Добірка наукової літератури з теми "Récepteur à la dopamine de type I"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Récepteur à la dopamine de type I".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Récepteur à la dopamine de type I"
Jeanneteau, F., B. Funalot, J. Jankovic, H. Deng, J. P. Lagarde, G. Lucotte, and P. Sokoloff. "Tremblementessentiel et gène du récepteur de la dopamine." Revue Francophone des Laboratoires 2006, no. 384 (July 2006): 14. http://dx.doi.org/10.1016/s1773-035x(06)80288-1.
Повний текст джерелаLardinois, M., and C. Henry. "Intérêt d’un agoniste dopaminergique dans le traitement des dépressions bipolaires : ce que nous dit la littérature." European Psychiatry 30, S2 (November 2015): S58. http://dx.doi.org/10.1016/j.eurpsy.2015.09.161.
Повний текст джерелаSokoloff, P., B. Giros, MP Martres, JC Schwartz, and ML Bouthenet. "Le troisième récepteur de la dopamine. Une nouvelle cible d'action des neuroleptiques." médecine/sciences 6, no. 8 (1990): 800. http://dx.doi.org/10.4267/10608/4238.
Повний текст джерелаLunardi, Joël, Julien Fauré, Isabelle Marty, and Nicole Monnier. "Le récepteur de la ryanodine de type I." médecine/sciences 24, no. 11 (November 2008): 897–99. http://dx.doi.org/10.1051/medsci/20082411897.
Повний текст джерелаDe Meyts, Pierre. "Le récepteur de l’insuline a 50 ans – Revue des progrès accomplis." Biologie Aujourd’hui 216, no. 1-2 (2022): 7–28. http://dx.doi.org/10.1051/jbio/2022007.
Повний текст джерелаKhoufache, Khaled, and Ali Akoum. "Forme soluble du récepteur de type 2 de l’IL-2." médecine/sciences 29, no. 12 (December 2013): 1097–98. http://dx.doi.org/10.1051/medsci/20132912012.
Повний текст джерелаIslam Kediha, Mohamed, Meriem Tazir, Damien Sternberg, Bruno Eymard, and Lamia Ali Pacha. "Les syndromes myasthéniques congénitaux avec anomalies cinétiques du récepteur à l’acétylcholine." médecine/sciences 39 (November 2023): 58–63. http://dx.doi.org/10.1051/medsci/2023135.
Повний текст джерелаJamal-Eddine, Abdul-Karim, Luca Lenti, and Jean-François Semblat. "Aléa vibratoire dans les sols : indicateurs pertinents et classification simplifiée." Revue Française de Géotechnique, no. 155 (2018): 4. http://dx.doi.org/10.1051/geotech/2018008.
Повний текст джерелаMontastruc, F., H. Bagheri, L. Schmitt, J. L. Montastruc, and M. Lapeyre-Mestre. "Affinité sérotoninergique 5HT2 C et diabète médicamenteux : étude de pharmacoépidémiologie dans la base de pharmacoVigilance de l’OMS." European Psychiatry 28, S2 (November 2013): 106. http://dx.doi.org/10.1016/j.eurpsy.2013.09.282.
Повний текст джерелаHaddouk, D., S. Abou Nakad, Y. Chantran, E. Ballot, C. Johanet, and J. Cabane. "Anticorps anti-récepteur muscarinique à l’acétylcholine de type 3 dans la sclérodermie systémique." La Revue de Médecine Interne 35 (June 2014): A122. http://dx.doi.org/10.1016/j.revmed.2014.03.189.
Повний текст джерелаДисертації з теми "Récepteur à la dopamine de type I"
Deslauriers, Jessica. "Implication du récepteur dopaminergique de type 2 et du stress oxydatif dans le traitement de la schizophrénie." Mémoire, Université de Sherbrooke, 2010. http://savoirs.usherbrooke.ca/handle/11143/4052.
Повний текст джерелаHegron, Alan. "Implication des récepteurs de la mélatonine dans les troubles neurologiques et le diabète de type 2 et identification de régions clés du récepteur MT1 responsables de sa sélectivité fonctionnelle." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS555/document.
