Статті в журналах з теми "Rectangular dielectric resonator"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Rectangular dielectric resonator.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Rectangular dielectric resonator".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Chen, Yih-Chien. "Hybrid Dielectric Resonator Antenna Composed of High-Permittivity Dielectric Resonator for Wireless Communications in WLAN and WiMAX." International Journal of Antennas and Propagation 2012 (2012): 1–6. http://dx.doi.org/10.1155/2012/531436.

Повний текст джерела
Анотація:
The-hybrid dielectric resonator antenna consisted of a cylindrical high-permittivity dielectric resonator, a rectangular slot, and two-rectangular patches were implemented. The hybrid dielectric resonator antenna had three resonant frequencies. The lower, middle, and higher resonant frequencies were associated with the rectangular slot, rectangular patches, and dielectric resonator, respectively. Parametric investigation was carried out using simulation software. The proposed hybrid dielectric resonator antenna had good agreement between the simulation results and the measurement results. The hybrid dielectric resonator antenna was implemented successfully for application in 2.4/5.2/5.8 GHz of WLAN and 2.5/3.5/5.5 GHz of WiMAX simultaneously.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Trubin, Alexander. "MUTUAL COUPLING COEFFICIENTS OF ROTATING RECTANGULAR DIELECTRIC RESONATORS IN CUT-OFF RECTANGULAR WAVEGUIDE." Information and Telecommunication Sciences, no. 1 (June 29, 2021): 48–54. http://dx.doi.org/10.20535/2411-2976.12021.48-54.

Повний текст джерела
Анотація:
Background. A further increase in the speed of information transfer is determined by more stringent requirements for the elements of communication devices. One of the most important components of such devices is various filters, which are often made on the basis of dielectric resonators. Calculation of the parameters of multi-section filters is impossible without further development of the theory of their design. The development of filter theory is based on electrodynamic modelling, which involves calculating the coupling coefficients of dielectric resonators in various transmission lines. Objective. The aim of the research is to calculate and study the coupling coefficients of rectangular dielectric resonators with a rectangular metal waveguide when their axes rotate. Investigation of new effects to improve the performance of filters and other devices based on them. Methods. Methods of technical electrodynamics are used to calculate and analyse the coupling coefficients. The end result is to obtain new analytical formulas for new structures with rectangular dielectric resonators, which make it possible to analyse and calculate their coupling coefficients. Results. New analytical expressions are found for the coupling coefficients of dielectric resonators with the rotation of their axes in a rectangular waveguide. Conclusions. The theory of designing filters based on new structures of dielectric resonators with rotation of their axes in metal waveguides has been expanded. New analytical relationships and new patterns of change in the coupling coefficients are found. Keywords: dielectric filter; rectangular dielectric resonator; rotation; coupling coefficients.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Selvaraju, Raghuraman, Muhammad Ramlee Kamarudin, Mohsen Khalily, Mohd Haizal Jamaluddin, and Jamal Nasir. "Dual-Port MIMO Rectangular Dielectric Resonator Antenna for 4G-LTE Application." Applied Mechanics and Materials 781 (August 2015): 24–27. http://dx.doi.org/10.4028/www.scientific.net/amm.781.24.

Повний текст джерела
Анотація:
A Multi Input Multi Output (MIMO) Rectangular Dielectric Resonator Antenna (RDRA) for 1.8 GHz Long Term Evolution (LTE) applications is investigated and presented. The antenna consisting of two rectangular dielectric resonator elements, both resonators are fed by microstrip feed line is etched on FR4 substrate. The simulated impedance bandwidth for port1 and port2 is 26.38% (1.6176-2.1093 GHz) and 26.80% (1.6146-2.1143GHz) respectively for |S11| ≤ -6dB, which can operate on LTE band 1-4,9,10,35-37 and 39. The gain of the MIMO RDRA is 3.2 dBi and 3.1 dBi at 1.8 GHz for port 1and port 2, respectively. The S-parameters, isolation, gain, and MIMO performance such as correlation coefficient and diversity gain of the presented RDR Antenna have been studied.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

YANG, JINGJING, MING HUANG, ZHE XIAO, and JINHUI PENG. "SIMULATION AND ANALYSIS OF ASYMMETRIC METAMATERIAL RESONATOR-ASSISTED MICROWAVE SENSOR." Modern Physics Letters B 24, no. 12 (May 20, 2010): 1207–15. http://dx.doi.org/10.1142/s0217984910023232.

