Добірка наукової літератури з теми "RECONFIGURABLE PATCH ANTENNA"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "RECONFIGURABLE PATCH ANTENNA".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "RECONFIGURABLE PATCH ANTENNA"

1

Premalatha, J., D. Sheela, and M. Abinaya. "Reconfiguration of Circular Microstrip Patch Antenna for Wireless Applications." International Journal of Engineering & Technology 7, no. 3.6 (July 4, 2018): 348. http://dx.doi.org/10.14419/ijet.v7i3.6.15130.

Повний текст джерела
Анотація:
Reconfigurable antennas provide a possible solution to solve the related problems using the ability to switch frequency, patterns and polarization. This paper represents a possible application in wireless communication using reconfigurable Microstrip patch antenna. The dielectric substrate of proposed circular Microstrip patch antenna is fabricated with FR 4 epoxy and patch design 40x40x1.6mm. This work provides a methodology to design reconfigurable antennas with PIN diode switch. The frequency reconfiguration achieved by PIN diodes At the range of 3 GHZ to 6.9 GHZ the frequency reconfigurability is realized. To resonate the antenna at various frequencies PIN diode is used. Simulation of Ansoft HFSS software is used to compute the gain, axial ratio, radiation pattern, and return loss of proposed antenna. The structure of circular patch antenna achieves an enhanced wide bandwidth. The results show a better frequency reconfiguration.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

NURMANTRIS, DWI ANDI, HEROE WIJANTO, and BAMBANG SETIA NUGROHO. "Optimasi Pattern Reconfigurable Antenna Bercelah Melingkar menggunakan Algoritma Genetika." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 8, no. 1 (January 31, 2020): 111. http://dx.doi.org/10.26760/elkomika.v8i1.111.

Повний текст джерела
Анотація:
ABSTRAK Penelitian ini bertujuan untuk mendapatkan suatu desain pattern reconfigurable antenna dengan menitikberatkan pada optimasi antena planar berbentuk lingkaran dengan 24 switch berupa shorting pin pada tepi patch dan menambahkan celah melingkar pada patchnya sebagai metode penyepadan impedansi. Algoritma Genetika digunakan sebagai metode optimasi antena sedangkan Finite Element method digunakan sebagai metode komputasi untuk mendapatkan nilai parameter antena ketika proses evaluasi fungsi fitness. Keduanya dikolaborasikan untuk mendapatkan suatu desain antena yang mempunyai kemampuan pattern reconfigurable. Hasilnya diperoleh suatu desain antena pada frekuensi 2,4 Ghz dengan 24 pola pancar yang bisa di switch ke seluruh bidang azzimuth dimana semua pola pancar didesain pada arah elevasi 45o. Kata kunci: optimasi, celah melingkar, algoritma genetika, pattern reconfigurable antenna ABSTRACT This research aims to obtain a reconfigurable antenna pattern design with emphasize on the optimization of a planar circular antenna with 24 switchs on the edge of the patch and add a slit ring in the patch as a impedance matching method. Genetic Algorithm is used as an antenna optimization method while the The Finite Element method is used as a computational method to obtain the antenna parameters value when evaluating the fitness function. Both collaborated to obtain an antenna design that has the pattern reconfigurable ability. The result is 2,4 Ghz antenna design with 24 radiation patterns that can be switched to all azzimuth plane where all are designed in 45o of elevation plane. Keywords: optimization, slit ring, genetic algorithm, pattern reconfigurable antenna
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pandey, Shraddha, and Pankaj Vyas. "Review of Reconfigurable Microstrip Patch antenna for Wireless Application." International Journal on Recent and Innovation Trends in Computing and Communication 7, no. 6 (June 22, 2019): 25–28. http://dx.doi.org/10.17762/ijritcc.v7i6.5317.

Повний текст джерела
Анотація:
In recent time, world have seen a rapid growth in wireless communication. Development in antenna from single band to dual band and multi band had made the antenna system more compact. A frequency reconfigurable microstrip antenna using a PIN diode for multiband operation is using many application and hot research area. In this paper, reconfigurable microstrip patch antennas and their types like frequency, polarization, radiation pattern and gain are described.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

R, Bhakkiyalakshmi, and M. S. Vasanthi. "Reconfigurable Antenna using PIN Diode for Future Wireless Communication." International Journal of Engineering and Advanced Technology 8, no. 4s2 (August 1, 2020): 40–44. http://dx.doi.org/10.35940/ijeat.d1011.0484s219.