Повний текст джерелаMelatonin is a neurohormone mainly released from the pineal gland in a circadian manner acting through two G protein-coupled receptors (GPCRs) called MT1 and MT2. Melatonin regulates many important physiological functions. Regulation of dopamine (DA) and glucose levels are two of them but how they do this is not clear.Extracellular DA levels are mainly regulated by its transporter (DAT) which mediates DA re-uptake into presynaptic nerve termini to prevent DA receptor hyperactivation in the presynaptic cleft. Consequently, we verified the role of DAT in the regulation of the DA system by melatonin. We showed that MT1 and MT2, by interacting with the immature non-glycosylated form of DAT retain DAT in the endoplasmic reticulum thus regulating DAT cell surface expression and DA reuptake. Consistently, mice with targeted deletion of MT1 and MT2 show markedly enhanced DA uptake in striatal synaptosomes and decreased amphetamine-induced locomotor activity. Collectively, we revealed here a molecular link between the melatonin and DA systems, which is based on the formation of a molecular complex between melatonin receptors and DAT.To better understand the role of melatonin on the regulation of glucose levels, we studied the involvement of genetic variants of MT2 in the development of type 2 diabetes (T2D). Previous studies showed that natural loss-of-function variants of MT2 associate with T2D risk. To determine more precisely the defective properties linked to T2D risk we monitored spontaneous and melatonin-induced activation of different signaling pathways by 40 MT2 variants. We show that defects in melatonin-induced Gαi and Gαz activation and spontaneous βarrestin-2 recruitment are most significantly associated to T2D risk. Experimental results correlated well with those predicted by evolutionary lineage analysis. This work will help to propose personalized treatments for MT2 variant carriers to recover their defective responses.Sequencing of 9393 individuals resulted in the identification of 32 natural MT1 variants. MT1 wild-type and variants were functionally characterized in bioluminescence resonance energy transfer (BRET) assays. We showed that MT1 activates Gαi/o, Gα12 and Gα15 proteins and recruits βarrestin-2. Analyzes of results by non-linear matrix factorization revealed the existence of 5 clusters characterized by different signaling profiles. Computational homology modeling of the 3D model of MT1 helped to determine the impact of each variant on receptor activation and interaction with G proteins and βarrestin-2. Collectively, our data illustrate that natural variants are powerful tools to understand the molecular basis of GPCR function. Overall, this work contributes to our understanding of the function of melatonin receptors and highlights their importance in the regulation of the DA system and glucose homeostasis. Our results will open new, personalized therapeutic options for patient suffering from a defective DA system or T2D
LE, CROM Stéphane. "Analyse comparée des récepteurs D1 de la dopamine chez les vertébrés : Définition des caractères fonctionnels spécifiques de chacun des sous-types du récepteur D1." Phd thesis, Université Paris Sud - Paris XI, 2000. http://tel.archives-ouvertes.fr/tel-00009188.
Повний текст джерелаWelter, Marc. "Rôles des récepteurs de la dopamine de type 2 dans les réponses moléculaires et comportementales aux drogues." Université Louis Pasteur (Strasbourg) (1971-2008), 2007. http://www.theses.fr/2007STR13255.
Повний текст джерелаBillet, Fabrice. "Etude neurochimique et comportementale des modulations induites par les récepteurs opioïdes de type d sur les libérations striatales de glutamate et de dopamine chez le rat." Rouen, 2007. http://www.theses.fr/2007ROUES030.
Повний текст джерелаEnkephalins, endogenous ligands of d opioïd receptors, are the most abundant neuropeptides in the striatum, structure in which they stimulate dopamine release. However, the effect of d opioïd receptors on striatal glutamate, which is mainly released by cortico-striatal neurons, is unknown. Nevertheless, some data suggest its involvement in the dopamine release induced by DPDPE, a d opioïd selective agonist. This hypothesis was tested in the rat. For this purpose, we studied the effect of DPDPE on extracellular dopamine and glutamate levels in the striatum of animals submitted to an ipsilateral cortical lesion. Our results indicate that the striatal dopamine release induced by DPDPE is a consequence of glutamate release from cortico-striatal terminals. Then, we studied the contribution of glial cells in this process. Our experiments show that, although glial cells are essential to maintain glutamatergic neurotransmission, they are not directly involved in the stimulant effect induced by DPDPE on glutamate and dopamine extracellular levels. At last, we investigated the behavioral significance of these interactions, using the rat model of L-DOPA-induced dyskinesia. Our results indicate that d opioïd receptors located on cortico-striatal terminals are involved in dyskinesia. Taken together, our data enhance the knowledge of interactions between the main striatal neurotransmission and neuromodulation systems. They also confer on d opioïd antagonists interesting properties in the improvement of Parkinson’s disease therapy
Lucas, Guillaume. "Etude in vivo des modalités d'intervention de la sérotonine et des récepteurs sérotoninergiques de type 5-HT/2A/2C, 5-HT3 et 5-HT4 dans le contrôle de la transmission dopaminergique nigro-striée et mésoaccumbale chez le rat." Bordeaux 2, 1999. http://www.theses.fr/1999BOR28692.
Повний текст джерелаNavailles, Sylvia. "Etude in vivo du contrôle inhibiteur tonique et phasique exercé par les récepteurs sérotoninergiques de type 5-HT2c sur l'activité des voies dopaminergiques nigrostriée et mésoaccumbale chez le rat." Bordeaux 2, 2005. http://www.theses.fr/2005BOR21226.
Повний текст джерелаThis study, concerning the serotonergic 2C (5-HT2c) receptor, was aimed to go deeper into the mechanisms of the tonic and phasic inhibitory control exerted by this receptor on DA release measured by intracerebral microdialysis in the halothane-anesthetized rat nucleus accumbens (NAc) and striatum. By using appropriate pharmacological tools (agonist, inverse agonist, antagonist of 5-HT2c receptors), we explored 1) the participation of the constitutive activity of 5-HT2c receptors in vivo 2) the relevance of the degree of activity of mesolimbic and nigrostriatal DA neurons, and 3) the existence of region-dependant controls of the mesolimbic DA pathway. In both brain regions, the excitatory effect of the 5-HT2c inverse agonist SB 206553 on DA release is blocked by the 5-HT2c antahonist SB 242084 but not modified by the reduction of the central 5-HT tone. SB 206553, without effect on clozapine-stimulated DA release, potentiates haloperidol-induced DA release, whereas SB 242084, without effect on haloperidol, dose-dependently blocks the DA effect of clozapine. Both 5-HT2c ligands potentiate cocaine-stimulated DA release while the 5-HT2c agonist Ro 60-0175 does not affect the DA effect of cocaine but reduces that of haloperidol. Finally, the local application of 5-HT2c antagonists in the ventral tegmental area (VTA) and the NAc blocks the inhibition of accumbal DA release induced by the systemic administration of Ro 60-0175. These findings show that 1) the constititive activity of 5-HT2c receptors participates in the tonic inhibitory control of mesoaccumbal and nigrostriatal DA neurons in vivo ; 2) 5-HT2c receptors modulate DA exocytosis in a manner that is dependent of the degree of activation of ascending DA neurons ; 3) the 5-HT2c-dependent inhibitory control of the mesolimbic DA pathway is mediated, at least in part, by 5-HT2c receptors located in the VTA and the NAc. This work brings up new physiological and therapeutical perspectivesconcerning the role of 5-HT2c receptors in the basal ganglia
Benac, Nathan. "Molecular mechanisms underlying the surface organization of the NMDA receptors during development." Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0185.
Повний текст джерелаUnderstanding how neurons develop to form the organized pattern of synaptic connections remains a central question in neuroscience. The vast majority of excitatory synapses are formed early in development during a synaptogenesis window. N-methyl-D-aspartate receptors (NMDAR) have long been a strong candidate to drive synaptogenesis as both in vivo and in vitro data show a key role for NMDARs during that phase. Furthermore, the facts that NMDARs are found in the developmentally immature “silent” synapses and among the first receptors to accumulate at the site of nascent synapses together lead to the assumption that NMDAR’s clustering is a nucleation point. Yet, the mechanisms underpinning the early clustering of NMDARs into synaptogenic assemblies remain enigmatic. Evidences that NMDARs can directly interact with other surface proteins, including receptors, has promoted the possibility that surface protein-protein interaction (PPI) represents a potent way to cluster receptors. Using a combination of live imaging and super-resolution microscopy, we observed that the interaction between D1R-GluN1-NMDARs were promoted in immature neurons, during the synaptogenesis phase. We showed that the D1R-GluN1-NMDAR interaction directly shapes the organization of NMDARs, allowing their functional clustering and synaptogenesis. Indeed, preventing the interaction in immature neurons, and not in mature neurons, altered the formation of excitatory post-synapses. We then focused on the intracellular and extracellular regulatory mechanisms of the interaction. We demonstrated a role of metabotropic glutamate receptors (mGluR) and casein kinase 1 (CK1) in promoting the interaction between D1Rs and GluN1-NMDARs. On the other hand, both the fact that the hyaluronic acid (HA), one of the main components of the extracellular matrix (ECM), is enriched early in the immature brain and regulates the surface diffusion of macromolecules opens the hypothesis that the ECM regulates the ability of NMDARs to interact with other surface macromolecules, including D1R. Yet, classical approaches have mainly focused on degrading the ECM. Herein, we aimed at increasing the ECM content in HA by over-expressing both the wild-type form of the rat hyaluronan synthase 2 (HAS2) or one bearing the two point-mutations present in the naked mole rat (NMR; N178S and N301S) which produces very high molecular weight HA (vHMW-HA). We observed that increasing the matrix impaired the development of the neuron and modified both the surface organization and trafficking of NMDARs. These findings validate our strategy, and open new paths for investigating the role of the ECM on neuronal development
Etchepare, Laetitia. "Role of glutamate N-Methyl-D-Aspartate receptor surface trafficking in the firing pattern of midbrain dopaminergic neurons." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0849/document.
Повний текст джерелаMidbrain dopaminergic (DA) neurons play several key functions in the brain such as the processing of salient information but are also associated with the emergence of pathologies including Parkinson’s disease and drug addiction. Because these processes have in common to modify the firing activity of midbrain DA neurons, it is of crucial importance to understand the mechanisms underlying this activity. Among the various ions channels and receptors involved in the generation of the firing activity of midbrain DA neurons, glutamate N-methyl-D-aspartate receptors (NMDAR) and calciumdependent potassium SK channels strongly modulate the firing pattern and functionally interact in several neuronal types including DA neurons. However, the mechanisms by which they regulate the firing pattern are poorly understood. Since the functional coupling between NMDAR and SK channels depends on their relative membrane distribution, we hypothesized that the lateral diffusion of NMDAR, which regulates the surface localization of the receptor, could play a role in the firing pattern of midbrain DA neurons through the modulation of SK channel function. We showed first that membrane NMDAR was highly mobile in cultured DA neurons. Alteration of its surface trafficking by a crosslink with NMDAR antibodies profoundly modified the regularity of the firing pattern of DA neurons in midbrain slices, whereas pharmacological blockade of NMDAR did not affect it. Furthermore, a SK channel blocker, which induces a similar change in the firing regularity in control conditions, was less effective when NMDAR surface trafficking was altered. Taken together, these results demonstrate that NMDAR surface dynamics modulate the firing pattern of midbrain DA neurons by regulating SK channel function
Chenu, Franck. "Rôle des récepteurs 5-HT1B et de la dopamine dans l'activité de type antidépresseur des IRSSs dans le test de la nage forcée chez la souris." Nantes, 2006. http://archive.bu.univ-nantes.fr/pollux/show.action?id=018f5f37-7688-4cb7-a45d-71466d15ddc9.
Повний текст джерелаSSRIs induce an increase in extracellular serotonin which is responsible of their antidepressant-like (AD-like) properties. Among all 5-HT receptors subtypes activated, 5-HT1B subtype appears to be strongly involved in the mediation of this anti-immobility effect. Indeed, 5-HT1B receptors activation (following local or systemic infusion of anpirtoline) induces an AD-like effect, whereas 5-HT1B receptor blockade antagonises the activity of SSRIs. Anpirtoline being still efficient in 5-HT1B autoreceptors of lesioned mice it suggests that AD-like effects of 5-HT1B receptors agonists are mediated by activation of 5-HT1B heteroreceptors. Since AD-like effect of SSRIs is absent on dopamine lesioned mice, we have suggested that SSRIs activity requires an enhancement of dopamine neurotransmission to occur, and that this enhancement appears further to the activation of 5-HT1B receptor
Книги з теми "Récepteur à la dopamine de type I"
Tupala, Erkki. Dopamine receptors and transporters in type 1 and 2 alcoholism measured with postmortem human whole hemisphere autoradiography. Kuopio: University of Kuopio, 2001.
Знайти повний текст джерелаFonseca, Vivian. Dopamine Agonists in Type 2 Diabetes. Oxford University Press, Incorporated, 2011.
Знайти повний текст джерелаJauzac, Philippe. Solubilisation et caractérisation biochimique du récepteur des opiaces de type mu dans le cervelet de lapin. 1986.
Знайти повний текст джерелаservices, octobustech. Carnet de Groupe Sanguin Familial Pour Enregistrer et Noter le Type de Sang et la Correspondance Entre les Membres de la Famille et les Proches: Tableau Compatibilité de Groupe Sanguin Pour Connaitre le Donneur et le Récepteur de Sang Dans Votre Famille. Independently Published, 2020.
Знайти повний текст джерелаFox, Susan H. Delayed and Often Persistent. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780190607555.003.0021.
Повний текст джерелаNielsen, David A., Dmitri Proudnikov, and Mary Jeanne Kreek. The Genetics of Impulsivity. Edited by Jon E. Grant and Marc N. Potenza. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780195389715.013.0080.
Повний текст джерелаBeninger, Richard J. Multiple memory systems. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198824091.003.0004.
Повний текст джерелаЧастини книг з теми "Récepteur à la dopamine de type I"
Liu, Xuebo, Naruomi Yamada, and Toshihiko Osawa. "Amide-Type Adduct of Dopamine – Plausible Cause of Parkinson Diseases." In Lipid Hydroperoxide-Derived Modification of Biomolecules, 49–60. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-7920-4_4.
Повний текст джерелаKötter, Rolf, Dirk Schirok, and Karl Zilles. "Dopamine-Mediated Dephosphorylation of N/P-Type Calcium Channels in Striatal Neurons: A Quantitative Model." In Information Processing in Cells and Tissues, 95–106. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5345-8_11.
Повний текст джерелаSeyfried, C. A., H. E. Greiner, and A. F. Haase. "Novel Dopamine Agonists of the Indolylbutylamine Type: Pre- Versus Postsynaptic Activity in Various in vivo and in vitro Models." In Dopaminergic Systems and their Regulation, 375–76. London: Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-07431-0_27.
Повний текст джерелаDunn, Julia P., Rui Li, Mohammad Sib Ansari, Pamela Marks-Shulman, Joan Kaiser, Naji N. Abumrad, and Robert Kessler. "Parametric Imaging Analyzes Neuroendocrine Hormones and Dopamine Type 2 Receptor Availability." In BASIC/TRANSLATIONAL - Influences on Programming of Neuroendocrine Pathways, P3–246—P3–246. The Endocrine Society, 2011. http://dx.doi.org/10.1210/endo-meetings.2011.part3.p28.p3-246.
Повний текст джерелаJohnson, Daniel W. "Comparison of Dopamine and Norepinephrine in the Treatment of Shock." In 50 Studies Every Intensivist Should Know, edited by Edward A. Bittner and Michael E. Hochman, 85–89. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190467654.003.0014.
Повний текст джерелаYoshida, Daizo, and Akira Teramoto. "Signal Transduction in Pituitary Functions." In Physiology. IntechOpen, 2024. http://dx.doi.org/10.5772/intechopen.115042.
Повний текст джерелаIkemoto, Keiko, Tatsuro Oda, Akiyoshi Nishimura, and Katsuji Nishi. "An Autopsy Case of Disorganized Type of Schizophrenia: Dopamine Neurons in the Ventral Tegmental Area." In Recent Developments in Medicine and Medical Research Vol. 11, 174–79. Book Publisher International (a part of SCIENCEDOMAIN International), 2021. http://dx.doi.org/10.9734/bpi/rdmmr/v11/14454d.
Повний текст джерелаEchchakery, Mohamed, Morad Guennouni, and Mounia Amane. "Parkinson's Disease." In Experimental and Clinical Evidence of the Neuropathology of Parkinson’s Disease, 121–43. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-5156-4.ch008.
Повний текст джерелаCaglar Sahin, Mustafa, and Gokhan Kurt. "Surgical and Radiosurgical Treatment of the Pituitary Neuroendocrine Tumors." In Central Nervous System Tumors - Primary and Secondary. IntechOpen, 2023. http://dx.doi.org/10.5772/intechopen.106883.
Повний текст джерелаBjörklund, Lars M., and Ole Isacson. "Regulation of dopamine cell type and transmitter function in fetal and stem cell transplantation for Parkinson's disease." In Progress in Brain Research, 411–20. Elsevier, 2002. http://dx.doi.org/10.1016/s0079-6123(02)38090-7.
Повний текст джерелаТези доповідей конференцій з теми "Récepteur à la dopamine de type I"
Dasgupta, Madhuleena, Amit Konar, and Atulya K. Nagar. "Online Prediction of Dopamine Concentration Using EEG-Induced Type-2 Fuzzy Abduction." In 2018 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2018. http://dx.doi.org/10.1109/ssci.2018.8628737.
Повний текст джерелаHyun, Tae-Hwan, and Won-Ju Cho. "High-Sensitivity Extended Gate Field-Effect Transistor-Type Dopamine Sensor Based on Resistance-Coupling Effect." In 2022 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2022. http://dx.doi.org/10.7567/ssdm.2022.d-2-02.
Повний текст джерелаBelov, Dmitry. "DIFFERENT THRESHOLDS OF LONG-TERM DEPRESSION AND POTENTIATION IN DOPAMINE TRANSPORTER KNOCKOUT GENE AND WILD-TYPE RATS." In XIX INTERNATIONAL INTERDISCIPLINARY CONGRESS NEUROSCIENCE FOR MEDICINE AND PSYCHOLOGY. LCC MAKS Press, 2023. http://dx.doi.org/10.29003/m3174.sudak.ns2023-19/54.
Повний текст джерелаSilva, Thais Ellen de Ramos, Diego Rodrigues Castelhano, Cintia Anchieta, and Bruna Kuhn de Freitas Silva. "Benefits of using cannabidiol in the treatment of dyskinesias in patients with Parkinson’s." In XIII Congresso Paulista de Neurologia. Zeppelini Editorial e Comunicação, 2021. http://dx.doi.org/10.5327/1516-3180.301.
Повний текст джерелаWilley, K. F., V. Vorsa, and N. Winograd. "Molecular Photoionization and Chemical Imaging." In Laser Applications to Chemical and Environmental Analysis. Washington, D.C.: Optica Publishing Group, 1998. http://dx.doi.org/10.1364/lacea.1998.ltub.4.
Повний текст джерелаGood, Taylor, Shivam Patel, Nicholas Zanghi, and Francois Gould. "Impact of Rotenone Treatment on Respiration and Swallowing Rate in Drinking Rats." In 28th Annual Rowan-Virtua Research Day. Rowan University Libraries, 2024. http://dx.doi.org/10.31986/issn.2689-0690_rdw.stratford_research_day.15_2024.
Повний текст джерела