Повний текст джерела
Анотація:
Based on the field enhancement principle of trapped modes, two new asymmetric metamaterial resonators are presented. Transmission response (S21) of the rectangular wave-guide filled with an asymmetric metamaterial resonator is simulated. Results show that the asymmetric resonator possesses high Q-factor and improved sensitivity. The microwave sensor based on the asymmetric resonator can be flexibly tailored to design requirement by varying the asymmetry parameter or the topological structure of the resonator. The asymmetric metamaterial resonator-assisted microwave sensor will have potential applications in biosensor and chemosensor fields for sensing minute amounts of dielectric sample substance.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sotnikov, G. V., K. V. Galaydych, R. R. Kniaziev, and I. N. Onishchenko. "BBU instability in rectangular dielectric resonator." Journal of Instrumentation 15, no. 05 (May 13, 2020): C05034. http://dx.doi.org/10.1088/1748-0221/15/05/c05034.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Fang, X. S., K. W. Leung, E. H. Lim, and R. S. Chen. "Compact Differential Rectangular Dielectric Resonator Antenna." IEEE Antennas and Wireless Propagation Letters 9 (2010): 662–65. http://dx.doi.org/10.1109/lawp.2010.2057402.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Danesh, S., S. K. A. Rahim, M. Abedian, M. Khalily, and M. R. Hamid. "Frequency-Reconfigurable Rectangular Dielectric Resonator Antenna." IEEE Antennas and Wireless Propagation Letters 12 (2013): 1331–34. http://dx.doi.org/10.1109/lawp.2013.2285649.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bichelot, F., R. Loison, and R. Gillard. "Quasi-TEM rectangular dielectric resonator antenna." Electronics Letters 41, no. 23 (2005): 1264. http://dx.doi.org/10.1049/el:20053348.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Oliver, M. B., A. Ittipiboon, Y. M. M. Antar, and R. K. Mongia. "Circularly polarised rectangular dielectric resonator antenna." Electronics Letters 31, no. 6 (March 16, 1995): 418–19. http://dx.doi.org/10.1049/el:19950304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nagendram, S., B. T P Madhav, K. Sony, P. Janaki, P. Lakshmi Prasanna, S. Swetha, M. Venkateswara Rao, and . "Study and analysis of single notched rectangular dielectric resonator antenna for cognitive radio applications." International Journal of Engineering & Technology 7, no. 1.1 (December 21, 2017): 530. http://dx.doi.org/10.14419/ijet.v7i1.1.10161.

Повний текст джерела
Анотація:
In this article a single notched ultra-wideband antenna which is integrated with dielectric ring resonator is proposed for cognitive radio applications. The proposed antenna consists of elliptical base and a split ring resonator on either side of the feedline for bandwidth enhancement. The rectangular dielectric resonator which is proposed is a rectangular dielectric resonator which give good isolation between the two ports. The proposed antenna has single rejection at 5.7GHz-8.4GHz at ultrawideband region. The proposed antenna has a peak gain of 6dB and average gain of 3. 1dB.Commercially equipped tool ANSYS EM 17 is used to characterise the proposed antenna. The proposed antenna provides good isolation between the two antenna ports confirming efficient integration. The antenna is best suitable for candidate of radar applications, medical imaging and cognitive radio systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Bethala, Chaitanya, and Manjunatha Kamsali. "Design of Rectangular Dielectric Resonator Antenna for Mobile Wireless Application." Applied Computational Electromagnetics Society 36, no. 5 (June 14, 2021): 568–76. http://dx.doi.org/10.47037/2020.aces.j.360511.