Повний текст джерела
Анотація:
This paper discusses design and analysis of reconfigurable antenna for millimeter wave communication. The proposed antenna model resonates at frequencies between 25- 34GHz using PIN diode. Return loss and voltage standing wave ratio achieved less than -10dB and 2 respectively. Resonating frequency changed by varying the bias of PIN diode switches. Antenna size is reduced using meander lines in the patch compared to the existing micro strip patch reconfigurable antennas. The proposed antenna is designed using Electromagnetic simulation software with appreciable gain.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Anumuthu, Priya, Kaja Sultan, Manavalan Saravanan, Mohd Ali, Manikandan Venkatesh, Mohammad Saleem, and Imaduddeen Nizamuddeen. "Design of Frequency Reconfigurable Patch Antenna for Sensing and Tracking Communications." Applied Computational Electromagnetics Society 35, no. 12 (February 15, 2021): 1532–38. http://dx.doi.org/10.47037/2020.aces.j.351212.

Повний текст джерела
Анотація:
This paper presents a front-end structure of a reconfigurable patch antenna for cognitive radio systems. The antenna structure consists of an Ultrawideband (UWB) sensing antenna and an array of frequency reconfigurable antennas incorporated on the same substrate. The UWB and reconfigurable antennas are fed by co-planar waveguides (CPW). The reconfigurability is achieved by rotating the series of patch antennas through a certain angle and the rotation is controlled by mechanical means using an Arduino microcontroller. The rotational reconfigurability has been preferred over MEMS switches, PIN diodes, and other lumped elements because the latter requires the need for bias lines. The entire structure is designed using High Frequency Structure Simulator (HFSS) software and the prototype is fabricated over FR-4 substrate having a thickness of 1.6mm and measurements are carried out. This antenna achieves a wideband frequency from 2 GHz to 12 GHz and distinct narrow band of frequencies by reconfigurability using single antenna consisting of different shapes spaced accurately to ensure isolation between adjacent frequency bands and each antenna element working for a bandwidth of 2 GHz for frequency from 2 GHz to 12 GHz upon a single substrate and the reconfigurable elements are controlled using a low cost Arduino microcontroller connected directly to the antenna which ensures accurate controlling of the rotation and fast switching between the antenna elements. The measured results agree with the simulated results and have less than 10 dB impedance bandwidth.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wang, Xinhai, Liqiong Wu, Hua Chen, Wei Wang, and Zhaoping Liu. "Frequency-Reconfigurable Microstrip Patch Antenna Based on Graphene Film." Electronics 12, no. 10 (May 19, 2023): 2307. http://dx.doi.org/10.3390/electronics12102307.

Повний текст джерела
Анотація:
Fifth-generation mobile communication systems must connect to multiple wireless networks. In order to enable a single device to match the frequency bands of multiple wireless networks, it is usually necessary to use multiple single-band or multi-band antennas, which occupy a large amount of space inside a given device. Using frequency-reconfigurable antennas to replace multiple single-function antennas is an effective way to solve this problem. In this paper, we propose a frequency-reconfigurable microstrip patch antenna based on graphene film, which fills the slot of the radiating patch with graphene film. It was found that the surface current of the antenna can be changed by changing the conductivity of graphene through bias voltage, which allows the operating mode of the antenna to switch between a nearly slotted antenna and a nearly unslotted antenna to achieve frequency reconfigurability. By changing the bias voltage from 0 V to 9 V, the resonant frequency of the antenna can be switched from 29.6 GHz to 40 GHz, and the center frequency can by altered by 10.4 GHz, corresponding to the reflection coefficients of −26 dB and −20.8 dB, respectively. The antenna achieves good matching in both operating modes.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Han, T. Y., and C. T. Huang. "Reconfigurable monopolar patch antenna." Electronics Letters 46, no. 3 (2010): 199. http://dx.doi.org/10.1049/el.2010.3242.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kim, Dowon, Kitae Kim, Hogyeong Kim, Moonyoung Choi, and Jun-Hee Na. "Design Optimization of Reconfigurable Liquid Crystal Patch Antenna." Materials 14, no. 4 (February 16, 2021): 932. http://dx.doi.org/10.3390/ma14040932.

