriques plus importantes et une plus grande gamme de flexion.Parmi les différents NFs piézoélectriques, les NFs de ZnO et de GaN sont les plus étudiés. A l'échelle nanométrique leurs propriétés piézoélectriques sont plus que doublées. Ils ont l'avantage d'être compatible avec l’industrie microélectronique et raisonnablement synthétisable par des approches top-down et bottom-up. En particulier, nous avons étudié la croissance par voie chimique de NFs de ZnO. Pour les utiliser correctement, nous avons étudié le comportement des NFs de ZnO. Nous avons effectué une étude analytique et des simulations par éléments finis (FEM) d'un NF de ZnO en flexion. Ces études décrivent la distribution du potentiel piézoélectrique en fonction de la force et permettent d’établir les règles d'échelle et de dimensionnement. Ensuite, nous avons développé la caractérisation mécanique par AFM du module de Young de NFs de ZnO et de GaN, puis nous avons effectué des caractérisations piézoélectriques par AFM de ces NFs pour vérifier leur comportement sous des contraintes mécaniques de type flexion. Une fois leur comportement physique compris, nous discutons des limites de notre modèle de NFs piézoélectriques en flexion et nous développons un modèle plus réaliste et plus proche des configurations expérimentales. En utilisant ce nouveau modèle, nous avons évalué le potentiel des NFs de ZnO pour les capteurs de force et de déplacement en mesurant le potentiel généré sous une contrainte, puis, sur la base d’expériences, nous avons évalué l'utilisation de NFs de GaN pour les capteurs de force en mesurant le courant au travers des NFs contraints. De même, nous avons évalué le potentiel de ces NFs pour les applications de récupération d'énergie liées aux capteurs autonomes. Pour bien comprendre la problématique, nous avons étudié l’état de l’art des nano générateurs (NG) et leurs architectures potentielles. Nous analysons leurs avantages et inconvénients, afin de définir une structure de NG de référence. Après une brève étude analytique de cette structure pour comprendre son fonctionnement et les défis, nous avons effectué plusieurs simulations FEM pour définir des voies d'optimisation pour les NG utilisé en mode de compression ou de flexion. Enfin la fabrication de prototypes et leurs caractérisations préliminaires sont présentées
Smart systems are the combined result of different advances in microelectronics leading to an increase in computing power, lower energy consumption, the addition of new features, means of communication and especially its integration and application into our daily lives. The evolution of the field of smart systems is promising, and the expectations are high in many fields: Industry, transport, infrastructure and environment monitoring as well as housing, consumer electronics, health care services but also defense and space applications. Nowadays, the integration of more and more functions in smart systems is leading to a looming energy issue where the autonomy of such smart systems is beginning to be the main issue. Therefore there is a growing need for autonomous sensors and power sources. Developing energy harvesters and self-powered sensors is one way to address this energy issue. Among the technologies studied, piezoelectricity has the advantage to be compatible with the MEMS industry, it generates high voltages and it has a high direct coupling between the mechanic and electric physics. Among the piezoelectric materials, semiconductor piezoelectric nanowires (NWs) could be a promising option as they exhibit improved piezoelectric properties and higher maximum flexion.Among the different piezoelectric NWs, ZnO and GaN NWs are the most studied, their piezoelectric properties are more than doubled at the nanoscale. They have the advantage of being IC compatible and reasonably synthesizable by top-down and bottom-up approaches. Especially we studied the hydrothermal growth of ZnO NWs. In order to use them we studied the behavior of ZnO NWs. We performed analytical study and FEM simulations of a ZnO NW under bending. This study explains the piezoelectric potential distribution as a function of the force and is used to extract the scaling rules. We have also developed mechanical AFM characterization of the young modulus of ZnO and GaN NWs. Following we perform piezoelectric AFM characterization of these NWs, verifying the behavior under bending stresses. Once physics understood, we discuss limitation of our piezoelectric NWs models and a more realistic model is developed, closer to the experimental configurations. Using this model we evaluated the use of ZnO NW for force and displacement sensors by measuring the potential generated, and from experiments, the use of GaN NW for force sensor by measuring the current through the NW. But energy harvesting is also necessary to address the energy issue and we deeper investigate this solution. To fully understand the problematic we study the state of the art of nanogenerator (NG) and their potential architectures. We analyze their advantages and disadvantages in order to define a reference NG structure. After analytical study of this structure giving the basis for a deeper understanding of its operation and challenges, FEM simulations are used to define optimization routes for a NG working in compression or in bending. The fabrication of prototypes and theirs preliminary characterization is finally presented
15

Lopez, garcia Andres Jenaro. "Contribution à l'étude des propriétés piézoélectriques de nanofils de ZnO et de nanocomposites associés en vue d’une application à la conversion d’énergie mécanique à électrique." Thesis, Université Grenoble Alpes, 2022. http://www.theses.fr/2022GRALT043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Avec le développement croissant de réseaux sans fil de capteurs de faible puissance pour ce que l’on appelle l’Internet des objets, il est nécessaire de trouver des moyens efficaces d’assurer l’autonomie énergétique des nœuds de détection. Parmi les différentes solutions de récupération d’énergie, la conversion en énergie électrique de l’abondante énergie mécanique présente dans l’environnement est très prometteuse. Dans ce domaine de recherche émergent, les nanofils (NFs) de ZnO ont été fortement étudiés au cours de ces deux dernières décennies, à la fois en tant que tels, et intégrés dans des nanocomposites. À l’échelle nanométrique, ils présentent des propriétés électromécaniques meilleures que le matériau massif, ainsi qu’une intégration facile sur des substrats rigides ou flexibles. Néanmoins, des divergences intrigantes entre les résultats expérimentaux et les simulations numériques disponibles au début de cette thèse ont mis en évidence la nécessité d’une meilleure compréhension du fonctionnement piézoélectrique des composites à base de NF, en particulier pour ce qui concerne deux aspects importants qui avaient été peu traités jusqu’alors: le couplage entre les propriétés piézoélectriques et semi-conductrices dans les simulations numériques et la dépendance des propriétés électromécaniques avec la méthode de croissance des NFs de ZnO ou avec l’influence de l’environnement des NFs dans les expériences.Du point de vue théorique, cette thèse de doctorat étudie le couplage des propriétés piézoélectriques et semi-conductrices des NFs de ZnO et de leur nanocomposites et fournit des lignes directrices d’optimisation pour les applications de transduction électromécanique. Cette étude prend en compte l’influence du niveau de dopage, de la densité de porteurs libres, des pièges d’interface et des paramètres géométriques sur les paramètres électromécaniques. Des simulations numériques de nanocomposites à base de NF de ZnO sous compression mécanique ont été effectuées à l’aide de la méthode des éléments finis (FEM). Expérimentalement, plusieurs modes de microscopie à force atomique (AFM), tels que la microscopie à force piézoélectrique (PFM), la microscopie à force de sonde Kelvin (KPFM) et la microscopie à force atomique conductrice (C-AFM) ont été utilisés, afin de sonder localement les paramètres électriques et électromécaniques qui jouent un rôle clé dans l’efficacité de la réponse piézoélectrique des NFs de ZnO. Nos résultats ont montré que le niveau de dopage, les porteurs libres et les pièges d'interface, ainsi que la dynamique des pièges, doivent être pris en compte pour expliquer l’amplitude et l’asymétrie potentielle de la réponse électromécanique ou l’influence que la géométrie a sur elle. Ils montrent que les propriétés semi-conductrices doivent être prises en compte pour l’analyse des résultats expérimentaux et la conception correcte de dispositifs électromécaniques autonomes basés sur des NFs de ZnO et leurs nanocomposites
With the increasing development of wireless networks of low-power sensors for the so-called internet-of-things, there is a need for efficient ways to ensure the energetic autonomy of sensing nodes. Among the various energy harvesting solutions, converting the abundant mechanical energy present in the environment into electrical energy is very promising. In this emerging field of research, ZnO nanowires (NWs) have been strongly studied during these last two decades, both as such, and integrated into nanocomposite materials. At the nanoscale, they feature improved electromechanical properties compared to bulk, as well as easy integration and manufacturing, on both rigid and flexibles substrates. However, some intriguing discrepancies between the experimental and simulation results available at the beginning of this PhD highlighted the need for a better understanding of the piezoelectric operation of NW-based composites, especially for what concerns two important aspects which had been poorly addressed so far: the coupling between piezoelectric and semi-conducting properties in simulations, and the dependence of electromechanical properties with ZnO NW growth method or with NW surrounding environment in experiments.From the theoretical point of view, this Ph.D. thesis studies the coupling of piezoelectric and semiconducting properties in ZnO NWs and related nanocomposites and provides optimization guidelines for mechanical to electrical transducing applications. It investigates the influence of doping level, free carrier density, interface traps and geometrical parameters on electromechanical parameters. Simulations of ZnO NW-based nanocomposites under mechanical compression were performed using the Finite Element Method (FEM). Experimentally, several atomic force microscopy (AFM) modes, such as piezoelectric force microscopy (PFM), Kelvin probe force microscopy (KPFM), and conducting atomic force microscopy (C-AFM) were used, in order to probe locally electrical and electromechanical parameters which play a key role in the efficiency of the piezoelectric response of ZnO NWs. Our results showed that doping level, free carriers and surface traps, as well as traps dynamics, must be considered in order to explain the amplitude and the potential asymmetry of the electromechanical response, or the influence that geometry has on it. They demonstrate that semiconducting properties should be taken into account for the analysis of experimental results and for the correct design of electromechanical self-powered devices based on ZnO NWs and nanocomposites
16

Dufay, Thibault. "Etude de couches minces piézoélectriques flexibles pour la récupération d’énergie vibratoire." Thesis, Nantes, 2017. http://www.theses.fr/2017NANT4048/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le développement des capteurs autonomes et leurs applications dans les « smart-cities », nécessitent de nouvelles méthodes de production d’énergie, basées sur la récupération de l’énergie ambiante. Dans ce contexte, le projet N-air-J a pour objectif de réaliser des microgénérateurs,basés sur des films piézoélectriques flexibles, capables de récupérer l’énergie des courants d’airs. Les travaux réalisés dans cette thèse concernent la réalisation des couches minces piézoélectriques de zircono-titanate de plomb (PZT) déposées sur une feuille d’aluminium, ainsi que les caractérisations structurales, diélectriques, ferroélectriques, et piézoélectriques associées. L’optimisation du générateur est basée sur un procédé de transfert original du PZT depuis l’aluminium vers un substrat polymère. L’intérêt du transfert vers un substrat souple et isolant est de pouvoir réaliser une configuration d’électrodes interdigitées (IDE). Les propriétés de récupération d’énergie des deux configurations PZT/Al et PZT/polymère ont été testées, et la densité d’énergie produite est similaire à l’état de l’art pour des structures plus rigides. L’utilisation d’électrodes IDE a prouvé son intérêt par la génération d’une tension de sortie de plusieurs dizaines de volt. Un modèle analytique a été développé afin d’étudier le comportement de la poutre piézoélectrique utilisée dans ces travaux. Les études expérimentales ont permis de quantifier l’influence des frottements de l’air sur le comportement vibratoire de la poutre. La simulation de l’interaction fluide structure a montré la possibilité d’augmenter les déformations de plusieurs brins au sein d’un réseau de générateurs
New methods for energy generation based on the ambient energy harvesting are required for autonomous sensors development and their applications in the “smartcities”. In this context, N-air-J project aims to realize micro-generators based on flexible piezoelectric films, able to harvest energy from the breeze. The work presented in this thesis is about the deposition of lead zirconate titanate (PZT) thin layer on aluminium thin foil. Structural, dielectric, ferroelectric and piezoelectric characterizations were realized. The generator optimization is focused on the PZT transfer from aluminium to polymer substrate. The technological process has been developed for the transfer. The use of an insulating and elastic substrate is very interesting for the realization of an interdigitated (IDE) electrode configuration. Energy harvesting properties of the two configurations, PZT/Al and PZT/polymer, were tested. Energy densities were found similar to those of more rigid structures presented in the literature. The use of the IDE confirms its great interest by delivering a voltage of several tens of volts.An analytical model was developed to study the behaviour of the piezoelectric beam used in this work. Experimental studies quantify the influence of air friction on the beam vibratory behaviour. Fluid-structure interaction simulation has demonstrated the possibility for improving the deformations of several beams in a generators network
17

Morassi, Martina. "Croissance de nanofils InGaN pour les dispositifs de récupération d’énergie photovoltaïques et piézoélectriques." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS249.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les matériaux III-nitrures sont des excellents semi-conducteurs qui présentent plusieurs propriétés intéressantes pour les applications photovoltaïques et piézoélectriques. Au même temps, la croissance epitaxiale de ces matériaux sous forme de nanofil (NF) est de tant en plus intéressant, car les NFs nitrures binaires et heterostructurés, ont une qualité cristalline supérieure comparés aux homologues 2D et massifs. Dans ces contextes, ce travail est axé sur la croissance par MBE assistée par plasma (PA-MBE) de NFs InGaN/GaN et leur caractérisation. Trois sujets principaux ont été abordés: l'étude de la croissance d’heterostructures InGaN axiales par PA-MBE, leur caractérisation optique, et l'étude de la croissance sélective de NFs GaN sur graphène transféré. Ces études m’ont permis d’obtenir un control rational sur le mode de croissance d’heterostructures InGaN dans une large gamme de teneurs d’In (jusqu'à ~ 40%) et morphologies, de étudier leur structure de bande axiale, utile pour la conception optimale de la structure p-i-n photovoltaïque, et de démontrer pour le première fois dans la littérature, que l’épitaxie sélective de NFs de GaN sur MCG lithographié est une route possible et très promettent pour améliorer leur homogénéité. Ainsi, des tests préliminaires ont montré que la capacité de piézo-conversion des NFs GaN peut être améliorée d'environ 35% lors de l'intégration d’une insertion InGaN riche en In dans leur volume.Tous ces résultats constituent un ’étape décisive dans le contrôle et la comprension des propriétés de ces nanostructures, et donnent des perspectives très encourageantes pour leur intégrations dans des nano-générateurs à haute efficacité
III-nitride materials are excellent semiconductors presenting several interesting properties for photovoltaic and piezoelectric applications. At the same time, the epitaxial growth of these materials in the form of nanowires (NW) is even more interesting, because binary and heterostructured III-N NWs have a higher crystalline quality compared to the 2D and bulk counterparts. In these contexts, this work focuses on the plasma-assisted MBE (PA-MBE) growth of InGaN / GaN NWs and their characterization. Three main topics are addressed: the growth of axial InGaN heterostructures by PA-MBE, their optical characterization, and the study of the selective area growth (SAG) of GaN NWs on transferred graphene. These studies allowed me to obtain a rational control on the growth mode of InGaN heterostructures in a wide range of In contents (up to ~ 40%) and morphologies, to study their axial band edge profile, useful for the optimal design of the photovoltaic structure, and to demonstrate for the first time in the literature, that the SAG of GaN NWs on patterned mono-layer graphene is a possible and very promising strategy to improve their homogeneity. Also, preliminary tests have shown that the piezoelectric conversion capacity of GaN NWs can be improved by about 35% when integrating an In-rich InGaN insertion into their volume.All these results constitute a decisive step in the control and the comprehension of the properties of these nanostructures, and establish very encouraging perspectives for their integration in novel and efficient photovoltaic and piezoelectric nano-generators
18

Talbourdet, Anaëlle. "Structures textiles piézoélectriques à base de PVDF pour la conversion d’énergie mécanique en énergie électrique." Thesis, Lille, 2018. http://www.theses.fr/2018LIL1I067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Cette étude s’inscrit dans le cadre du projet Autonotex et vise à développer un textile connecté et autonome en énergie. Le textile permettra de monitorer des draps médicaux et des sous-vêtements professionnels. Le principal objectif est de s’affranchir des batteries traditionnelles dans les smart textiles et développer un textile qui utilisera les mouvements du corps humain comme source d’énergie pour alimenter les capteurs placés aux endroits stratégiques sur les vêtements. Pour relever ce challenge, le projet Autonotex s’est basé sur le développement de nouvelles fibres piézoélectriques. Ces matériaux permettent de générer un fort potentiel électrique lorsqu’ils sont soumis à des sollicitations mécaniques. Dans un contexte textile, le polymère polyfluorure de vinylidène (PVDF) a été utilisé pour la production de multi-filaments par procédé de filage en voie fondue. Ce polymère est connu pour son caractère piézoélectrique lorsqu’il se trouve dans une certaine conformation cristalline. Le premier enjeu du sujet de thèse est donc d’optimiser cette phase lors du procédé de production des filaments. Par la suite, deux stratégies ont été envisagées. Dans un premier cas, les filaments 100 % PVDF sont utilisés pour la fabrication d’étoffes textiles qui une fois instrumentées par des électrodes permettent de générer une tension de sortie électrique. Un premier prototype d’une étoffe piézoélectrique couplée à des électrodes imprimées en 3D a permis de vérifier la faisabilité du dispositif. La seconde stratégie a été de développer un filament tricomposant, formé par le polymère piézoélectrique et deux couches de composites polymères conducteurs jouant le rôle d’électrodes
This study is part of the Autonotex project and aims to develop a connected and autonomous energy textile. The textile is intended for the manufacture of medical sheets monitoring patients and professional underwear. The main objective is to overcome the traditional batteries in smart textiles and develop a textile that will use the movements of the human body as a battery to power sensors placed strategically on clothing. To meet this challenge, the Autonotex project is focused in part on the development of new piezoelectric fibers. These materials generate a high electrical potential when subjected to mechanical stresses. In this new context, poly(vinylidene fluoride) (PVDF) polymer can be used to produce multi-filaments by melt spinning process. This polymer is known for its piezoelectric property linked its crystalline forms. The first issue of the PhD subject is to optimize this phase during the process of production of the filaments. Subsequently, two strategies were considered. In a first case, the 100% PVDF filaments are used for the production of textile fabrics which, once instrumented by electrodes, generate an electrical output voltage. A first prototype of a piezoelectric fabric coupled to electrodes by 3D-printing allows checking the feasibility of the plan. The second strategy was to develop a tri-component filament formed by the piezoelectric polymer and two layers of conducting polymer composites acting as external/internal electrodes
19

Deterre, Martin. "Toward an energy harvester for leadless pacemakers." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00868838.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This work consists in the development and design of an energy harvesting device to supply power to the new generation pacemakers, miniaturized leadless implants without battery placed directly in heart chambers. After analyzing different mechanical energy sources in the cardiac environment and associated energy harvesting mechanisms, a concept based on regular blood pressure variation stood out: an implant with a flexible packaging that transmits blood forces to an internal transducer. Advantages compared to traditional inertial scavengers are mainly: greater power density, adaptability to heartbeat frequency changes and miniaturization potential. Ultra-flexible 10-µm thin metal bellows have been designed, fabricated and tested. These prototypes acting as implant packaging that deforms under blood pressure actuation have validated the proposed harvesting concept. A new type of electrostatic transducer (3D multi-layer out-of-plane overlap structure with interdigitated combs) has been introduced and fully analyzed. Promising numerical results and associated fabrication processes are presented. Also, large stroke optimized piezoelectric spiral transducers including their complex electrodes patterns have been studied through a design analysis, numerical simulations, prototype fabrication and experimental testing. Apower density of 3 µJ/cm3/cycle has been experimentally achieved. With further addressed developments, the proposed device should provide enough energy to power autonomously and virtually perpetually the next generation of pacemakers.
20

Boughaleb, Jihane. "Développement et intégration d'un récupérateur d’énergie thermique à base de bilames thermiques et de matériaux piézoélectriques." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI114/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le développement des systèmes de récupération d'énergie est liée à l'émergence des applications de type Internet des objets (IoT) plus spécifiquement à la prolifération des réseaux de capteurs autonomes. Les progrès réalisés ces dernières années dans le domaine des technologies de l’information et de la communication ont permis de lever certains verrous technologiques au développement de ces réseaux de capteurs intelligents et autonomes, notamment grâce à l’amélioration des performances intrinsèques des composants microélectroniques (vitesse, consommation), la conception de circuits plus économes en énergie, ou bien la mise en place de standards de communications radio adaptés à ces contraintes énergétiques. Etant donné l’ubiquité des sources d’énergie, la fabrication de générateurs permettant d’alimenter directement ces capteurs et les rendre autonomes en énergie à partir de ces sources représente une alternative viable à l’utilisation de batteries pour prolonger la durée de vie de ces capteurs communicants. Diverses technologies de générateurs ont ainsi été proposées pour s’adapter aux différentes formes que peut prendre l’énergie, qu’elle soit d’origine thermique, mécanique ou solaire. Le présent travail est une contribution à l'élaboration d’un récupérateur d’énergie thermique à base de bilames thermiques et de matériaux piézoélectriques. Ce type de générateurs, proposé et développé au sein de STMicroelectronics à Crolles, se veut être une alternative fiable et bas coût à l’utilisation de matériaux thermoélectriques exploitant l’effet Seebeck pour générer de l’énergie électrique. Des preuves de concept de tels systèmes ont déjà été développées aussi bien à macro-échelle qu’a micro-échelle. Ce travail s’inscrit dans la continuité du développement d’un récupérateur d’énergie macroscopique reposant sur ce principe-là. L’objectif de cette thèse est dans un premier temps d’optimiser cette structure pour atteindre des niveaux de puissances plus élevés que la première preuve de concept puis dans un second temps, de réaliser son intégration afin d’effectuer des démonstrations de capteur autonome et confirmer la viabilité de la technologie développée pour de telles applications
The development of energy harvesting systems is linked to the emergence of the Internet of Things (IoT) more specifically to the proliferation of Wireless Sensor Networks that should respond to the growing needs for monitoring data in domains as diverse as the industry, the urban environments, the home or even the human body. Recent progress in the CMOS technology have enabled to remove some of the technical obstacles to the deployment of these smart and autonomous devices, specifically thanks to the improvements of the performances of microelectronic components, the design of ultra-low-power circuits and even the creation of wireless communication standards well adapted to the needs of wireless sensors. Given the availability of ambient energy sources like mechanical, thermal, light etc., energy harvesters are becoming reliable alternatives to batteries in order to extend the autonomy of these sensors. Consequently, various technologies of generators have been developed to harvest different kind of energies in function of their availability. The present work is a contribution to the development of a thermal energy harvester based on bimetallic strips heat engine and piezoelectric membranes. This type of technology developed by STMicroelectronics is intended to be a low cost alternative to thermoelectric generators exploiting the seebeck effect to convert heat into electricity. Based on this working principle, many harvesters both at the micro and macro scale have been fabricated. This thesis deals with the development of macroscopic energy harvesters whose first proofs of concept were established in a previous thesis. An important part of this manuscript deals with the thermal optimization of this energy harvester both in static and dynamic modes. Once the thermal properties improved, various piezoelectric materials were tested and compared to find the most adapted ones to our application and the same work is realized to choose the best device’s architecture. The integration of the energy harvester is then realized and wireless sensor node applications are demonstrated using various communication protocols and sensors. SPICE modeling of the system is also made and coupled with simulations of power management circuits developed by CEA’s design team. Finally, alternative ways to exploit wasted heat and vibrations are proposed through the development of piezoelectric bimetals and dual energy harvesters able to harvest thermal energy and mechanical energy at the same time: piezoelectric bimetals are realized either by direct deposition of piezoelectric composites or piezoelectric thin films onto bimetals. In the case of the dual energy harvester, piezoelectric cantilever beams were designed and simulated to vibrate at low frequencies (between 50Hz and 125Hz)
21

Wague, Baba. "Matériaux sans plomb micro structurés pour la récupération d'énergie." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEC003/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Avec le développement des circuits intégrés à très faible consommation d'énergie, la nécessité de réduire les coûts d'exploitation des dispositifs électroniques embarqués et l'utilisation des piles usagées constituant une menace pour l'environnement, le concept de récupération d'énergie a acquis un nouvel intérêt. La récupération d'énergie couvre le piégeage de nombreuses sources d'énergie ambiantes perdues et leur conversion en énergie électrique. Une large gamme de dispositifs de récupération d'énergie des vibrations mécaniques a été développée. Une configuration commune consiste en un système de masse-ressort avec un matériau piézoélectrique en parallèle avec le ressort pour convertir une partie de l'énergie mécanique pendant les oscillations en énergie électrique. Jusqu'à présent, le matériau le plus utilisé pour la récupération d'énergie piézoélectrique est le titano-zirconate de plomb (PbZr1-xTixO3) (PZT). Le PZT est le matériau de référence pour les applications microsystème électromécanique-MEMS (MechanoElectroMechanicalSystems) dans le domaine de la récupération d'énergie. Les matériaux piézoélectriques à base de plomb tels que le PZT et niobate-titanate de plomb-magnésium (PMN-PT) offrent des facteurs de couplage piézoélectriques supérieurs à ceux d'autres matériaux. Cependant, malgré ses excellentes propriétés électriques (diélectriques, ferroélectriques et piézoélectriques), le PZT et d'autres matériaux à base de plomb devraient bientôt être remplacés par des composés sans plomb, à cause des problèmes environnementaux. Notre travail vise à développer des matériaux sans plomb de haute performance pour la récupération d'énergie par vibration mécanique. Nous nous sommes intéressés à la fabrication et la caractérisation des dispositifs MEMS pour la récupération d'énergie en utilisant les matériaux piézoélectriques sans plomb tels que le nitrure d'aluminium (AIN), le titanate de baryum BaTiO3 (BTO) et la ferrite de bismuth BiFeO3 (BFO). Les matériaux piézoélectriques PZT (utilisé comme référence à cause ses coefficients piézoélectriques élevés), BTO, BFO et AIN ont été déposés en utilisant des méthodes de dépôt telles que la pulvérisation cathodique et le dépôt sol-gel, conduisant à des films minces à grande échelle, homogènes et de haute densité, avec une épaisseur contrôlée avec précision. Le dépôt de films de 300 nm d'épaisseur par pulvérisation cathodique ou par Sol-Gel a été réalisé sur du substrat de SrTiO3 (STO) recouvert d'une électrode inférieure de SrRuO3 (SRO), qui est le substrat de référence pour les oxydes fonctionnels (PZT, BTO et BFO), et sur un substrat de silicium recouvert de platine, qui est le modèle industriel classique. Quels que soient les matériaux piézoélectriques, nous avons obtenu des films épitaxiés sur substrat de STO et texturés sur substrat de silicium. Des mesures structurales, électriques et piézoélectriques sur les films de BTO, AIN et PZT montrent qu'ils ont de bonnes propriétés physiques en accord avec la littérature
With the development of ultra-low-power integrated circuits, the need to reduce operating costs for embedded electronic devices, and since used batteries pose a threat to the environment, the concept of energy harvesting has gained a new relevance. Energy harvesting covers the scavenging of many lost ambient energy sources and their conversion into electrical energy. A broad range of energy harvesting devices has been developed to scavenge energy from mechanical vibrations. A common configuration consists of a spring-mass system with a piezoelectric material in parallel with the spring to convert some of the mechanical energy during oscillations into electrical power. So far the most used material for piezoelectric energy harvesting is the Lead Zirconate Titanate (PbZr1-xTixO3) (PZT). PZT is the reference material for MEMS (MechanoElectroMechanicalSystems) applications in the field of energy harvesting. Lead-based piezoelectric materials such as PZT and lead magnesium niobate-lead titanate (PMN-PT) offer incomparable piezoelectric coupling factors to other materials. However, despite its excellent electrical properties (dielectric, ferroelectric and piezoelectric), PZT and other Lead based materials should be replaced shortly by leadfree compounds, due to environmental issues. Our work aims at developing lead-free high performance vibration energy-harvesting. We focus on the fabrication and characterization of aluminum nitride (AlN), Barium titanate BaTiO3 (BTO) and Bismuth ferrite BiFeO3 (BFO) devices for energy harvesting. PZT (as a reference because it’s high piezoelectric coefficients), BTO, BFO and AlN have been deposited using sputtering methods, leading to high homogeneous, large scale thin films with a precisely controlled thickness. The deposition of 300nm-thick films by sputtering or spin coating was performed on SrTiO3 (STO) substrate with SrRuO3 (SRO) bottom electrode, which is the reference substrate for the functional oxides (PZT, BTO and BFO), and platinum coated silicon substrate, which is the classic industrial template. Whatever the piezoelectric materials, we obtained epitaxial films on STO substrate and textured films on silicon substrate. Structural, electrical and piezoelectric measurements on the BTO, AlN and PZT films show that they have good physical properties in agreement with the literature
22

Wang, Zhen. "Enhanced self-powered vibration damping of smart structures by modal energy transfer." Thesis, Lyon, INSA, 2015. http://www.theses.fr/2015ISAL0067/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Le travail de cette thèse propose une nouvelle méthode de contrôle appelée SSDH (Synchronized Switch Damping and Harvesting) basée sur l’idée de redistribution de l’énergie récupérée pour réduire l’énergie vibratoire d’une structure. De nombreuses recherches ont concerné le contrôle de vibration des structures souples. L’utilisation de l’approche modale pour ce genre de structure présente de nombreux intérêts. Dans le cadre de cette thèse l’idée est de récupérer l’énergie des modes qui ne sont pas contrôlés de façon à améliorer l’effet d’amortissement des modes ciblés par le contrôle sur une même structure. Pour cela, sur la base de la technique semi-active de contrôle, un circuit de contrôle modal a été conçu pour être compatible, via un convertisseur, avec des techniques semi-active de récupération d’énergie qui ont elles même été adaptées en modal. Plusieurs variantes de la méthode SSDH ont été testées en simulation. De façon à estimer l’efficacité du concept, une application sur un modèle expérimental d’une smart structure simple est proposée. Actionneurs et capteurs utilisent des matériaux piézoélectriques qui présentent les effets directs et inverses utiles pour la récupération d’énergie et le contrôle vibratoire. Après optimisation des différents paramètres électromécaniques et électriques, les résultats des simulations menées sous excitations bisinusoidale ou en bruit blanc, montrent que la nouvelle méthode de contrôle autoalimentée SSDH est efficace et robuste. Elle améliore sensiblement l’amortissement produit par les techniques semi-actives modales de base (SSDI) grâce à l’utilisation de l’énergie modale récupérée
In a context of embedded structures, the next challenge is to develop an efficient, energetically autonomous vibration control technique. Synchronized Switch Damping techniques (SSD) have been demonstrated interesting properties in vibration control with a low power consumption. For compliant or soft smart structures, modal control is a promising way as specific modes can be targetted. This Ph-D work examines a novel energy transfer concept and design of simultaneous energy harvesting and vibration control on the same host structure. The basic idea is that the structure is able to extract modal energy from the chosen modes, and utilize this harvested energy to suppress the target modes via modal control method. We propose here a new technique to enhance the classic SSD circuit due to energy harvesting and energy transfer. Our architecture called Modal Synchronized Switching Damping and Harvesting (Modal SSDH) is composed of a harvesting circuit (Synchronized Switch Harvesting on Inductor SSHI), a Buck-Boost converter and a vibration modal control circuit (SSD). Various alternatives of our SSDH techniques were proposed and simulated. A real smart structure is modeled and used as specific case to test the efficiency of our concept. Piezoelectric sensors and actuators are taken as active transducers, as they develop the direct and inverse effects useful for the energy harvesting and the vibration damping. Optimization are running out and the basic design factors are discussed in terms of energy transfer. Simulations, carried out under bi-harmonic and noise excitation, underline that our new SSDH concept is efficient and robust. Our technique improve the damping effect of semi-active method compared to classic SSD method thanks to the use of harvested modal energy

До бібліографії