Повний текст джерела
Анотація:
In this article, a pentaband rectangular DRA is explored and presented. The proposed antenna has a crescent-shaped radiating element with defected ground structure and it is feed by 50‐Ω microstrip line. The RDRA invariably has two similar dielectric resonators made up of RT5870 is positioned on top of the crescent-shaped patch. With the use of a dielectric resonator, the proposed structure has good improvement in impedance bandwidth and gain. The proposed rectangular DRA has penta operating frequency bands with resonant frequency at 1.49 GHz, 2.00 GHz, 2.50 GHz, 5.49 GHz, and 7.75 GHz. The projected structure exhibits the broadside radiation pattern with the maximum gain and directivity of 4 dBi and 4.5 dBi, respectively. The gig of the projected RDRA is validated with the help of simulated results by CST software. The observed results of the proposed antenna indicate that it can be a potential candidate for GPS, PCS, UMTS, ISM, WLAN, Wi-MAX applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Mashhadi, Syeda Hiba Hussain, Muhammad Wasif Niaz, Yong-Chang Jiao, and Jingdong Chen. "BROADBEAM COPLANAR-PARASITIC RECTANGULAR DIELECTRIC RESONATOR ANTENNA." Progress In Electromagnetics Research M 81 (2019): 55–66. http://dx.doi.org/10.2528/pierm19020108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Gupta, Richa, and Arti Vaish. "DEMINIATURIZED MODE CONTROL RECTANGULAR DIELECTRIC RESONATOR ANTENNA." Progress In Electromagnetics Research M 86 (2016): 173–82. http://dx.doi.org/10.2528/pierm19091204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Gupta, Richa, Mahender Singh, Arti Vaish, and Ankit Gaur. "MULTI LAYER STACKED RECTANGULAR DIELECTRIC RESONATOR ANTENNA." International Journal of Technical Research & Science Special, Issue3 (August 1, 2020): 28–33. http://dx.doi.org/10.30780/specialissue-icaccg2020/005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Abdulla, P., and Ajay Chakraborty. "RECTANGULAR WAVEGUIDE-FED HEMISPHERICAL DIELECTRIC RESONATOR ANTENNA." Progress In Electromagnetics Research 83 (2008): 225–44. http://dx.doi.org/10.2528/pier08050701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Esselle, K. P. "A low-profile rectangular dielectric-resonator antenna." IEEE Transactions on Antennas and Propagation 44, no. 9 (1996): 1296–97. http://dx.doi.org/10.1109/8.535389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Mohanan, P., S. Mridula, BinuPaul, M. N. Suma, P. V. Bijumon, and M. T. Sebastian. "FDTD analysis of rectangular dielectric resonator antenna." Journal of the European Ceramic Society 27, no. 8-9 (January 2007): 2753–57. http://dx.doi.org/10.1016/j.jeurceramsoc.2006.11.053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Fakhte, Saeed, Ladislau Matekovits, and Iman Aryanian. "Rectangular Dielectric Resonator Antenna With Corrugated Walls." IEEE Access 7 (2019): 3422–29. http://dx.doi.org/10.1109/access.2018.2888555.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Keller, M. G., D. J. Roscoe, M. B. Oliver, R. K. Mongia, Y. M. M. Antar, and A. Ittipiboon. "Active aperture-coupled rectangular dielectric resonator antenna." IEEE Microwave and Guided Wave Letters 5, no. 11 (1995): 376–78. http://dx.doi.org/10.1109/75.473537.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Wang, Yong Feng, T. A. Denidni, Qing Sheng Zeng, and Gao Wei. "Band‐notched UWB rectangular dielectric resonator antenna." Electronics Letters 50, no. 7 (March 2014): 483–84. http://dx.doi.org/10.1049/el.2014.0188.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Madhuri, R. Gurram, Pradeep M. Hadalgi, S. Lakshetty Mallikarjun, and Prabhakar V. Hunagund. "A wideband-stacked rectangular dielectric resonator antenna." Microwave and Optical Technology Letters 52, no. 11 (August 17, 2010): 2432–34. http://dx.doi.org/10.1002/mop.25503.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Denidni, T. A., and Z. Weng. "Rectangular dielectric resonator antenna for ultrawideband applications." Electronics Letters 45, no. 24 (2009): 1210. http://dx.doi.org/10.1049/el.2009.2210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Hwang, Y., Y. P. Zhang, K. M. Luk, and E. K. N. Yung. "Gain-enhanced miniaturised rectangular dielectric resonator antenna." Electronics Letters 33, no. 5 (1997): 350. http://dx.doi.org/10.1049/el:19970228.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Petosa, Aldo, and Soulideth Thirakoune. "Rectangular Dielectric Resonator Antennas With Enhanced Gain." IEEE Transactions on Antennas and Propagation 59, no. 4 (April 2011): 1385–89. http://dx.doi.org/10.1109/tap.2011.2109690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Desjardins, J., D. A. McNamara, S. Thirakoune, and A. Petosa. "Electronically Frequency-Reconfigurable Rectangular Dielectric Resonator Antennas." IEEE Transactions on Antennas and Propagation 60, no. 6 (June 2012): 2997–3002. http://dx.doi.org/10.1109/tap.2012.2194664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

De Young, C. S., and S. A. Long. "Wideband Cylindrical and Rectangular Dielectric Resonator Antennas." IEEE Antennas and Wireless Propagation Letters 5 (2006): 426–29. http://dx.doi.org/10.1109/lawp.2006.883952.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Leung, K. W., and K. K. So. "Rectangular waveguide excitation of dielectric resonator antenna." IEEE Transactions on Antennas and Propagation 51, no. 9 (September 2003): 2477–81. http://dx.doi.org/10.1109/tap.2003.816373.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Wahab, Norfishah Ab, A. Amiruddin, Roskhatijah Radzuan, Zuhaila Mat Yasin, N. A. Salim, N. A. Rahmat, and N. F. A. Aziz. "Bandpass filter Based on Ring Resonator at RF Frequency above 20 GHz." Indonesian Journal of Electrical Engineering and Computer Science 9, no. 3 (March 1, 2018): 680. http://dx.doi.org/10.11591/ijeecs.v9.i3.pp680-684.

Повний текст джерела
Анотація:
<p>This paper presents two dual-mode rectangular ring resonators, designed at RF frequency above 20 GHz for bandpass filter applications. The first resonator is designed at 20 GHz using single layer microstrip technology, on Rogers Duroid TMM10 substrate with the following characteristics; relative dielectric constant (ε<sub>r</sub>) = 9.2, substrate thickness (h) = 1.270 mm, dielectric loss tangent (tan δ) = 0. The second resonator is built using multilayer CMOS technology at 75 GHz. The resonator is simulated using fluorinated silicon glass (FSG) and silicone rich oxide (SRO) with relative dielectric constant (ε<sub>r</sub>) equals to 3.7 and 4.2 respectively. Both filter designs are built using full-wave electromagnetic simulation tool. For filter design using microstrip technology, the return lossis found at 9.999 dB and the insertion lossis at 3.108 dB while for filter design using CMOS technology, the return loss is found at 11.299 dB and the insertion lossat 0.335 dB. Both results had shown good passband performance with high rejection level at the out-of band.</p>
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Gaya, Abinash, Mohd Haizal Jamaluddin, and Irfan Ali. "Wideband millimeter wave rectangular dielectric resonator antenna for 5G applications." Indonesian Journal of Electrical Engineering and Computer Science 19, no. 2 (August 1, 2020): 1088. http://dx.doi.org/10.11591/ijeecs.v19.i2.pp1088-1094.