Повний текст джерела
Анотація:
In various fields such as the 5G antenna system and satellite communication system, there is a growing demand to develop a smart antenna with a frequency selective or beamforming function within a limited space. While antennas utilizing mechanical, electronic, and material characteristics are being studied, a method of having tunable frequency characteristics by applying a liquid crystal material with dielectric anisotropy to a planar patch antenna is proposed. In resonance mode, the design method for using only the minimum amount of expensive liquid crystals is systematically arranged while maximizing the amount of change in the operating frequency of the antenna by considering the electric field distribution on the surface of the patch antenna. Furthermore, to increase the dielectric anisotropy of the liquid crystal, the liquid crystal must be aligned. Simultaneously, in cases where the cell gap of the liquid crystal exceeds 100 μm, the alignment force is weakened. While compensating for this shortcoming, securing the radiation characteristics of the antenna is proposed, and simulations are performed.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

NURMANTRIS, DWI ANDI, HEROE WIJANTO, and BAMBANG SETIA NUGROHO. "Pattern Reconfigurable Patch Antenna menggunakan Edge Shorting Pin dan Symmetrical Control Pin." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 3, no. 2 (July 1, 2015): 177. http://dx.doi.org/10.26760/elkomika.v3i2.177.

Повний текст джерела
Анотація:
ABSTRAKMetode baru dalam mendesain suatu pattern reconfigurable antenna telah diteliti. Penelitian ini fokus pada optimasi antena patch lingkaran single layer pencatuan probe koaksial dengan mengintegrasikan 24 switch/shorting pin pada sisi patch yang disebut edge shorting pin dan 8 shorting pin membentuk lingkaran dengan radius tertentu dan selanjutnya disebut symmetrical control pin yang fungsinya sebagai metode penyepadan impedansi. Algoritma Genetika yang dikombinasikan dengan Finite Element Software digunakan untuk mengoptimasi kombinasi switch, radius lingkaran symmetrical control pin, dan radius patch untuk mendapatkan kemampuan pattern reconfigurability. Antena ini menghasilkan 8 kemungkinan arah radiasi azzimuth dengan resolusi 45o dan arah elevasi 30o pada frekuensi 2,4 Ghz. Optimasi, simulasi, fabrikasi, dan pengukuran dilakukan untuk memverifikasi hasil penelitian.Kata kunci: Patch Lingkaran, Edge Shorting Pin, Symmetrical Control Pin, Algoritma Genetika, Pattern Reconfigurable ABSTRACTNew method for desaining pattern reconfigurable antenna was studied. This study focuses on the optimization of a single layer circular patch antenna with probe feed by integrating the 24 switch / shorting pin on the side of the patch that called Edge Shorting Pins and 8 shorting pins form circular line in such radius that called Symmetrical Control Pins as a impedance matching method. Genetic algorithm combined with the Finite Element Software is used to optimize the switch combination, the radius of circular line of symmetrical control pins, and the patch radius to obtain a pattern reconfigurability capabilities. This antenna produces 8 possible directions of azimuth radiation with a resolution of 45o and 30o elevation direction at a frequency of 2.4 GHz. Optimization, simulation, fabrication, and measurement was done to verify the results.Keywords: Circular Patch, Edge Shorting Pin, Symmetrical Control Pin, Genetic Algorithm, Pattern Reconfigurable
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Monti, Giuseppina, Laura Corchia, and Luciano Tarricone. "PATCH ANTENNA WITH RECONFIGURABLE POLARIZATION." Progress In Electromagnetics Research C 9 (2009): 13–23. http://dx.doi.org/10.2528/pierc09061505.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "RECONFIGURABLE PATCH ANTENNA"

1

Yee, Steven C. (Steven Christopher) 1989. "A frequency reconfigurable circularly polarized microstrip patch antenna using liquid metal microswitches." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/82359.

Повний текст джерела
Анотація:
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 78-80).
Reconfigurable antennas with adaptable frequency, pattern, and polarization offer flexibility and size reduction for wireless systems that must increasingly execute multiple missions with less volume. These antennas will also complement anticipated cognitive radio systems, which promise more efficient use of the electromagnetic spectrum. Microscale liquid metal switches are proposed to overcome the series loss, mechanical fatigue, and limited power handling reliability of common methods of antenna reconfiguration such as semiconductor diodes and microelectromechanical switches. The proposed microswitches consist of mercury droplets that selectively connect solid metal traces. Both fluidic and electrostatic switch actuation mechanisms are investigated, and an electrostatic switch is demonstrated. Electrostatically actuated switches are designed into a compact single-feed patch antenna configurable between two communication frequency bands and a GPS band with different circular polarizations. The antenna topology is based on a corner truncated square patch with switched sets of extensions to achieve resonant frequency and axial ratio control. Measurements of reconfigurable prototypes demonstrate frequency and polarization configurability in good agreement with full-wave simulations. The proposed reconfiguration mechanism is compared to other methods, and future directions for the integration of microfluidics in reconfigurable radio frequency systems are proposed.
by Steven Christopher Yee.
S.M.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jung, Chang won, Ming-jer Lee, Sunan Liu, G. P. Li, and Flaviis Franco De. "RECONFIGURABLE PATCH ANTENNA FOR FREQUENCY DIVERSITY WITH HIGH FREQUENCY RATIO (1.6:1)." International Foundation for Telemetering, 2005. http://hdl.handle.net/10150/605028.

