Добірка наукової літератури з теми "Reconnaissance de contour"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Reconnaissance de contour".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Reconnaissance de contour"
Chen, Qi, Shugen Wang, and Xiuguo Liu. "AN IMPROVED SNAKE MODEL FOR REFINEMENT OF LIDAR-DERIVED BUILDING ROOF CONTOURS USING AERIAL IMAGES." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B3 (June 9, 2016): 583–89. http://dx.doi.org/10.5194/isprsarchives-xli-b3-583-2016.
Повний текст джерелаChen, Qi, Shugen Wang, and Xiuguo Liu. "AN IMPROVED SNAKE MODEL FOR REFINEMENT OF LIDAR-DERIVED BUILDING ROOF CONTOURS USING AERIAL IMAGES." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B3 (June 9, 2016): 583–89. http://dx.doi.org/10.5194/isprs-archives-xli-b3-583-2016.
Повний текст джерелаNeroba, V. "SYSTEMATIZATION OF THE CONDITIONS AND FACTORS THAT WILL AFFECT THE SPECIFIC TECHNICAL MEANS OF MINING OF THE UAVY VEHICLE." Collection of scientific works of Odesa Military Academy 1, no. 12 (December 27, 2019): 48–54. http://dx.doi.org/10.37129/2313-7509.2019.12.1.48-54.
Повний текст джерелаOhmaid, Hicham, S. Eddarouich, A. Bourouhou, and M. Timouya. "Comparison between SVM and KNN classifiers for iris recognition using a new unsupervised neural approach in segmentation." IAES International Journal of Artificial Intelligence (IJ-AI) 9, no. 3 (September 1, 2020): 429. http://dx.doi.org/10.11591/ijai.v9.i3.pp429-438.
Повний текст джерелаLEE, RAYMOND S. T., and JAMES N. K. LIU. "AN AUTOMATIC SATELLITE INTERPRETATION OF TROPICAL CYCLONE PATTERNS USING ELASTIC GRAPH DYNAMIC LINK MODEL." International Journal of Pattern Recognition and Artificial Intelligence 13, no. 08 (December 1999): 1251–70. http://dx.doi.org/10.1142/s0218001499000719.
Повний текст джерелаHe, Jing, Haonan Chen, Yijin Chen, Xinming Tang, and Yebin Zou. "Diverse Visualization Techniques and Methods of Moving-Object-Trajectory Data: A Review." ISPRS International Journal of Geo-Information 8, no. 2 (January 29, 2019): 63. http://dx.doi.org/10.3390/ijgi8020063.
Повний текст джерелаKhanykov, I. G., and V. A. Nenashev. "FUSION OF THE OPTICAL AND RADAR IMAGES OF THE LAND SURFACE IN MULTI-POSITION ON-BOARD SYSTEMS FOR OPERATIONAL MONITORING." International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIV-2/W1-2021 (April 15, 2021): 107–11. http://dx.doi.org/10.5194/isprs-archives-xliv-2-w1-2021-107-2021.
Повний текст джерелаMohammad, Ashmeer, Anup K. Prasad, Kehe-u. Wetsah, Mohammad Azad, Vivek Aryan, and Hesham El-Askary. "Titaniferous-Vanadiferous, Magnetite-Ilmenite Mineralization in a Mafic Suite within the Chhotanagpur Gneissic Complex, Bihar, India." Minerals 12, no. 7 (July 5, 2022): 860. http://dx.doi.org/10.3390/min12070860.
Повний текст джерелаAzria, Régine. "Le judaïsme, contours et limites de la reconnaissance." Archives de sciences sociales des religions, no. 129 (January 1, 2005): 135–50. http://dx.doi.org/10.4000/assr.1117.
Повний текст джерелаRouchon, Olivier. "L'Enquête Généalogique et Ses Usages dans la Toscane des Médicis." Annales. Histoire, Sciences Sociales 54, no. 3 (June 1999): 705–37. http://dx.doi.org/10.3406/ahess.1999.279774.
Повний текст джерелаДисертації з теми "Reconnaissance de contour"
Ruch, Olivier. "Reconnaissance des formes par Contour Actif Statistique - Application à l'imagerie optronique active." Aix-Marseille 3, 2001. http://www.theses.fr/2001AIX30058.
Повний текст джерелаActive systems allow image acquisition both during day and night, with a highest resolution than the infra-red equipments do. Nevertheless, the main drawback of these systems compared to the classical optical sensors is that the obtained images are strongly corruptedby the speckle effect, and therefore their automatic interpretation is drastically limited. In this thesis, we propose to study in which way the Statistical Polygonal Snake (SPS) can be used in orderto perform the recognition of objects in speckled images. The recognition method which has been considered is the nearest neighbour algorithm; we select the reference which is the most similar to the silhouette obtained with the SPS by evaluating a given similarity function between contours
Al, Nachar Rabih. "Vers un efficace détecteur de trait : Les coins de contour et ses applications." Thesis, Versailles-St Quentin en Yvelines, 2014. http://www.theses.fr/2014VERS0054/document.
Повний текст джерелаIn this thesis, a new feature detector is proposed. The new features are edgecorners located on the contours of a studied image. These points are edge pointswhere a deviation in the edge direction occurs. In addition, they are repeatable versussimilarity, affine transformations and also robust to noise at the boundaries of theobject's image. Due to their repeatability, these corners are used in a shape recognitionapplication. Also, a smaller set of corners called "Dominant Corners" or "DCs" isextracted form the original set of corners using a new proposed polygonalapproximation algorithm. These DCs form the vertices of a polygon that bestapproximate their contour. Two applications using the edge corners are alsodeveloped. The first one is an image registration application that forms invariantprimitives using the DCs. The second application is a word recognition applicationwhere the edge corners located on the characters contours are used in a simultaneoussegmentation/recognition process to recognize the characters in a deformed wordimage
Mariyanayagam, Damien. "Localisation et reconnaissance de marqueurs circulaires à partir d'une vue de leur contour." Thesis, Toulouse, INPT, 2020. http://www.theses.fr/2020INPT0051.
Повний текст джерелаLocating or estimating the pose of a camera from a view is an essential problem in many applications, such as tracking a trajectory of autonomous vehicle navigation or augmented reality. The pose of a camera can be estimated from markers built specifically for this task and which can be placed in the scene. These markers have characteristics that distinguish them from other objects in the scene, making them easier to detect and recognize than natural objects such as points of interest. The correspondence between the shape of the marker and its image by a camera gives constraints to the pose so that it is possible to find the coordinates of the marker in the camera's reference frame. Circular markers are particularly interesting for their robustness to partial occlusion of their image. Indeed an ellipse can be estimated from only 5 points of its contour so a partially occulted marker can always be correctly located. The problem is that the image of the circular contour is not sufficient to calculate the marker pose, the circular markers work either with a calibrated camera or by adding other circular contours such as concentric circles. Unfortunately, the contour image is often the only reliable information available in some cases of use. Moreover, even if the camera is calibrated, the image of a single circle is not sufficient to obtain the pose of its support plane, there is indeed a double ambiguity that cannot be distinguished without additional information. In addition to this ambiguity, there is an infinity of possible poses for the marker. These poses correspond to all the rotations about the axis perpendicular to the support plane and passing through the center of the circle. Thus we can distinguish four major issues addressed in this thesis: How to take into account approximate knowledge of camera calibration parameters? What are the minimum conditions for solving the ambiguity on the pose of the plane? How to calculate the rotation around the axis of the circle? Is it possible to identify the marker using the image of its contour and its surrounding? Our first contribution handles the first question, in this purpose we introduce a "default" model of the camera. This model let us to incorporate our uncertainties about the intrinsic parameters of the camera into an algorithm that search for a photometric solution to the problem of metric correction of the marker image. The results show that the use of this "default" model offers encouraging prospects for circular markers. Our second contribution concerns the ambiguity of the pose of the support plan. To study it, we propose a new formulation of the problem of estimating the pose of a circle from the image of its contour. This formulation makes it possible to make the link between geometric ambiguity and the algebraic solutions obtained. This leads us to propose a minimal parameterization of the pose that provides a simple condition on the resolution of ambiguity. Finally, we propose a new method for locating the circular marker based on points of interest detected in its vicinity. The method is based on a library of marker reference views made offline. The marker is then recognized in a new view by using the image of the circle and the point correspondences found in the reference views together. The pose is then validated by a RANSAC procedure based on a minimal parameterization by the image of a 3D point and a circle
Chesnaud, Christophe. "Techniques statistiques de segmentation par contour actif et mise en oeuvre rapide." Aix-Marseille 3, 2000. http://www.theses.fr/2000AIX30005.
Повний текст джерелаTan, Shengbiao. "Contribution à la reconnaissance automatique des images : application à l'analyse de scènes de vrac planaire en robotique." Paris 11, 1987. http://www.theses.fr/1987PA112349.
Повний текст джерелаA method for object modeling and overlapped object automatic recognition is presented. Our work is composed of three essential parts: image processing, object modeling, and evaluation, implementation of the stated concepts. In the first part, we present a method of edge encoding which is based on a re-sampling of the data encoded according to Freeman, this method generates an isotropie, homogenous and very precise representation. The second part relates to object modeling. This important step makes much easier the recognition work. The new method proposed characterizes a model with two groups of information : the description group containing the primitives, the discrimination group containing data packs, called "transition vectors". Based on this original method of information organization, a "relative learning" is able to select, to ignore and to update the information concerning the objects already learned, according to the new information to be included into the data base. The recognition is a two - pass process: the first pass determines very efficiently the presence of objects by making use of each object's particularities, and this hypothesis is either confirmed or rejected by the following fine verification pass. The last part describes in detail the experimentation results. We demonstrate the robustness of the algorithms with images in both poor lighting and overlapping objects conditions. The system, named SOFIA, has been installed into an industrial vision system series and works in real time
Matusiak, Stanislaw. "Description invariante et locale des formes planes : application à l'indexation d'une base d'images." Valenciennes, 1999. https://ged.uphf.fr/nuxeo/site/esupversions/7570969d-50dd-44f1-84ef-c2e50a0fa07d.
Повний текст джерелаThis Ph. D. Contributes to the subject of indexing and pattern recognition in an image database constituted of object contours, by the use of local invariant descriptions. Our approach allows to recognize objects, even if they are partially occluded or observed at different viewpoints, since it is based on a local and invariant characterization of contours. One of the fundamental problems of indexing an image database resides in the choice of the invariant description of the image. Indeed, it is agreed that the request never corresponds exactly to the research image, affine transformations can separate them. Hence the description of the contour has a possess invariance properties so as to confer robustness to the recognition system. A general framework allowing to unify different local descriptions has been elaborated. This unification lead us propose two invariant descriptions with respect to affine transformations: the first one is based on points of interest of curves and the second one on the multi-scale analysis contours. Invariant descriptions, proposed in this work, have been applied to retrieval of objects-contours in image database. First of all, we have proposed a solution to the problem of object retrieval by sketch. The user draws his request on a graphic interface: the request image is made of a contour on uniform background. Then, its description by multi-scale curvatures allows to extract indexes. Finally, to undertake a rapid retrieving from a large image database, a mechanism of indexing based on the geometric hashing has been developed
Hueber, Eric. "Segmentation d'images par contour actif : implantation optique avec un corrélateur incohérent ombroscopique." Phd thesis, Université de Haute Alsace - Mulhouse, 2002. http://tel.archives-ouvertes.fr/tel-00002984.
Повний текст джерелаoptoélectronique destiné à segmenter par contour actif des images
réelles. Le processus de segmentation est fondé sur des algorithmes
statistiques itératifs qui contiennent des opérations de corrélation.
Notre première contribution a été de les adapter pour bénéficier de la
rapidité de la rapidité des corrélations optiques.
Nous avons conçu et mis en œuvre un corrélateur incohérent ombroscopique
dont les résultats ont pu valider cette approche optoélectronique de la
segmentation par contour actif.
Afin d'accélérer le processus, nous avons ensuite exploité les capacités
de traitement parallèle de l'optique. La configuration multicanal permet
alors d'accélérer sensiblement la segmentation.
Cette thèse ouvre de nouvelles perpectives pour les processeurs optiques
vers des applications de description et met en lumière les grandes
capacités de traitement des corrélateurs incohérents utilisés comme
calculateurs parallèles.
Jaber, Jamal. "Définition et validation d'une architecture électronique rapide de caractérisation et d'étiquetage d'objets dans une image." Nancy 1, 1993. http://www.theses.fr/1993NAN10332.
Повний текст джерелаKulikova, Maria. "Reconnaissance de forme pour l'analyse de scène." Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00477661.
Повний текст джерелаNegri, Pablo Augusto. "Détection et reconnaissance d'objets structurés : application aux transports intelligents." Paris 6, 2008. http://www.theses.fr/2008PA066346.
Повний текст джерелаКниги з теми "Reconnaissance de contour"
David, Forsyth, ed. Shape, contour, and grouping in computer vision. Berlin: Springer, 1999.
Знайти повний текст джерелаDavid, Forsyth, ed. Shape, contour, and grouping in computer vision. Berlin: Springer, 1999.
Знайти повний текст джерелаDavid, Forsyth, ed. Shape, contour, and grouping in computer vision. New York: Springer, 1999.
Знайти повний текст джерелаЧастини книг з теми "Reconnaissance de contour"
Garnier, Bruno. "Conclusion. Tracer les contours d’une école inclusive." In Sociétés inclusives et reconnaissance des diversités, 285–91. Presses universitaires de Rennes, 2020. http://dx.doi.org/10.4000/books.pur.151460.
Повний текст джерелаТези доповідей конференцій з теми "Reconnaissance de contour"
Keaton, Jeffrey R., Theodore H. Parks, Luther H. Boudra, and Lee D. Walker. "Enhancing Pipeline Project Management With Improved Rock Excavation Forecasting." In 2012 9th International Pipeline Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ipc2012-90143.
Повний текст джерела