Повний текст джерела
Анотація:
<span>A probe fed rectangular dielectric resonator antenna (DRA) is designed here for millimeter wave 5G applications. A wide bandwidth of 5GHz has been achieved with frequency range from 24.24GHz to 29. 20GHz. The calculated percentage banwidth is 19% centered at 26GHz. The DRA is fed by a probe with a microstrip line of unequal strip dimensions over the substrate. <br /> The measured gain of the antenna is 6.25dBi. The calculated radiation efficiency is 96%. The measured axial ratio bandwidth is from 24.08GHz to 23.90GHz, which is about 0.75 percentage bandwidth. The probe height above to the substrate is optimized to exite the DRA. The microstripline coupling is used to resonate the DRA at desizred resonating frequency. <br /> The widebandwidth with high efficiency achived here will make this antenna suitable for the 5G applications at band 30 GHz.</span>
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Gaya, Abinash, Mohd Haizal Jamaluddin, Irfan Ali, and Ayman A. Althuwayb. "Circular Patch Fed Rectangular Dielectric Resonator Antenna with High Gain and High Efficiency for Millimeter Wave 5G Small Cell Applications." Sensors 21, no. 8 (April 11, 2021): 2694. http://dx.doi.org/10.3390/s21082694.

Повний текст джерела
Анотація:
A novel method of feeding a dielectric resonator using a metallic circular patch antenna at millimeter wave frequency band is proposed here. A ceramic material based rectangular dielectric resonator antenna with permittivity 10 is placed over a rogers RT-Duroid based substrate with permittivity 2.2 and fed by a metallic circular patch via a cross slot aperture on the ground plane. The evolution study and analysis has been done using a rectangular slot and a cross slot aperture. The cross-slot aperture has enhanced the gain of the single element non-metallic dielectric resonator antenna from 6.38 dB from 8.04 dB. The Dielectric Resonator antenna (DRA) which is designed here has achieved gain of 8.04 dB with bandwidth 1.12 GHz (24.82–25.94 GHz) and radiation efficiency of 96% centered at 26 GHz as resonating frequency. The cross-slot which is done on the ground plane enhances the coupling to the Dielectric Resonator Antenna and achieves maximum power radiation along the broadside direction. The slot dimensions are further optimized to achieve the desired impedance match and is also compared with that of a single rectangular slot. The designed antenna can be used for the higher frequency bands of 5G from 24.25 GHz to 27.5 GHz. The mode excited here is characteristics mode of TE1Y1. The antenna designed here can be used for indoor small cell applications at millimeter wave frequency band of 5G. High gain and high efficiency make the DRA designed here more suitable for 5G indoor small cells. The results of return loss, input impedance match, gain, radiation pattern, and efficiency are shown in this paper.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Liu, Beijia, Jinghui Qiu, Lijia Chen, and Guoqiang Li. "Dual Band-Notched Rectangular Dielectric Resonator Antenna with Tunable Characteristic." Electronics 8, no. 5 (April 28, 2019): 472. http://dx.doi.org/10.3390/electronics8050472.

Повний текст джерела
Анотація:
A dual band-notched reconfigurable dielectric resonator antenna (DRA) is proposed in this paper. A rectangular dielectric resonator excited by stepped offset microstrip feedline generates multiple resonant modes for wideband performance. Moreover, the typical stepped impedance feedline and partial ground plane with one rectangular notch are adopted for contributing for better impedance matching. On this basis, a five-line coupler resonator (FLCR) composed by inverted U-shaped and 山-shaped structures is introduced as a bandstop filter in the microstrip feedline, and dual rejected bands are created. Tunable notched frequencies are achieved by the varactor between these two structures. The proposed antenna size is 24 × 28 × 5.637 mm3. For the presented work, both simulated and measured results for the proposed tunable antenna ranging from 5.3 to 5.84 GHz and from 8.74 to 8.98 GHz within the wide bandwidth of 6.06 GHz are presented, demonstrating the accuracy of this design. There capabilities make the proposed antenna applicable for wideband systems with the requirement of avoiding interferences.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ain, MohdFadzil, Ubaid Ullah, and ZainalArifin Ahmad. "Bi-polarized dual-segment rectangular dielectric resonator antenna." IETE Journal of Research 59, no. 6 (2013): 739. http://dx.doi.org/10.4103/0377-2063.126974.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Li, Bin, and Kwok Wa Leung. "On the Differentially Fed Rectangular Dielectric Resonator Antenna." IEEE Transactions on Antennas and Propagation 56, no. 2 (2008): 353–59. http://dx.doi.org/10.1109/tap.2007.915463.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Menon, Sreedevi K., B. Lethakumary, P. V. Bijumon, M. T. Sebastian, and P. Mohanan. "L-strip-fed wideband rectangular dielectric resonator antenna." Microwave and Optical Technology Letters 45, no. 3 (2005): 227–28. http://dx.doi.org/10.1002/mop.20778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Henry, B., A. Petosa, Y. M. M. Antar, and G. A. Morin. "Mutual coupling between rectangular multisegment dielectric resonator antennas." Microwave and Optical Technology Letters 21, no. 1 (April 5, 1999): 46–48. http://dx.doi.org/10.1002/(sici)1098-2760(19990405)21:1<46::aid-mop13>3.0.co;2-l.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Liu, Beijia, Jinghui Qiu, Changhui Wang, Nannan Wang, and Guoqiang Li. "Rectangular dielectric resonator antenna with polarization reconfigurable characteristic." Microwave and Optical Technology Letters 61, no. 3 (December 4, 2018): 766–71. http://dx.doi.org/10.1002/mop.31608.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Madhuri, R. G., P. M. Hadalgi, and P. V. Hunagund. "Design of high-permittivity rectangular dielectric resonator antenna." Microwave and Optical Technology Letters 53, no. 5 (March 21, 2011): 1077–79. http://dx.doi.org/10.1002/mop.25927.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Hao, C. X., B. Li, K. W. Leung, and X. Q. Sheng. "Frequency-Tunable Differentially Fed Rectangular Dielectric Resonator Antennas." IEEE Antennas and Wireless Propagation Letters 10 (2011): 884–87. http://dx.doi.org/10.1109/lawp.2011.2165929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Shum, S. M., and K. M. Luk. "Analysis of aperture coupled rectangular dielectric resonator antenna." Electronics Letters 30, no. 21 (October 13, 1994): 1726–27. http://dx.doi.org/10.1049/el:19941195.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Gupta, Anshul, and Ravi Kumar Gangwar. "Hybrid Rectangular Dielectric Resonator Antenna for Multiband Applications." IETE Technical Review 37, no. 1 (February 6, 2019): 83–90. http://dx.doi.org/10.1080/02564602.2019.1565961.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Antar, Y. M. M., and Z. Fan. "Characteristics of aperture-coupled rectangular dielectric resonator antenna." Electronics Letters 31, no. 15 (July 20, 1995): 1209–10. http://dx.doi.org/10.1049/el:19950853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Esselle, K. P. "Circularly polarised higher-order rectangular dielectric-resonator antenna." Electronics Letters 32, no. 3 (1996): 150. http://dx.doi.org/10.1049/el:19960171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Ghadiya, Ambrish, Shilpi Soni, and Keyur Trivedi. "Q-band cross-coupled dielectric resonator filter using TM mode for satellite application." International Journal of Microwave and Wireless Technologies 10, no. 2 (February 13, 2018): 235–41. http://dx.doi.org/10.1017/s1759078718000107.

Повний текст джерела
Анотація:
AbstractA new structure of Q-band filter comprising rectangular high-permittivity dielectric resonators (DR) operating at TM11δ mode is introduced. The resonator shows high-quality factor (Q) and wide spurious free window compared with other technologies available at Q-band for realizing filters. Low permittivity ceramic material (quartz) is used as a support for holding DR at the center of the cavity. An eight-pole cross-coupled band-pass filter having a bandwidth of 225 MHz at 38.5 GHz was realized. Resonant coupling structure is introduced to realize cross-coupling in filter. The resonator assemblies were optimized precisely to achieve effective linear frequency drift over temperature of the order of 2 ppm/°C. The filter also survived severe sine and random vibration test for satellite application.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Debab, Mohamed, and Zoubir Mahdjoub. "Rectangular Dielectric Resonator Antenna with Single Band Rejection Characteristics." Journal of Telecommunications and Information Technology 1 (March 29, 2019): 76–82. http://dx.doi.org/10.26636/jtit.2019.124718.

Повний текст джерела
Анотація:
In this paper, a rectangular dielectric resonator antenna (DRA) suitable for wideband applications is presented and a band notch of WLAN (5.15–5.75) GHz is proposed. The DRA is mainly composed of a 20 × 20 mm rectangular dielectric resonator, coated with metal on the top surface, and a circular monopole excitation patch with an air gap insert. A coaxial line feed is used to excite the circular, planar monopole. An open-ended quarter wavelength C-shaped slot is embedded in the circular patch to create the notched band. The simulated results demonstrate that the proposed design produces an impedance bandwidth of more than 80%, ranging from 3.10 to 7.25 GHz for a reflection coefficient of less than −10 dB and with a band rejection at 5.50 GHz. Band notch characteristics, VSWR, and radiation patterns are studied using the HFSS high-frequency simulator and CST Studio software.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Varshney, Gaurav, V. S. Pandey, and R. S. Yaduvanshi. "Axial ratio bandwidth enhancement of a circularly polarized rectangular dielectric resonator antenna." International Journal of Microwave and Wireless Technologies 10, no. 8 (July 5, 2018): 984–90. http://dx.doi.org/10.1017/s1759078718000764.

Повний текст джерела
Анотація:
AbstractThis paper presents a new technique for the enhancement of axial ratio (AR) bandwidth of a circularly polarized dielectric resonator antenna with a single feeding. To enhance the AR bandwidth, adjacent 3-dB AR passbands are merged by inserting the notches and conductive coating in the dielectric resonator. The dimensions of the notches and conductive coating are selected in such manner that impedance bandwidth remains approximately unchanged. The antenna provides the measured AR and impedance bandwidths of 55.22% and 66.45%, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Jang, Se-Young, and Jong-Ryul Yang. "Double Split-Ring Resonator for Dielectric Constant Measurement of Solids and Liquids." Journal of Electromagnetic Engineering and Science 22, no. 2 (March 31, 2022): 122–28. http://dx.doi.org/10.26866/jees.2022.2.r.68.

Повний текст джерела
Анотація:
This study proposes a 2.45-GHz double split-ring resonator for measuring the dielectric constant in both solids and liquids. Two concentric rectangular rings with asymmetric splits are used in the proposed resonator to achieve a high-quality factor for increasing the sensitivity to resonant frequency changes. The dielectric constants of solids and liquids are obtained based on quadratic polynomial equations with different coefficients, obtained by measuring the frequency shift of reference materials through the maximum return loss of the resonator, which is implemented on an FR4 PCB. The experimental results for the dielectric constants of silicon and rubber obtained using the resonator show errors of 5.92% and 6.81%, respectively, compared with the reference values from certified equipment. The measurement results for liquid samples with different concentrations of ethanol diluted in deionized water indicate a 2.59% error in the estimated dielectric constant. The sensitivities of the proposed resonator were measured to be 2.58% in solids and 0.30% in liquids.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Dong, Feibiao, Limei Xu, Wenbin Lin, and Tianhong Zhang. "A Compact Wide-Band Hybrid Dielectric Resonator Antenna with Enhanced Gain and Low Cross-Polarization." International Journal of Antennas and Propagation 2017 (2017): 1–8. http://dx.doi.org/10.1155/2017/6290539.

Повний текст джерела
Анотація:
By loading two printed patches to the dielectric resonator antenna (DRA), a compact wide-band hybrid dielectric resonator antenna with enhanced gain and low cross-polarization is presented. The proposed antenna utilizes a combination of a rectangular dielectric resonator and two printed patches. Due to the hybrid design, multiple resonances were obtained. By adding two air layers between the dielectric resonator and the printed patches, the bandwidth has been significantly improved. Compared to the traditional hybrid dielectric resonator antenna, the proposed antenna can achieve wide bandwidth, high gain, low cross-polarization, and even small size simultaneously. The prototype of the proposed antenna has been fabricated and tested. The measured −10 dB return loss bandwidth is 25.6% (1.7–2.2 GHz). The measured antenna gains are about 6.3 and 8.2 dBi in the operating frequency band. Low cross-polarization levels of less than −28.5 dB and −43 dB in the E-plane and H-plane are achieved. Moreover, the overall dimensions of the antenna are only 67 × 67 × 34 (mm3). The proposed antenna is especially attractive for small base antenna applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Sharma, Abhishek, Anirban Sarkar, Animesh Biswas, and M. Jaleel Akhtar. "Substrate integrated waveguide fed dual-frequency dual-linearly-polarized dielectric resonator antenna." International Journal of Microwave and Wireless Technologies 10, no. 4 (February 13, 2018): 505–11. http://dx.doi.org/10.1017/s1759078718000132.

Повний текст джерела
Анотація:
In this paper, a single-feed dual-frequency dual-linearly-polarized dielectric resonator antenna is proposed which finds application in two- way internet satellite system and modern radar system. In order to achieve dual linear polarization at distinct frequencies, two rectangular dielectric resonators of same dimensions are excited in ${\rm TE}^{x}_{\delta 11}$ and ${\rm TE}^{y}_{1\delta 1}$ modes by a narrow longitudinal and transverse slot, respectively, etched on the top wall of the substrate integrated waveguide. The −10 dB impedance bandwidth of the proposed antenna is 6.76% for both the frequency bands. The antenna radiates along the broadside direction and the gain of the antenna varies from 5.37 to 6.24 dBi and 5.62–7.96 dBi across 8.14–8.71 GHz and 10.29–11.01 GHz, respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Karuppuswami, Saranraj, Saikat Mondal, Mohd Ifwat Mohd Ghazali, and Premjeet Chahal. "A Reusable 3D Printed Cavity Resonator for Liquid Sample Characterization." International Symposium on Microelectronics 2018, no. 1 (October 1, 2018): 000389–92. http://dx.doi.org/10.4071/2380-4505-2018.1.000389.

Повний текст джерела
Анотація:
Abstract In this paper, additive manufacturing (3D printing) is used to fabricate and demonstrate a reusable microfluidic coupled rectangular cavity resonator for characterizing liquids in small volumes. The designed cavity operates in the fundamental TE101 mode and resonates at 4.12 GHz. The resonance of the cavity is perturbed by the sample placed in a small volume sample holder through a slot in the top cover. Two different perturbation configurations are investigated: i) strongly coupled (liquids with low to medium dielectric constants), and ii) weakly coupled (liquids with medium to high dielectric constant). The sample holder is loaded with different solvents and the shift in the resonance frequency is monitored. Based on these changes, the dielectric constant of the solvent is theoretically estimated and compared to standard values. The reusable liquid sensor holds significant potential in identifying and quantifying unknown liquid samples in the supply chain.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Liu, Jiu Qing, Rui Feng, and Wei Wang. "The Design of Microwave Cavity Resonator Used for Measuring the Moisture Content in Plant Leaves." Advanced Materials Research 383-390 (November 2011): 4967–70. http://dx.doi.org/10.4028/www.scientific.net/amr.383-390.4967.

Повний текст джерела
Анотація:
This paper designs the cavity parameters of rectangular microwave cavity resonator, mainly including the design of cavity size, coupled diaphragm radius, and the position to place leaf, to make the largest power of resonant cavity and most significant impact on S11 parameters when the dielectric constant changes. Then conducts optimized analysis with finite element analysis software HFSS, gains the relation between dielectric constant and resonator parameters within the 3.2GHz-3.8GHz swept frequency range, and analyzes the simulation results. Finally, concludes the application sphere of cavity resonator designed in this paper according to the multiformity of plant leaves measured, and makes a simple introduction to the improvement methods.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії