Дисертації з теми "Recuit. microstructure"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-33 дисертацій для дослідження на тему "Recuit. microstructure".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Gasmi, Assia. "Effet de la nanostructuration sur le comportement thermomécanique du Nitinol." Electronic Thesis or Diss., Université de Montpellier (2022-....), 2024. http://www.theses.fr/2024UMONS018.
Повний текст джерелаThis thesis focuses on the shape memory alloy NiTi, with a specific emphasis on the influence of the surface nanostructuring process SMAT on its thermomechanical behavior. Through four distinct chapters, it revisits the main characteristics of shape memory alloys (SMAs), highlighting the exceptional properties of the NiTi alloy and exploring the surface nanocrystallization treatment (SMAT). Microstructural characterization is then deeply investigated, particularly by studying the effects of annealing heat treatment and SMAT on phase transition. The third chapter focuses on thermomechanical analysis methods suitable for NiTi, examining tensile tests and nanoindentation. Finally, the fourth chapter analyzes the thermomechanical characterization of the alloy before and after SMAT treatment, highlighting the implications of these transformations on its overall behavior.This thesis contributes to understanding the effects of the SMAT process on the NiTi alloy, revealing links between microstructure, present phases, and mechanical properties. The results offer promising perspectives for better control of the properties of the NiTi alloy.The results obtained for different SMAT treatments show that this process modifies the mechanical response of the material. It also has an influence on its initial state, as illustrated by differences in DSC curves. Kinematic (strain rate fields) and calorimetric (heat source field) measurements also indicate notable differences in responses depending on SMAT processing parameters. Exploration of behavior during load/unload cycles shows a response that stabilizes after a few cycles. Coupling effects seem to be predominant compared to dissipative effects. These observations should be extended to fatigue loading to better highlight any dissipative effects. Similarly, the use of more elaborate interpretation models would allow better consideration of structural effects and enrich the understanding of the relationship between the process and property evolutions
Dabou, Oussama. "Etude de la microstructure, de la texture et des propriétés magnétiques d'un alliage à base de Ni et de Fe après traitement par déformation plastique sévère et recuit." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF020.
Повний текст джерелаThis thesis provides a comprehensive study of the Mumetal alloy, delving into its microstructure, texture, hardness, magnetic properties, and their interrelations. It covers two major aspects. The first part examines the microstructural and mechanical changes induced by severe plastic deformation (SPD) techniques such as Accumulative Roll Bonding (ARB), High-Pressure Torsion (HPT), and Constrained Groove Pressing (CGP). ARB transforms the Mumetal's microstructure from equiaxed grains to elongated grains. Dislocation gradients, texture changes, and a significant improvement in hardness contribute to the material's superior mechanical properties. HPT generates even finer grain structures and increased hardness. CGP demonstrates how in-situ deformation under temperature can enhance Mumetal's mechanical properties without altering the material's grain size. The second part explores the magnetic properties of Mumetal and their correlation with microstructural and mechanical parameters. It reveals that microstructural refinement significantly impacts Mumetal's magnetic characteristics. Magnetic properties are closely linked to the microstructural evolution resulting from SPD techniques. Magnetic measurements highlight the relationship between Mumetal's magnetic softness and its mechanical hardness, holding implications for its use in electromagnetic shielding and other technologies. Moreover, thermomechanical treatment can achieve a synergistic balance between magnetic softness and mechanical hardness. By optimizing microstructural features, these materials can be tailored for specific applications
Marceaux, Dit Clément Arthur. "Interactions entre transformations de phases et recristallisation au recuit : influence de la microstructure initiale pour des aciers à 0,2 % de carbone." Electronic Thesis or Diss., Aix-Marseille, 2020. http://www.theses.fr/2020AIXM0297.
Повний текст джерелаHigh-strength steels are widely used in the automotive industry because of the good mechanical properties – formability ratio they offer. Numerous research activities are still ongoing to further improve their formability properties. High-carbon chemistries can help reach this goal. This thesis focuses on the microstructural evolutions during the annealing of two 0.2 wt.% carbon steels with Ti-Nb microalloy, for which cold-rolled initial microstructures are different (bainite-martensite and bainite-pearlite). Interactions between recovery, recrystallization, cementite precipitation, microalloying elements precipitation and austenite formation can lead to the formation of many kinds of final microstructures after annealing. The origin of banded microstructures, detrimental to good formability properties and linked to incomplete recrystallization during annealing, is studied
Kiaei, Mercedeh. "Etude des mécanismes de recristallisation dans des aciers bas carbone." Paris 13, 1996. http://www.theses.fr/1996PA132018.
Повний текст джерелаMoreno, Marc. "Mécanismes métallurgiques et leurs interactions au recuit d’aciers ferrito-perlitiques laminés : caractérisation et modélisation." Electronic Thesis or Diss., Université de Lorraine, 2019. http://www.theses.fr/2019LORR0068.
Повний текст джерелаFerrite/Martensite Dual-Phase steels are largely used in the form of thin sheets in the automotive industry for their excellent balance between resistance and strength and thus for their lightening potential. They are elaborated by continuous casting, hot- and cold- rolling, followed by a continuous annealing. During the heating and the soaking stages of this latter process, the deformed ferrite/pearlite microstructure obtained after rolling evolves is transformed into a recrystallized ferrite-austenite microstructure. The experiments show that recrystallization and austenite transformation kinetics as well as the resulting spatial and morphological distribution of the phases are highly sensitive to the heating rate. This PhD thesis aims at understanding the different metallurgical mechanisms explaining this particular sensitivity as carbides ripening, recovery, recrystallization and austenite transformation and all their possible interactions. The mechanisms were characterized at different scales and by in situ technics on an industrial steel and model by physical based approaches in order to drive future production lines. After a first chapter dedicated to the experimental and modeling methods, the second chapter deals with the characterization of the morphogenesis of ferrite-austenite microstructures by Scanning Electron Microscopy (SEM). Chapter 3 is a study by Transmission Electron Microscopy (TEM) and by thermokinetic modeling (ThermoCalc, DICTRA) of the chemical composition of carbides along with manufacturing, from hot-rolling to annealing. Recovery and recrystallization are studied in chapter 4 by the means of in situ High Energy X-Ray Diffraction (HEXRD) experiments conducted on a synchrotron beamline and modeled by an original mean-field approach. Finally, chapter 5 proposes an analysis with DICTRA to understand austenite transformation kinetics as function of heating rates. The proposed approach is innovative as it accounts for intergranular carbides in the ferrite matrix, is conducted in non-isothermal conditions and propose a fine analysis of growth modes of austenite associated to manganese, a key alloying element of the studied steels
Monchoux, Jean-Philippe. "Influence d'un recuit de ferritisation sur la microstructure et les mécanismes de fissuration en sollicitation monotone et cyclique de la fonte à graphite sphéroïdal perlito-ferritique." Lyon, INSA, 2000. http://www.theses.fr/2000ISAL0004.
Повний текст джерелаThe consequences of a ferritization heat treatment on the microstructure and on the fracture properties (elasto-plastic fracture toughness and high-cycle fatigue) of perlito-ferritic spheroidal graphite cast iron have been investigated. The evolution of the matrix and of the nodule-matrix interface during nodule's dissolution were characterized by means of both scanning and transmission electron microscopy. It was found that the graphite dissolution occurred mainly at crystalline defects. This produced matrix intrusions which were globulized by a surface diffusion phenomenon, leading to an incorporation of matrix particles into the grapite. These particles were found in a previous study to lead to a weakening of the nodule-matrix interface. The matrix study showed the presence of a fine precipitation. The fracture toughness was found to depend mainly on the pearlite fraction in the matrix. The lifetime in fatigue was dependent on the yield stress and on a grain boundary stop phenomenon. The ferritic particles had no or little effect on both fracture toughness and fatigue resistance, the precipitation having an influence on the fatigue resistance by its probable effect on the yield stress
Moreno, Marc. "Mécanismes métallurgiques et leurs interactions au recuit d’aciers ferrito-perlitiques laminés : caractérisation et modélisation." Thesis, Université de Lorraine, 2019. http://www.theses.fr/2019LORR0068.
Повний текст джерелаFerrite/Martensite Dual-Phase steels are largely used in the form of thin sheets in the automotive industry for their excellent balance between resistance and strength and thus for their lightening potential. They are elaborated by continuous casting, hot- and cold- rolling, followed by a continuous annealing. During the heating and the soaking stages of this latter process, the deformed ferrite/pearlite microstructure obtained after rolling evolves is transformed into a recrystallized ferrite-austenite microstructure. The experiments show that recrystallization and austenite transformation kinetics as well as the resulting spatial and morphological distribution of the phases are highly sensitive to the heating rate. This PhD thesis aims at understanding the different metallurgical mechanisms explaining this particular sensitivity as carbides ripening, recovery, recrystallization and austenite transformation and all their possible interactions. The mechanisms were characterized at different scales and by in situ technics on an industrial steel and model by physical based approaches in order to drive future production lines. After a first chapter dedicated to the experimental and modeling methods, the second chapter deals with the characterization of the morphogenesis of ferrite-austenite microstructures by Scanning Electron Microscopy (SEM). Chapter 3 is a study by Transmission Electron Microscopy (TEM) and by thermokinetic modeling (ThermoCalc, DICTRA) of the chemical composition of carbides along with manufacturing, from hot-rolling to annealing. Recovery and recrystallization are studied in chapter 4 by the means of in situ High Energy X-Ray Diffraction (HEXRD) experiments conducted on a synchrotron beamline and modeled by an original mean-field approach. Finally, chapter 5 proposes an analysis with DICTRA to understand austenite transformation kinetics as function of heating rates. The proposed approach is innovative as it accounts for intergranular carbides in the ferrite matrix, is conducted in non-isothermal conditions and propose a fine analysis of growth modes of austenite associated to manganese, a key alloying element of the studied steels
Fekecs, André. "Élaboration de photoconducteurs d’InGaAsP par implantation d'ions de fer pour des applications en imagerie proche-infrarouge et spectroscopie térahertz." Thèse, Université de Sherbrooke, 2015. http://hdl.handle.net/11143/6840.
Повний текст джерелаAKANI, MOHAMED. "Elaboration du silicium polycristallin par projection plasma : microstructure et proprietes electriques." Paris 6, 1986. http://www.theses.fr/1986PA066613.
Повний текст джерелаLakhal, Lamyae. "Influence of microstructure on the properties of composite materials reinforced with unidirectional fibers." Thesis, Lille 1, 2019. http://www.theses.fr/2019LIL1I060/document.
Повний текст джерелаThroughout this work, the influence of microstructures of non-overlapping aligned fiber reinforced composites on macroscopic elastic properties has been quantified with numerical homogenization on FEM simulations. The radial distribution function (Rdf) has proven to be the best second order correlation to describe fiber spatial distributions. Numerical samples with controlled Rdfs were built with simulated annealing and their effective values were evaluated. Due to the non-overlapping condition, Rdf exhibits a peak for distances from 1 to 1.5 diameter. When Rdf peak increases, elastic moduli increase as well. From this result, new bounds that frame any equilibrium system of aligned fiber composites were established. The corresponding microstructures for lower and upper bounds were respectively a Percus-Yevick distribution of fibers and packed fibers
Picard, Martine. "Évolution de la microstructure d'un PET lors du bi-étirage soufflage ; corrélation au durcissement structural." Phd thesis, École Nationale Supérieure des Mines de Paris, 2008. http://tel.archives-ouvertes.fr/tel-00343353.
Повний текст джерелаVincent, Edwige Becquart Charlotte Domain Christophe. "Simulations numériques à l'échelle atomique de l'évolution microstructurale sous irradiation d'alliages ferritiques." Villeneuve d'Ascq : Université des sciences et technologies de Lille, 2008. https://iris.univ-lille1.fr/dspace/handle/1908/1078.
Повний текст джерелаN° d'ordre (Lille 1) : 3925. Articles en anglais reproduits dans le texte. Résumé en français et en anglais. Titre provenant de la page de titre du document numérisé. Bibliogr. à la suite de chaque chapitre.
Ramdani, Hamdane. "Contribution à l'étude d'aimants samarium-cobalt : relation entre les propriétés magnétiques et la microstructure." Rouen, 1987. http://www.theses.fr/1987ROUES034.
Повний текст джерелаLectard, Eric. "Structures, microstructures et coercitivité des alliages Sm(Co,Cu)5." Grenoble INPG, 1997. http://www.theses.fr/1997INPG0139.
Повний текст джерелаBaudino, Olivier. "Frittage photonique de lignes imprimées à base de nanoparticules : optimisation des propriétés électriques et mécaniques pour l’interconnexion de circuits intégrés sur substrats flexibles." Thesis, Saint-Etienne, EMSE, 2015. http://www.theses.fr/2015EMSE0804/document.
Повний текст джерелаPhotonic sintering is an emerging technology based on the instantaneous conversion ofabsorbed light energy by nanoparticles (NPs) into heat. In this work, it is used oninterconnections printed on flexible substrates by inkjet printing of a metal silver nanoinkwith particle mean diameter of Ø=25nm.A process parameters study has allowed us to link them (energy, frequency) with theinduced sheet resistance (120m!/ ). This has been confirmed through thermal modeling ofthe multilayer system, and also by monitoring the resistance variations in-situ duringphotonic sintering (a few ms) using an innovative characterization tool, allowingmeasurements every 4 μs. The electrical resistance stabilization correlated with the opticalproperties of the film was found to be optimal for an exposition of 2-3J/cm², whichcorresponds to heating up to approximately 200°C.Films microstructure analysis with X-ray diffraction enlightens the link between crystallitescoarsening and defaults density reduction. The minimization of electrical resistivity iscorrelated with neck growth between nanoparticles trigged by surface atomic diffusion.Moreover, a stronger cohesion between NPs improves the mechanical hardness compared toclassical oven curing.The electrical contact resistance (200m!) between a silicon chip interconnection bumpand printed tracks is measured thanks to an in-house setting for electrical measurement withthe nanoindenter. The level of forces to apply (300mN per bump) is optimized and transferredto a thermocompression by industrial equipment. A set of prototypes are fabricated andconfirm the compatibility of these technologies with a future industrial integration
Royer, Agnès. "Evolutions thermique et mécanique de la microstructure de superalliages monocristallins étudiées par diffusion centrale et diffraction (neutrons, rayons [gamma])." Grenoble 1, 1993. http://www.theses.fr/1993GRE10097.
Повний текст джерелаVincent, Edwige. "Simulations numériques à l'échelle atomique de l'évolution microstructurale sous irradiation d'alliages ferritiques." Lille 1, 2006. https://pepite-depot.univ-lille.fr/LIBRE/Th_Num/2006/50376-2006-Vincent.pdf.
Повний текст джерелаJeanjean, Philippe. "Caractérisation électrique d'hétérostructures et de couches minces semiconductrices par effet Hall : I - Superréseaux GaAs/AlAs : II - Silicium sur isolant." Montpellier 2, 1992. http://www.theses.fr/1992MON20167.
Повний текст джерелаCauchois, Romain. "Microstructuring inkjet-printed deposits from silver nanoparticules coalescence to the fabrication of interconnections for electronic devices." Phd thesis, Ecole Nationale Supérieure des Mines de Saint-Etienne, 2012. http://tel.archives-ouvertes.fr/tel-00847021.
Повний текст джерелаFrincu, Bianca. "Procédé de recuits sous champ magnétique intense pour microstructures optimisées." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENI100.
Повний текст джерелаEnergy is becoming increasingly expensive and a major challenge for the society is to minimize energyconsumption. One of the issues of this challenge focuses on the industrial processing of energy related materialand the development of their properties.The overall objective of this work is to evaluate thermo-magnetic processing as a new technology with thegoal of developing novel microstructures and/or improved properties unattainable through conventionalthermo-mechanical processing. This main target is addressed with the study of the effect of magnetic field ontwo main alloys, Fe-Co and Fe-Ni in view of improving their functional soft magnetic properties.In FeCo alloys the non – equilibrium ferrite to austenite phase transformation measured up to 16T is foundto be increased by the application of a high magnetic field. Its evolution with the field intensity is explainedusing a thermodynamic analysis. In both grades, the ferrite phase is found to be stabilized at higher temperaturetogether with a coarse grains microstructure during recrystallization and growth in high field. Soft magneticproperties are also improved by the application of a magnetic field both in the Fe-Co27% and Fe-Co49%-V2%alloys by a field induced Goss texture enhancement and an extended field induced anisotropy respectively.In the Fe – 80%Ni composition the use of high magnetic field during processing (up to 7T) is found toimprove the magnetic induced anisotropy and to tailor the hysteresis loop shape. The dynamic magneticbehavior is greatly improved by high field annealing.These significant results support the idea that introducing the magnetic field application into conventionalmaterials processing is a promising way to improve material properties
Tresallet, Damien. "Evolution des microstructures au cours d'un recuit dans un acier inoxydable superduplex : caractérisation et modélisation." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI088.
Повний текст джерелаSuperduplex stainless steels are high-performance stainless steel grades that combine great specific mechanical properties with an excellent resistance to pitting and stress corrosion cracking. The design of new grades with improved properties requires the control of the microstructure and phase transformations occurring during the manufacturing process. Particularly, the rolling steps impart to the alloy the so-called duplex structure, a fine layered microstructure made of two phases, ferrite (δ) and austenite (γ). After the cold-rolling step, an annealing treatment performed at a temperature close to 1100°C give the alloy desired properties. At this temperature, both phases are present in comparable proportions in the alloy, however the layered microstructure evolves towards a more equiaxed and thicker structure within a few tens of seconds. The mechanisms leading to these microstructural evolutions during annealing was studied in this work. A model Fe-Cr-Ni-Mo-N superduplex stainless steel was produced by a semi-industrial process and supplied in the form of cold-rolled sheets. Its microstructure was studied after isothermal annealing treatments performed within a temperature range of 1060-1180°C up to 300 s. The phase fractions reached the thermodynamic equilibrium during the first tens of seconds of the temperature steady state. A global thickening of the microstructure and a local thinning of the bands were identified. The local thinning was found located at the grain boundaries emerging at austenite-ferrite interfaces similarly to the thermal grain boundary grooving theory, it may also induce fractioning of the phases. Microstructure coarsening was also evidenced by a quantitative analysis. These two models describe the evolution of ideal morphologies due to capillarity. However, the complex morphology of the phases of the superduplex alloy give rise to morphological heterogeneities during annealing. The low energetic austenitic twin boundaries Σ3 (<111>, 60°) are not affected by thermal grooving. However, differences in grain boundary energy do not explain all the observed heterogeneities, and the morphology of the interfaces in their initial state has proved to be predominant. Through a collaboration, a phase field numerical simulation tool was upgraded to model the evolution of austenitic/ferritic interfaces of various morphologies during annealing. On the one hand, the splitting of a cylindrical particle by grain boundary grooving was found faster the one of a plate. On the other hand, the grain boundary grooving creates additional curved interfaces subject to coarsening. The double interaction of grain boundary grooving and coarsening leads to a rapid evolution of the microstructure. The interaction of neighboring grain boundaries can locally stabilize an interface, but the microstructure coarsening continues due to the curvature differences that exist between interfaces of a same band and those of adjacent bands
Verdier, Marc. "Étude de la restauration statique dans des alliages aluminium-magnésium." Grenoble INPG, 1996. http://www.theses.fr/1996INPG0213.
Повний текст джерелаBessenay, Gilles. "Mesures d'intensité diffuse sur monocristal en rayonnement synchrotron : mise en place de l'appareillage et tests, aspects structuraux et cinétiques de l'ordre local dans les alliages Au-Cu." Paris 6, 1986. http://www.theses.fr/1986PA066019.
Повний текст джерелаMorere, Bruce. "Recristallisation d'un alliage d'aluminium 7010 après déformation à chaud : influence sur la ténacité." Grenoble INPG, 1999. http://www.theses.fr/1999INPG4202.
Повний текст джерелаRenault, Olivier. "Oxydes diélectriques en couches minces pour écrans de visualisation à plasma : synthèse sur de grandes surfaces par aérosol-CVD et étude des propriétés microstructurales et physiques." Grenoble INPG, 1998. http://www.theses.fr/1998INPG0149.
Повний текст джерелаGranon, Arielle. "Étude du frittage réactif dans le système Al₂O₃-AlN-MgO : application à l'élaboration d'une céramique spinelle oxynitrurée transparente." Grenoble INPG, 1994. http://www.theses.fr/1994INPG4202.
Повний текст джерелаNothdurft, Luke David. "Microstructure and early diagenesis of recent reef building scleractinian corals, Heron reef, Great Barrier Reef : implications for paleoclimate analysis." Thesis, Queensland University of Technology, 2008. https://eprints.qut.edu.au/16690/1/Luke_D._Nothdurft_Thesis.pdf.
Повний текст джерелаNothdurft, Luke David. "Microstructure and early diagenesis of recent reef building scleractinian corals, Heron reef, Great Barrier Reef : implications for paleoclimate analysis." Queensland University of Technology, 2008. http://eprints.qut.edu.au/16690/.
Повний текст джерелаNgayam, Happy Raoul. "Prévisions de l’évolution microstructurale sous irradiation d’alliages ferritiques par simulations numériques à l’échelle atomique." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10173/document.
Повний текст джерелаIn this work, we have improved a diffusion model for point defects (vacancies and self-interstitials) by introducing hetero-interstitials. The model has been used to simulate by Kinetic Monte Carlo (KMC) the formation of solute rich clusters that are observed experimentally in irradiated ferritic model alloys of type Fe – CuMnNiSiP – C.Electronic structure calculations have been used to characterize the interactions between self-interstitials and all solute atoms, and also carbon. P interacts with vacancies and strongly with self-interstitials. Mn also interacts with self-interstitials to form mixed dumbbells. C, with occupies octahedral sites, interacts strongly with vacancies and less with self-interstitials. Binding and migration energies, as well as others atomic scale properties, obtained by ab initio calculations, have been used as parameters for the KMC code. Firstly, these parameters have been optimized over isochronal annealing experiments, in the literature, of binary alloys that have been electron-irradiated. Isochronal annealing simulations, by reproducing experimental results, have allowed us to link each mechanism to a single evolution of the resistivity during annealing. Moreover, solubility limits of all the elements have been determined by Metropolis Monte Carlo. Secondly, we have simulated the evolution at 300 °C of the microstructure under irradiation of different alloys of increasing complexity: pure Fe, binary alloys, ternaries, quaternaries, and finally complex alloys which compositions are close to those of pressure vessel steels. The results show that the model globally reproduces all the experimental tendencies, what has led us to propose mechanisms to explain the behaviours observed
Taravel, Condat Carol. "Influence des conditions d'élaboration sur la microstructure de solidification lors de la trempe sur roue d'alliages Fe₇₅Al₂₅ et Fe₍₇₅-ₓ₎Al₂₅Bₓ₍₀, ₀₅₋₁₎ (pds%)". Grenoble INPG, 1991. http://www.theses.fr/1991INPG0106.
Повний текст джерелаMateus, Freire Lucie. "Évolutions microstructurales et comportement en fluage à haute température d'un acier inoxydable austénitique." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEM016/document.
Повний текст джерелаThe ASTRID project aims at designing a fast-reactor prototype for the 4th generation of nuclear power plants. The material to be used for fuel cladding is a cold-worked austenitic stainless steel stabilized with titanium (15Cr-15Ni Ti type) and optimized in minor elements. This material was developed to limit recovery and irradiation-induced swelling and to improve microstructural stability and mechanical properties in normal operating conditions. In case of incidental situations (irradiation temperature > 650°C), the cladding might rapidly reach higher temperatures up to 950°C where its stability could be affected. The present work aims at improving knowledge and understanding of the microstructural evolution and creep behaviour of this steel at these temperatures (650°C-950°C).Microstructural characterizations of thermally-aged samples have been performed in order to study the effect of temperature on metallurgical evolutions (precipitation, recovery and recrystallization). A phenomenological model including recovery and recrystallization processes was set up to reproduce hardness measurements versus ageing time and temperatures.Isothermal creep tests up to 950°C under a wide range of stress levels allowed investigation of viscoplastic flow, microstructural evolution under stress and damage/failure processes. In order to evaluate the effect of high-temperature loading, microstructural characteristics of stress-free thermally-aged samples were compared with post-mortem examinations of creep specimens.At 650°C and 750°C the value of stress exponent is higher than 7. The main deformation mechanism during creep test is power-low creep, which is consistent with the results found in the literature.Beyond 850°C, the increase in dislocation mobility promotes recovery and recrystallization processes. As a consequence, a competition between work hardening due to viscoplastic deformation and softening due to dynamic recovery takes place. At 950°C, viscoplastic flow is strongly affected by recrystallization during creep test, especially in the tertiary stage. The comparison between microstructures of crept specimens and stress-free, thermally-aged samples leads to the conclusion that the recrystallization kinetics is accelerated by application of a mechanical loading.As for the fracture behaviour, creep tests under air environment at lower temperatures (650°C-750°C), led to predominating ductile fracture but some intergranular zones were observed on fracture surfaces. Creep tests under high vacuum at higher temperatures (850°C-950°C) lead to a high fracture elongation with a reduction of area up to 100%
Wang, Chaoyan. "Securities trading in multiple markets : the Chinese perspective." Thesis, University of Stirling, 2009. http://hdl.handle.net/1893/2278.
Повний текст джерелаLiang, Shoudeng. "MAXIMUM recent implementation and application to the study of corrosion induced microstructures in thin films of Al-Cu-Si metallization /." 1994. http://catalog.hathitrust.org/api/volumes/oclc/31535852.html.
Повний текст джерелаTypescript. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references (leaves 166-178).