Повний текст джерела
Анотація:
ITC/USA 2005 Conference Proceedings / The Forty-First Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2005 / Riviera Hotel & Convention Center, Las Vegas, Nevada
Reconfigurable patch antenna integrated with RF mircoelectromechanical system (MEMS) switches is presented in this paper. The proposed antenna radiates circularly polarized wave at selectable dual frequencies (4.7 GHz and 7.5GHz) of high frequency ratio (1.6:1). The switches are incorporated into the diagonally-fed square patch for controlling the operation frequency, and a rectangular stub attached to the edge of the patch acts as the perturbation to produce the circular polarization. Gain of proposed antenna is 5 - 6dBi, and axial ratio satisfies 3dB criterion at both operating frequencies. The switches are monolithically integrated on quartz substrate. The antenna can be used in applications requiring frequency diversity of remarkable high frequency ratio.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pan, Kuan-Chang. "Ferroelectric Barium Strontium Titanate Thin-Film Varactor Based Reconfigurable Antenna." University of Dayton / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1323453777.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Balcells, Ventura Jordi. "Radiation pattern reconfigurable microfabricated planar millimeter-wave antennas." Doctoral thesis, Universitat Politècnica de Catalunya, 2011. http://hdl.handle.net/10803/32032.

Повний текст джерела
Анотація:
Els serveis de telecomunicacions i sistemes radar estan migrant a freqüències mil•limètriques (MMW), on es disposa d 'una major amplada de banda i conseqüentment d'una major velocitat de transmissió de dades. Aquesta migració requereix de l'ús de diferents tecnologies amb capacitat d'operar a la banda de freqüències mil•limètriques (30 a 300 Ghz), i més concretament en les bandes Ka (26,5 - 40GHz), V (50 – 75GHz) i W (75 – 110GHz). En moltes aplicacions i sobretot en aquelles on l'antena forma part d'un dispositiu mòbil, es cerca poder utilitzar antenes planes, caracteritzades per tenir unes dimensions reduïdes i un baix cost de fabricació. El conjunt de requeriments es pot resumir en obtenir una antena amb capacitat de reconfigurabilitat i amb un baix nivell de pèrdues en cada una de les bandes de freqüència. Per tal d'afrontar aquests reptes, les dimensions de les antenes mil•limètriques, juntament amb els tipus de materials, toleràncies de fabricació i la capacitat de reconfigurabilitat ens porten a l'ús de processos de microfabricació. L'objectiu d'aquesta tesis doctoral és l'anàlisi dels conceptes mencionats, tipus de materials, geometries de línia de transmissió i interruptors, en el context de les freqüències mil•limètriques, així com la seva aplicació final en dissenys d'antenes compatibles amb els processos de microfabricació. Finalment, com a demostració s'han presentat dissenys específics utilitzables en tres aplicacions a freqüències mil•limètriques: Sistemes de Comunicació per Satèl•lit (SCS) a la banda Ka, Xarxes d'àrea personal inalàmbriques (WPAN) a la banda V i sistemes radar per l'automoció a la banda W. La primera part d'aquesta tesis consisteix en l'anàlisi d'algunes tecnologies circuitals a freqüències mil•limètriques. S'han presentat els materials més utilitzats a altes freqüències (Polytetrafluoroethylene or Teflon (PTFE), Quartz, Benzocyclobuten polymer (BCB) i Low Temperature Co-fired Ceramic (LTCC)) i s'han comparat en termes de permitivitat i tangent de pèrdues. També s'inclou un estudi de pèrdues a altes freqüències en les principals línies de transmissió (microstrip, stripline i CPW). Finalment, es presenta un resum dels interruptors RF-MEMS i es comparen amb els PIN diodes i els FET. En la segona part, es presenten diferents agrupacions d'antenes amb la capacitat de reconfigurar la polarització i la direcció d'apuntament. S'han dissenyat dos elements base reconfigurables en polarització: CPW Patch antena i 4-Qdime antena. La primera antena consisteix en un element singular amb interruptors RF-MEMS, dissenyada per operar a les bandes Ka i V. La segona antena consisteix en una arquitectura composta on la reconfigurabilitat en polarització s'obté mitjançant variant la fase d'alimentació de cada un dels quatre elements lineals. La fase és controlada mitjançant interruptors RF-MEMS ubicats en la xarxa de distribució. L'antena 4-Qdime s'ha dissenyat per operar en les bandes V i W. Ambdós elements base s'han utilitzat posteriorment pel disseny de dues agrupacions d'antenes amb capacitat de reconfigurar l'apuntament del feix principal. La reconfigurabilitat es dur a terme utilitzant desfasadors de fase d'1 bit. La part final de la tesis es centra en les toleràncies de fabricació i en els processo de microfabricació d'agrupacions d'antenes mil•limètriques. Les toleràncies de fabricació s'han estudiat en funció dels error d'amplitud i fase en cada element de l'agrupació, fixant-se en les pèrdues de guany, error d'apuntament, error en l'amplada de feix, errors en el nivell de lòbul secundari i en l'error en la relació axial. El procés de microfabricació de les diferents antenes dissenyades es presenta en detall. Els dissenys de l'antena CPW Patch reconfigurable en polarització i apuntament operant a les bandes Ka i V, s'han fabricat en la sala blanca del Cornell NanoScale Science & Technology Facility (CNF). Posteriorment, s'han caracteritzat l'aïllament i el temps de resposta dels interruptors RF-MEMS, i finalment, el coeficient de reflexió, el diagrama de radiació i la relació axial s'han mesurat a les bandes Ka i V per les antenes configurades en polarització lineal (LP) i circular (CP).
Telecommunication services and radar systems are migrating to Millimeter-wave (MMW) frequencies, where wider bandwidths are available. Such migration requires the use of different technologies with the capability to operate at the MMW frequency band (30 to 300GHz), and more specifically at Ka- (26.5 to 40GHz), V- (50 to 75GHz) and W-band (75 to 110GHz). For many applications and more concretely those where the antenna is part of a mobile device, it is targeted the use of planar antennas for their low profile and low fabrication cost. A wide variety of requirements is translated into a reconfiguration capability and low losses within each application frequency bandwidth. To deal with the mentioned challenges, the MMW antenna dimensions, together with the materials, fabrication tolerances and reconfigurability capability lead to microfabrication processes. The aim of this thesis is the analysis of the mentioned concepts, materials, transmission lines geometries and switches in the MMW frequencies context and their final application in antenna designs compatible with microfabrication. Finally, specific designs are presented as a demonstration for three MMW applications: Satellite Communication Systems (SCS) at Ka-band, Wireless Personal Area Network (WPAN) at V-band and Automotive Radar at W-band. The first part of this thesis consist to analyze some MMW circuit technologies. The four most used materials at MMW frequencies (Polytetrafluoroethylene or Teflon (PTFE), Quartz, Benzocyclobuten polymer (BCB) and Low Temperature Co-fired Ceramic (LTCC)) have been presented and compared in terms of permittivity (εr) and loss tangent (tanδ). An study of the main transmission lines attenuation (microstrip, stripline and CPW) at high frequencies is included. Finally, an overview of the RF-MEMS switches is presented in comparison with PIN diodes and FETS switches. The second part presents different polarization and beam pointing reconfigurable array antennas. Two polarization-reconfigurable base-elements have been designed: CPW Patch antenna and 4-Qdime antenna. The first consists of a single reconfigurable element with integrated RF-MEMS switches, designed to operate at Ka- and V-band. The second antenna presented in this thesis has a composed architecture where the polarization reconfigurability is obtained by switching the phase feeding for each of the four linear polarized elements in the feed network with RF-MEMS switches. The 4-Qdime antenna has been designed to operate at V- and W-band. The two base-elements have been used to design two beam pointing reconfigurable antenna arrays. Using phased array techniques, beamsteering is computed and implemented with 1-bit discrete phase-shifter. The final part of the thesis is focused into the fabrication tolerances and microfabrication process of Millimeter-wave antenna arrays. The fabrication tolerances have been studied as a function of the amplitude and phase errors presented at each elements array, focusing on the gain loss, beam pointing error, Half-Power Beamwidth (HPBW) error, sidelobe level error and axial ratio error. The microfabrication process for the designed antennas is presented in detail. Polarization- and pointing- reconfigurable CPW Patch antenna operating at Ka- and V- band have been fabricated in a clean-room facility at Cornell NanoScale Science & Technology Facility (CNF). The RF-MEMS switches isolation and time response have been characterized. Finally, the reflection coefficient, radiation pattern and axial ratio have been measured at Ka- and V-band for the fabricated antennas configured in Linear Polarization (LP) and Circular Polarization (CP).
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Towfiq, MD Asaduzzaman. "Application Aware Reconfigurable Antennas and Arrays for 5G and Beyond Wireless Communication Systems." DigitalCommons@USU, 2018. https://digitalcommons.usu.edu/etd/7250.

Повний текст джерела
Анотація:
Antennas enable wireless communication by transmission and reception of electromagnetic (EM) signals, which carry information is space. Signal reception and hence the quality of service depends significantly on the antenna properties, e.g. radiation pattern, operational frequency, and polarization. Legacy antennas, with their fixed properties, fail to adapt to the changing environment and degrade signal quality. Reconfigurable antennas (Ras) capable of changing their properties dynamically increase the capacity and data rate of wireless systems while offering a compact design. However, these advantages come at the cost of increased complexity compared to legacy antennas. Therefore it is important to design Ras with minimal complexity. To that end, this dissertation focuses on the development of a novel approach, three different Ras operation at three different frequency bands have been designed, fabricated and characterized. First RA works at the 5GHz band (4.9-5.1GHz) and obtains on current beam steering and 3-dB beam width variability. An algorithm to choose the optimum mode of operation has also been developed. The design approach introduced in first RA has been exploited to design the second RA, which achieves beam steering and beam width variability for two polarizations and operates a the 28 GHz band (27.5-28.3 GHz). The third RA operates at the 3GHz band and simultaneously reconfigures impedance and radiation patterns.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Zlatníček, Radek. "Rekonfigurovatelná flíčková anténa." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2011. http://www.nusl.cz/ntk/nusl-219099.

Повний текст джерела
Анотація:
The master's thesis deals with the design and implementation of a reconfigurable patch antenna. The antenna is fed by a microstrip transmission line. To the microstrip feeder, tuning stubs are connected. Each stub matches the input impedance of the antenna to 50 ? for different operation frequencies. Stubs can be individually connected to the feeder by PIN diodes; operation frequency of the antenna can be switched that way. In the project, the antenna is initially designed for antenna substrate RO3006. Then, the design will be converted to the substrate ARLON AD600 selected for the realization. In the project, modifications of stubs will be proposed to properly connect the PIN diodes. Functionality of the designed antenna will be verified by modeling in Ansoft Designer. The last part will be dealt with implementation of the antenna and the experimental measurement of their properties.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Elfergani, Issa T. "Investigation, design and implementation of frequency tuneable antennas for mobile handset and UWB applications : simulation and measurement of tunable antennas for handheld mobile handsets and UWB system, investigations of frequency tuneable range, antenna radiation performance and antenna design optimisation using parametric studies." Thesis, University of Bradford, 2012. http://hdl.handle.net/10454/13761.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Obeidat, Khaled Ahmad. "Design Methodology for Wideband Electrically Small Antennas (ESA) Based on the Theory of Characteristic Modes (CM)." The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1274730653.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

SHARMA, KHUSHBU. "A RECONFIGURABLE PATCH ANTENNA WITH EBG STRUCTURE." Thesis, 2018. http://dspace.dtu.ac.in:8080/jspui/handle/repository/16535.

Повний текст джерела
Анотація:
Microstrip antennas are widely used in wireless communications because of their compatibility, low profile, low power consumption and low cost. The capability to select the frequency is essential for diverse missions and this is achieved by a Reconfigurable Antenna. Resonant frequency of an antenna is changed by reconfiguring its geometrical structure. To achieve reconfigurability RF switching devices such as PIN diodes , photoconductive switches, micro-electromechanical system (MEMS) switches and FETs can be used. Electromagnetic Bandgap (EBG) Structures that are those structures in which each element follows periodicity. Hence using EBG structures in a conventional patch antenna increase bandwidth and provide better suppression of harmonics . This major project combines these two structures designing a reconfigurable patch antenna with EBG structure in which PIN diodes are used as switch as they provide fast switching speeds, reasonably high current handling capabilities, reliability and ease of modelling. First of all the phase reflection diagram for a unit cell of proposed EBG is shown, after that bandgap of full EBG structure is shown using suspended transmission line method. Different EBG structures’ bandgaps are also compared. Then the EBG structure is combined with a reconfigurable patch antenna and simulation results are presented in terms of return loss, VSWR and radiation pattern. A comparison between simulated results for reconfigurable antenna with and without EBG structures for return loss and radiation pattern is also provided. All the above simulations are carried out by CST STUDIO SUITE 2014.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chen, Shing-Hau, and 陳星豪. "Reconfigurable Microstrip Ring Patch Antenna." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/37865871203503266324.

Повний текст джерела
Анотація:
碩士
國立彰化師範大學
電機工程學系
95
The designs of a reconfigurable ring patch antenna are proposed and studied in this dissertation. The thesis is mainly divided into three topics. First, the design of a ring patch antenna with wideband and dual-frequency operations is presented. The antenna consists of a parasitic square ring patch that is shorted to the ground plane through two shorting walls and is excited by a top-loaded coaxial probe. For the proposed design, while the side length of the square ring patch is about 0.3 free-space wavelengths and the antenna height is less than 0.1 free-space wavelengths, a 10 dB-input-impedance bandwidth of more than 50 % can be achieved. Also, the antenna can provide stable monopole-like conical radiation patterns across the impedance bandwidth. In addition, it is also found that two different resonant modes, patch-loaded monopole mode and normal patch mode, can be simultaneously excited in the shorted patch antenna structure by a coupling rectangular strip inside the ring patch. The antenna can radiate monopole-like and broadside patterns at the two operating frequencies, respectively. Second, a reconfigurable patch antenna with the functions of switchable radiation patterns, and polarizations is presented. The antenna is composed of a ring patch and four shorting walls. By controlling the connections states between the ring patch and shorting walls through pin diodes, the antenna can be operated at different modes to achieve the switching of the radiation patterns and polarizations. Moreover, three pairs of the shorting walls with various widths are integrated into the antenna to excite the patch-load monopole mode, and the resonant frequency can be changed by activating various pair of the shorting walls. From the obtained results, the three operating frequencies can occupy a successive impedance bandwidth, which makes the antenna with wide band operation.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "RECONFIGURABLE PATCH ANTENNA"

1

Simons, Rainee N. Novel on-wafer radiation pattern measurement technique for MEMS actuator based reconfigurable patch antennas. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Simons, Rainee N. Novel on-wafer radiation pattern measurement technique for MEMS actuator based reconfigurable patch antennas. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Simons, Rainee. Novel on-wafer radiation pattern measurement technique for MEMS actuator based reconfigurable patch antennas. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Simons, Rainee N. Novel on-wafer radiation pattern measurement technique for MEMS actuator based reconfigurable patch antennas. Cleveland, Ohio: National Aeronautics and Space Administration, Glenn Research Center, 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

United States. National Aeronautics and Space Administration., ed. NOVEL ON-WAFER RADIATION PATTERN MEASUREMENT TECHNIQUE FOR MEMS ACTUATOR BASED RECONFIGURABLE PATCH ANTENNAS... NASA/TM--2002-211816... NATI. [S.l: s.n., 2003.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "RECONFIGURABLE PATCH ANTENNA"

1

Janisha, R. S., D. Vishnu, and O. Sheeba. "Frequency Reconfigurable Circular Patch Antenna." In Intelligent Data Communication Technologies and Internet of Things, 109–18. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9509-7_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cheng, Yong, ZhenYa Wang, XuWen Liu, and HongBo Zhu. "A Frequency Reconfigurable Microstrip Patch Antenna." In Lecture Notes in Electrical Engineering, 925–31. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01273-5_104.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kumar, Sanjeev, Sneha Prasad, Shubham Goswami, Tsarina Patnaik, and Satyaki Tatte. "Frequency Reconfigurable Patch Antenna for 5G Applications." In ICT Systems and Sustainability, 629–37. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-5987-4_64.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Vast, Prachi P., and S. D. Apte. "Reconfigurable Circular Microstrip Patch Antenna with Polarization Diversity." In Proceedings of the International Conference on Data Engineering and Communication Technology, 383–89. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1678-3_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Sharma, Abha, Rahul Suvalka, Amit Kumar Singh, Santosh Agrahari, and Amit Rathi. "A Rectangular Annular Slotted Frequency Reconfigurable Patch Antenna." In Advances in Communication, Devices and Networking, 255–61. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4932-8_28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mishra, Piyush Kr, J. A. Ansari, Amrees Pandey, and Iqra Masroor. "Reconfigurable Microstrip Patch Antenna for Multiband Wireless Applications." In Lecture Notes in Electrical Engineering, 383–91. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-2631-0_34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Osman, Mohamed Nasrun, Mohamad Kamal A. Rahim, Mohd Fairus Mohd Yusoff, Mohamad Rijal Hamid, Huda A. Majid, Mohd Ezwan Jalil, and Khairul Hilmi Yusof. "A Comparative Study on Polarization Reconfigurable Circular Patch Antenna." In Theory and Applications of Applied Electromagnetics, 339–47. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-17269-9_37.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Prasad, LalBabu, B. Ramesh, and K. P. Vinay. "Reconfigurable Rectangular Microstrip Patch Antenna for S-Band Applications." In Lecture Notes in Electrical Engineering, 115–21. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3828-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kajla, Ashok, and Devendra Somwanshi. "Reconfigurable Microstrip Patch Array Antenna: Design and Performance Analysis." In Algorithms for Intelligent Systems, 287–93. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1059-5_32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Devi, Perla, and Valluri Rajya Lakshmi. "Patch Rotation-Based Frequency Reconfigurable Antenna for Wireless Applications." In Proceedings of 2nd International Conference on Micro-Electronics, Electromagnetics and Telecommunications, 123–34. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4280-5_13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "RECONFIGURABLE PATCH ANTENNA"

1

Das, Hangsa Raj, Rajesh Dey, and Sumanta Bhattacharya. "A REVIEW PAPER ON DESIGN FOR MICROSTRIP PATCH ANTENNA." In Topics in Intelligent Computing and Industry Design. Volkson Press, 2021. http://dx.doi.org/10.26480/etit.02.2020.166.168.

Повний текст джерела
Анотація:
Microstrip patch antenna is mostly used in modern communication devices over conventional antennas mainly because of their size. In this review paper a survey is conducted on commonly used techniques and design used in microstrip antenna papers which has been used by authors for designing of an efficient, low profile, small, compatible, affordable microstrip antenna, mainly used to designed reconfigurable, multiband and wideband antennas, after that a initiator patch design is given with dimensions on which technique will be applied for the analysis of different parameter of antenna.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ferrero, F., C. Luxey, G. Jacquemod, R. Staraj, and V. Fusco. "Polarisation-Reconfigurable Patch Antenna." In 2007 International workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications. IEEE, 2007. http://dx.doi.org/10.1109/iwat.2007.370083.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ayoub, F. N., Y. Tawk, C. Woehrle, J. Costantine, and C. G. Christodoulou. "Reconfigurable cyclical patch antenna." In 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2015. http://dx.doi.org/10.1109/aps.2015.7305513.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Han, Liping, Luting Guo, Runbo Ma, and Wenmei Zhang. "Frequency reconfigurable microstrip patch antenna." In International Conference on Information Engineering. Southampton, UK: WIT Press, 2014. http://dx.doi.org/10.2495/icie130491.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wen-Jiao Liao, Sheng-Jie You, and Hsi-Tseng Chou. "Polarization reconfigurable patch array antenna." In 2010 IEEE International Conference on Wireless Information Technology and Systems (ICWITS). IEEE, 2010. http://dx.doi.org/10.1109/icwits.2010.5611973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Majid, H. A., M. K. A. Rahim, M. R. Hamid, M. F. Ismail, and M. R. Sani. "Frequency reconfigurable microstrip patch antenna." In 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE). IEEE, 2012. http://dx.doi.org/10.1109/apace.2012.6457690.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Majid, H. A., M. K. A. Rahim, M. R. Hamid, and M. F. Ismail. "Frequency reconfigurable circular patch antenna." In 2013 IEEE International RF and Microwave Conference (RFM). IEEE, 2013. http://dx.doi.org/10.1109/rfm.2013.6757304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yan, Sen, and Guy A. E. Vandenbosch. "Wearable pattern reconfigurable patch antenna." In 2016 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. IEEE, 2016. http://dx.doi.org/10.1109/aps.2016.7696539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Guterman, Jerzy, Antonio A. Moreira, Custodio Peixeiro, and Yahya Rahmat-Samii. "Reconfigurable E-shaped patch antennas." In 2009 IEEE International Workshop on Antenna Technology "Small Antennas and Novel Metamaterials" (iWAT). IEEE, 2009. http://dx.doi.org/10.1109/iwat.2009.4906913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Agarwal, Tanu, Anurag Garg, and Bhupendra Singh. "A Novel Reconfigurable Patch Antenna with Parasitic Patch." In 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). IEEE, 2019. http://dx.doi.org/10.1109/spin.2019.8711732.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії