Дисертації з теми "Recalage 2D/3D – Automatisation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-41 дисертацій для дослідження на тему "Recalage 2D/3D – Automatisation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Labrunie, Mathieu. "Contributions à l'automatisation du recalage d'un modèle préopératoire 3D à une image 2D en chirurgie mini-invasive du foie." Electronic Thesis or Diss., Université Clermont Auvergne (2021-...), 2024. http://www.theses.fr/2024UCFA0128.
Повний текст джерелаMinimally invasive liver resection consists in removing liver parts enclosing tumours using surgical tools, while visualising the abdominal cavity through an endoscope, both inserted through small incisions in the abdominal wall. It offers significant advantages over open liver resection, including fewer postoperative complications and shorter hospital stays. However, the localisation of liver inner structures, such as tumours and blood vessels, remains challenging.This information can be extracted from preoperative imaging and used for building a 3D model of the liver with its inner structures. However, this model must be moved and deformed for its projection to be aligned with the 2D image of the intra-abdominal surgical scene; this is the 3D/2D registration problem. Augmented reality enhances mini-invasive images with information from the registered preoperative model. Accurate augmented information could alleviate the limitations of mini-invasive surgery.To this end, previous computer-based approaches have established a patient-specific registration pipeline, mainly relying on 3D/2D liver surface landmark correspondences to estimate pose (rigid movement) and then deformation. However, these methods still contain manual steps. In clinical practice, this is not handy for the surgeon, whose focus should not be disturbed and gloves should be kept sterile. The main objective of this thesis is to improve upon this baseline by automating the 3D-2D intraoperative registration process using 3D/2D correspondence information. We propose two approaches: automating the manual intraoperative steps of the registration pipeline, or using a learning-based framework.We first review the baseline pipeline and redefine the landmarks. This facilitates the identification of relevant 3D/2D correspondences. Additionally, we compare different deformation models and select one based on biomechanical simulations followed by dimension reduction.Next, we automate the manual intraoperative steps from the baseline pipeline, comprising landmark annotation on mini-invasive images and pose estimation. We formulate the former as an image segmentation task and compare segmentation neural networks based on encoder-decoder architectures. The best results for image independent inputs are achieved with a fully attention-based network, but these are further improved when incorporating additional information from other images and masks. Pose estimation is tackled using an iterative visibility-aware algorithm, refining 3D/2D landmark point correspondences to estimate pose according to the visible 3D surface landmark parts from the previous iteration. This method obtains competitive results compared to manual pose estimation, while executing in a few seconds.Regarding the learning-based framework, we draw connections to human body shape reconstruction to adapt an encoder-regressor architecture network to the 3D/2D liver registration problem. Distance maps of automatically or manually annotated landmarks are input to the encoder, while pose and deformation parameters are iteratively regressed. Preoperative training involves simulating corresponding inputs and outputs. This patient-specific approach obtains registration results on par with previous state-of-the-art methods, while ensuring real-time network inference.Instead of a patient-specific deformation model, the second learning-based approach uses a generic liver shape model, which is built using anatomical priors. This leads to very low surface registration and reconstruction errors. This patient-generic approach also includes a preoperative block for processing patient-specific data. Although the 3D-2D registration accuracy is slightly lower than that of patient-specific methods, it does not require per-patient retraining and can be applied without patient-specific data, facilitating both patient-generic and patient-specific image augmentation
Benseghir, Thomas. "Recalage préservant la topologie des vaisseaux." Thesis, Nice, 2015. http://www.theses.fr/2015NICE4041.
Повний текст джерелаIn interventional cardiology, the clinician can benefit from a fused visualization of a diagnostic pre-operative CT scan and the live X-ray projective images used for the guidance of dedicated tools inside the patient's vasculature. This necessitates to align both modalities and build relevant pairings between them. We have developed a general framework combining a method to register curves with a tree pairing procedure, which is able to preserve the topology of the structures
Poulain, Emmanuelle. "Recalage déformable entre angioscanner cardiaque 3D statique et angiographie coronaire dynamique 2D+t." Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4068/document.
Повний текст джерелаCoronary angioplasty is an X-ray guided intervention, which aims at recovering the diameter of coronary vessels when the accumulation of fat in the vessel wall reduced it. During this procedure, a guide-wire is inserted in the blood vessel located at the wrist or groin. This guide-wire brings into the pathologic vessel a balloon at the level of the fat accumulation, thanks to a previous contrast injection which highlights the lesion. The balloon is inflated and very frequently a thin mesh tube of metallic wires (stent), which is wrapped around the balloon, is then expanded during the balloon inflation. The procedure could benefit from additional information on the nature of the inner wall, available on 3D CT scan. The aim of the thesis is to propose a dynamic registration to superimpose this 3D information onto the intraoperative 2D angiographic sequence, by deforming the 3D model so that it can follow the cardiac motion captured thanks to the angiographic images. We introduce a segmentation algorithm able to automatically segment the main vessels of the angiographic images. Then, we present a tracking approach of the 3D pathologic vessel in a 2D+t sequence combining pairings and the deformation of a spline curve. Finally, we describe the extension to the 3D vascular tree tracking represented by a tree, whose edges are spline curves, in a 2D+t sequence. We favored approaches that are applicable to a single angiographic projection, which is well adapted to the usual process of clinical procedures. All the proposed methods have been tested on real data, consisting of 30 angiographic images for the segmentation algorithm and 23 angiographic sequences for the registration algorithms
Lubniewski, Pawel. "Recalage 3D/2D d'images pour le traitement endovasculaire des dissections aortiques." Thesis, Clermont-Ferrand 1, 2014. http://www.theses.fr/2014CLF1MM24/document.
Повний текст джерелаIn this study, we present our works related to 3D/2D image registrationfor aorti dissition. Its aim is to propose a visualization of medial datawhih an be used by physians during endovas ular proedures.For this purpose, we have proposed a parametrimodel of aorta, alleda Tubular Envelope. It is used to express the global shape and deformationsof the aorta, by a minimal number of parameters. The tubular envelope isused in our image registration algorithms.The registration by ITD (Image Transformation Descriptors) is our ori-ginal method of image alignment : itomputes the rigid 2D transformation between data sets diretly, without any optimization process.We provide thedefinition of this method, as well as the proposition of several descriptors' formulae, in the base of images of aorta. The technique allows us to quickly and a poarse alignment between data. We also propose the extension of theoriginal approach for the registration of 3D and 2D images.The complete chain of 3D/2D image registration techniques, proposedin this document, consists of the ITD stage, followed by an intensity basedhybrid method. The use of our 3D/2D algorithm, based on the image trans-formation descriptors as an initialization phase, reduces the computing timeand improves the efficiency of the presented approach.We have tested our registration methods for the medical images of several patients after endovasular treatment. Results have been approved by our clinical specialists and our approach.We have tested our registration methods for the medical images of several patients after endovascular treatment. Results have been approved by our clinical specialists and our approach may appear in the intervention rooms in the futur
Couet, Julien. "Recalage rigide 3D-2D par intensité pour le traitement percutané des cardiopathies congénitales." Mémoire, École de technologie supérieure, 2012. http://espace.etsmtl.ca/954/1/COUET_Julien.pdf.
Повний текст джерелаFLIFLA, MOHAMED. "Contribution au recalage d'images 2d et 3d. Applications en biologie et en medecine." Rennes 1, 1991. http://www.theses.fr/1991REN10031.
Повний текст джерелаToledo, Acosta Bertha Mayela. "Multimodal image registration in 2D and 3D correlative microscopy." Thesis, Rennes 1, 2018. http://www.theses.fr/2018REN1S054/document.
Повний текст джерелаThis thesis is concerned with the definition of an automated registration framework for 2D and 3D correlative microscopy images, in particular for correlative light and electron microscopy (CLEM) images. In recent years, CLEM has become an important and powerful tool in the bioimaging field. By using CLEM, complementary information can be collected from a biological sample. An overlay of the different microscopy images is commonly achieved using techniques involving manual assistance at several steps, which is demanding and time consuming for biologists. To facilitate and disseminate the CLEM process for biologists, the thesis work is focused on creating automatic registration methods that are reliable, easy to use and do not require parameter tuning or complex knowledge. CLEM registration has to deal with many issues due to the differences between electron microscopy and light microscopy images and their acquisition, both in terms of pixel resolution, image size, content, field of view and appearance. We have designed intensity-based methods to align CLEM images in 2D and 3D. They involved a common representation of the LM and EM images using the LoG transform, a pre-alignment step exploiting histogram-based similarities within an exhaustive search, and a fine mutual information-based registration. In addition, we have defined a robust motion model selection method, and a multiscale spot detection method which were exploited in the 2D CLEM registration. Our automated CLEM registration framework was successfully tested on several real 2D and 3D CLEM datasets and the results were validated by biologists, offering an excellent perspective in the usefulness of our methods
Hammami, Houda. "Guidance of radioembolization procedures in the context of interventional oncology." Thesis, Rennes 1, 2021. http://www.theses.fr/2021REN1S121.
Повний текст джерелаRadioembolization is a minimally-invasive intervention performed to treat liver cancer by administering radioactive microspheres. In order to optimize radioembolization outcomes, the procedure is carried out in two sessions: pretreatment assessment intervention, mainly performed to locate the injection site, assess microspheres distribution and perform dosimetry evaluation, and treatment intervention performed to inject the estimated proper dose of radioactive microspheres in the located injection site. Due to the hepatic vasculature complexity, interventional radiologists carefully manipulate the catheter, during the two interventions, under X-Ray image guidance and resort to contrast media injection in order to highlight vessels. In this thesis, we propose a novel guidance strategy that promises a simplification and accuracy of the catheter navigation during the pretreatment assessment, as well as during the treatment interventions. The proposed navigation system processes pre- and intraoperative images to achieve intraoperative image fusion through a rigid registration technique. This approach is designed to 1) assist the celiac trunk access, 2) assist the injection site access and 3) automatically reproduce the injection site during the proper intervention. Knowing that the liver undergoes a motion induced by the breathing, we also propose an approach that allows obtaining a dynamic overlay of the projected 3D vessels onto fluoroscopy
Gomez, Jauregui David Antonio. "Acquisition 3D des gestes par vision artificielle et restitution virtuelle." Phd thesis, Institut National des Télécommunications, 2011. http://tel.archives-ouvertes.fr/tel-00623730.
Повний текст джерелаMonnier, Fabrice. "Amélioration de la localisation 3D de données laser terrestre à l'aide de cartes 2D ou modèles 3D." Thesis, Paris Est, 2014. http://www.theses.fr/2014PEST1114/document.
Повний текст джерелаTechnological advances in computer science (software and hardware) and particularly, GPS localization made digital models accessible to all people. In recent years, mobile mapping systems has enabled large scale mobile 3D scanning. One advantage of this technology for the urban environment is the potential ability to improve existing 2D or 3D database, especially their level of detail and variety of represented objects. Geographic database consist of a set of geometric primitives (generally 2D lines and plans or triangles in 3D) with a coarse level of detail but with the advantage of being available over wide geographical areas. They come from the fusion of various information (old campaigns performed manually, automated or hybrid design) wich may lead to manufacturing errors. The mobile mapping systems can acquire laser point clouds. These point clouds guarantee a fine level of detail up to more than one points per square centimeter. But there are some disavantages :- a large amount of data on small geographic areas that may cause problems for storage and treatment of up to several Terabyte during major acquisition,- the inherent acquisition difficulties to image the environment from the ground. In urban areas, the GPS signal required for proper georeferencing data can be disturbed by multipath or even stopped when GPS masking phenomena related to the reduction of the portion of the visible sky to capture enough satellites to find a good localization. Improve existing databases through these dataset acquired by a mobile mapping system requires alignment of these two sets. The main objective of this manuscript is to establish a pipeline of automatic processes to register these datasets together in the most reliable manner. Co-registration this data can be done in different ways. In this manuscript we have focused our work on the registration of mobile laser point cloud on geographical database by using a drift model suitable for the non rigid drift of these kind of mobile data. We have also developped a method to register geographical database containing semantics on mobile point cloud. The different optimization step performed on our methods allows to register the data fast enough for post-processing pipeline, which allows the management of large volumes of data (billions of laser points and thousands geometric primitives). We have also discussed on the problem of joint deformation. Our methods have been tested on simulated data and real data from different mission performed by IGN
Lebenberg, Jessica. "Automatisation et optimisation de l'analyse d'images anatomo-fonctionnelles de cerveaux de souris par atlas numérique 3D." Phd thesis, Université Paris Sud - Paris XI, 2010. http://tel.archives-ouvertes.fr/tel-00611488.
Повний текст джерелаBiasutti, Pierre. "2D Image Processing Applied to 3D LiDAR Point Clouds." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0161/document.
Повний текст джерелаThe ever growing demand for reliable mapping data, especially in urban environments, has motivated the development of "close-range" Mobile Mapping Systems (MMS). These systems acquire high precision data, and in particular 3D LiDAR point clouds and optical images. The large amount of data, along with their diversity, make MMS data processing a very complex task. This thesis lies in the context of 2D image processing applied to 3D LiDAR point clouds acquired with MMS.First, we focus on the projection of the LiDAR point clouds onto 2D pixel grids to create images. Such projections are often sparse because some pixels do not carry any information. We use these projections for different applications such as high resolution orthoimage generation, RGB-D imaging and visibility estimation in point clouds.Moreover, we exploit the topology of LiDAR sensors in order to create low resolution images, named range-images. These images offer an efficient and canonical representation of the point cloud, while being directly accessible from the point cloud. We show how range-images can be used to simplify, and sometimes outperform, methods for multi-modal registration, segmentation, desocclusion and 3D detection
Dehais, Christophe. "Contributions pour les applications de réalité augmentée : suivi visuel et recalage 2D. Suivi d'objets 3D représentés par des modèles par points." Phd thesis, Toulouse, INPT, 2008. http://oatao.univ-toulouse.fr/7244/1/dehais.pdf.
Повний текст джерелаEl, Rhabi Youssef. "Alignement de données 2D, 3D et applications en réalité augmentée." Doctoral thesis, Universitat Autònoma de Barcelona, 2017. http://hdl.handle.net/10803/405363.
Повний текст джерелаCette thèse s’inscrit dans le contexte de la réalité augmentée (RA). La problématique majeure consiste à calculer la pose d’une caméra en temps réel. Ce calcul doit être effectué en respectant trois critères principaux : précision, robustesse et rapidité. Dans le cadre de cette thèse, nous introduisons certaines méthodes permettant d’exploiter au mieux les primitives des images. Dans notre cas, les primitives sont des points que nous allons détecter puis décrire dans une image. Pour ce faire, nous nous basons sur la texture de cette image. Nous avons dans un premier temps mis en place une architecture favorisant le calcul rapide de la pose, sans perdre en précision ni en robustesse. Nous avons pour cela exploité une phase hors ligne, où nous reconstruisons la scène en 3D. Nous exploitons les informations que nous obtenons lors de cette phase hors ligne afin de construire un arbre de voisinage. Cet arbre lie les images de la base de données entre elles. Disposer de cet arbre nous permet de calculer la pose de la caméra plus efficacement en choisissant les images de la base de données jugées les plus pertinentes. Nous rendant compte que la phase de description et de comparaison des primitives n’est pas suffisamment rapide, nous en avons optimisé les calculs. Cela nous a mené jusqu’à proposer notre propre descripteur. Pour cela, nous avons dressé un schéma générique basé sur la théorie de l’information qui englobe une bonne part des descripteurs binaires, y compris un descripteur récent nommé BOLD [BTM15]. Notre objectif a été, comme pour BOLD, d’augmenter la stabilité aux changements d’orientation du descripteur produit. Afin de réaliser cela, nous avons construit un nouveau schéma de sélection hors ligne plus adapté à la procédure de mise en correspondance en ligne. Cela permet d’intégrer ces améliorations dans le descripteur que nous construisons. Procéder ainsi permet d’améliorer les performances du descripteur notamment en terme de rapidité en comparaison avec les descripteurs de l’état de l’art. Nous détaillons dans cette thèse les différentes méthodes que nous avons mises en place afin d’optimiser l’estimation de la pose d’une caméra. Nos travaux ont fait l’objet de 2 publications (1 nationale et 1 internationale) et d’un dépôt de brevet. Réalité augmentée: SFM,SLAM, estimation de pose temps réel, description, apprentissage, recalage 2D/3D
This thesis belongs within the context of augmented reality. The main issue resides in estimating a camera pose in real-time. This estimation should be done following three main criteria: precision, robustness and computation efficiency. In the frame of this thesis we established methods enabling better use of image primitives. As far as we are concerned, we limit ourselves to keypoint primitives. We first set an architecture enabling faster pose estimation without loss of precision or robustness. This architecture is based on using data collected during an offline phase. This offline phase is used to construct a 3D point cloud of the scene. We use those data in order to build a neighbourhood graph within the images in the database. This neighbourhood graph enables us to select the most relevant images in order to compute the camera pose more efficiently. Since the description and matching processes are not fast enough with SIFT descriptor, we decided to optimise the bottleneck parts of the whole pipeline. It led us to propose our own descriptor. Towards this aim, we built a framework encompassing most recent binary descriptors including a recent state-of-the-art one named BOLD. We pursue a similar goal to BOLD, namely to increase the stability of the produced descriptors with respect to rotations. To achieve this goal, we have designed a novel offline selection criterion which is better adapted to the online matching procedure introduced in BOLD. In this thesis we introduce several methods used to estimate camera poses more efficiently. Our work has been distinguished by two publications (a national and an international one) as well as with a patent application. Augmented Reality: SFM, SLAM, real time pose computation, keypoint description, Machine learning, 2D/3D registration
Phan, Tan Binh. "On the 3D hollow organ cartography using 2D endoscopic images." Electronic Thesis or Diss., Université de Lorraine, 2020. http://www.theses.fr/2020LORR0135.
Повний текст джерелаStructure from motion (SfM) algorithms represent an efficient means to construct extended 3D surfaces using images of a scene acquired from different viewpoints. SfM methods simultaneously determine the camera motion and a 3D point cloud lying on the surfaces to be recovered. Classical SfM algorithms use feature point detection and matching methods to track homologous points across the image sequences, each point track corresponding to a 3D point to be reconstructed. The SfM algorithms exploit the correspondences between homologous points to recover the 3D scene structure and the successive camera poses in an arbitrary world coordinate system. There exist different state-of-the-art SfM algorithms which can efficiently reconstruct different types of scenes, under the condition that the images include enough textures or structures. However, most of the existing solutions are inappropriate, or at least not optimal, when the sequences of images are without or only with few textures. This thesis proposes two dense optical flow (DOF)-based SfM solutions to reconstruct complex scenes using images with few textures and acquired under changing illumination conditions. It is notably shown how accurate DOF fields can be optimally used due to an image selection strategy which both maximizes the number and size of homologous point sets, and minimizes the errors in the homologous point localization. The accuracy of the proposed 3D cartography methods is assessed on phantoms with known dimensions. The robustness and the interest of the proposed methods are demonstrated on various complex medical scenes using a constant algorithm parameter set. The proposed solutions reconstructed organs seen in different medical examinations (epithelial surface of the inner stomach wall, inner epithelial bladder surface, and the skin surface in dermatology) and various imaging modalities (white light for all examinations, green-blue light in gastroscopy and fluorescence in cystoscopy)
Aouadi, Souha. "Recalage 3D/2D d'objets à partir de l'intensité des rayons X : application à la migration des prothèses totales de hanche." Clermont-Ferrand 1, 2007. http://www.theses.fr/2007CLF1MM23.
Повний текст джерелаLopez-Hernandez, Juan. "Imagerie Cardiaque Multimodalités 2D et 3D :application à la Coronarographie/Tomoscintigraphie/TEP-CT." Phd thesis, Institut National Polytechnique de Lorraine - INPL, 2006. http://tel.archives-ouvertes.fr/tel-00118991.
Повний текст джерелаTomography") sont deux techniques d'imagerie utilisées couramment pour diagnostiquer les maladies
cardiovasculaires. La première modalité est constituée de séquences d'images à rayon X visualisant chacune,
dans un même plan, les artères coronaires situées sur la face avant et la face arrière du coeur. Les images à
rayons X fournissent des informations anatomiques liées à l'arbre artériel et mettent en évidence d'éventuels
rétrécissements des artères (sténoses). La modalité SPECT (imagerie nucléaire) fournit une représentation 3D
de la perfusion du volume myocardique. Cette information fonctionnelle permet la visualisation de régions
myocardiques souffrant de défauts d'irrigations. Le but du travail présenté est de superposer, en 3D, les
informations fonctionnelles et anatomiques pour établir un lien visuel entre des lésions artérielles et leurs
conséquences en termes de défauts d'irrigation. Dans la représentation 3D choisie pour faciliter le diagnostic, la
structure d'un arbre artériel schématique, comprenant les sténoses, est placée sur le volume de perfusion. Les
données initiales sont constituées d'une liste de points représentatifs de l'arbre artériel (points d'arrivée et de
départs de segments d'artères, bifurcations, sténoses, etc.) marqués par le coronarographiste dans les images à
rayons X des différentes incidences. Le volume de perfusion est ensuite projeté sous les incidences des images
de coronarographie. Un algorithme de recalage superposant les images à rayons X et les projections SPECT
correspondantes fournit les paramètres des transformations géométriques ramenant les points marqués dans les
images à rayons X dans une position équivalente dans les images SPECT. Un algorithme de reconstruction 3D
permet ensuite de placer les points artériels et les sténoses sur le volume de perfusion et de former un arbre
schématique servant de repère au clinicien. Une base de données formée de 28 patients a été utilisée pour
effectuer 40 superpositions 3D de données anatomo-fonctionnelles. Ces reconstructions ont montré que la
représentation 3D est suffisamment précise pour permettre d'établir visuellement un lien entre sténoses et
défauts de perfusions. Nos algorithmes de superpositions 3D ont ensuite été complétés pour remplacer la
modalité SPECT par les données de l'examen bimodal TEP/CT (Tomographie par Emission de
Positons/Tomodensitométrie). Les données d'un cas clinique trimodal TEP/CT/coronarographie ont été utilisées
pour vérifier l'adéquation de nos algorithmes à la nouvelle modalité d'imagerie.
Bui, Cao Vu. "Modélisation d'environnements intérieurs par reconstruction 3D en temps réel et extraction de plans architecturaux 2D." Thesis, Troyes, 2018. http://www.theses.fr/2018TROY0032.
Повний текст джерелаScene reconstruction is the process of building an accurate geometric model of one's environment from We explore the problem of complete scene reconstruction in indoor environments using mixed - data from the low-cost RGB-D camera and the inertial unit. The scanning process is realized in real-time, on the move with 6DoF of the numerizing system. We focus on computationally-constrained mobile systems, such as smartphone or tablet devices. Problematic issues present a set of fundamental challenges - estimating the state and trajectory of the device as it moves while scanning environment and utilizing lightweight data structures to hold the representation of the reconstructed scene. The system needs to be computationally and memory-efficient, so that it can run in real time, on-board the mobile device. The point-cloud resulted in the above module, which is non-structured and noisy cause of the quality of the low-cost sensor, needed a new method for the surface reconstruction. Our Dodecahedron Mapping is presented like a triangulation solution for the completed indoor environment scanning. After filtering and smoothing the point cloud, the algorithm tries to approximating the surface mesh by deforming and pasting the dodecahedron surface to the scanned point cloud. And the last stage of this research mission is to developing tools for the automatic extraction of 2D architectural plans from the 3D scanned building scene. This extracting process is also possible from the 3D point cloud or mesh by defining a section plane
Mille, Julien. "Modèle déformables pour la segmentation et le suivi en imagerie 2D et 3D." Tours, 2007. http://www.theses.fr/2007TOUR4051.
Повний текст джерелаDeformabe models such as active contours are general and powerful tools for image segmentation, enabling to add constraints and prior knowledge about the objects to be segmented. Deformable models are geometrical structures deformed by an evolution method in order to fit the object boundaries. Segmentation is expressed as an optimization problem, which purpose is to determine the curbe of the surface minimizing an objective function (an energy), made up of internal terms related to to model's geometrical smoothness and external terms attaching the model to the image data. In this thesis, we develop an active contour model for 2D segmentation and an active surface model for 3D segmentation, both being based on a unified framework. We also extend the surface model to 3D+T segmentation and tracking. We propose several improvements on the greedy algorithm, a numerical method minimizing the objective function. We also develop an original region-based external term, referring it to as narroy band region energy. It combines local and global features about structures of interest and offers advantages relative to the computational cost and consistency with respect to data
Estienne, Théo. "Deep learning-based methods for 3D medical image registration." Electronic Thesis or Diss., université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG055.
Повний текст джерелаThis thesis focuses on new deep learning approaches to find the best displacement between two different medical images. This research area, called image registration, have many applications in the clinical pipeline, including the fusion of different imaging types or the temporal follow-up of a patient. This field is studied for many years with various methods, such as diffeomorphic, graph-based or physical-based methods. Recently, deep learning-based methods were proposed using convolutional neural networks.These methods obtained similar results to non-deep learning methods while greatly reducing the computation time and enabling real-time prediction. This improvement comes from the use of graphics processing units (GPU) and a prediction phase where no optimisation is required. However, deep learning-based registration has several limitations, such as the need for large databases to train the network or tuning regularisation hyperparameters to prevent too noisy transformations.In this manuscript, we investigate diverse modifications to deep learning algorithms, working on various imaging types and body parts. We study first the combination of segmentation and registration tasks proposing a new joint architecture. We apply to brain MRI datasets, exploring different cases : brain without and with tumours. Our architecture comprises one encoder and two decoders and the coupling is reinforced by the introduction of a supplementary loss. In the presence of tumour, the similarity loss is modified such as the registration focus only on healthy part ignoring the tumour. Then, we shift to abdominal CT, a more challenging localisation, as there are natural organ's movement and deformation. We improve registration performances thanks to the use of pre-training and pseudo segmentations, the addition of new losses to provide a better regularisation and a multi-steps strategy. Finally, we analyse the explainability of registration networks using a linear decomposition and applying to lung and hippocampus MR. Thanks to our late fusion strategy, we project images to the latent space and calculate a new basis. This basis correspond to elementary transformation witch we study qualitatively
Paudel, Danda Pani. "Local and global methods for registering 2D image sets and 3D point clouds." Thesis, Dijon, 2015. http://www.theses.fr/2015DIJOS077/document.
Повний текст джерелаIn this thesis, we study the problem of registering 2D image sets and 3D point clouds under threedifferent acquisition set-ups. The first set-up assumes that the image sets are captured using 2Dcameras that are fully calibrated and coupled, or rigidly attached, with a 3D sensor. In this context,the point cloud from the 3D sensor is registered directly to the asynchronously acquired 2D images.In the second set-up, the 2D cameras are internally calibrated but uncoupled from the 3D sensor,allowing them to move independently with respect to each other. The registration for this set-up isperformed using a Structure-from-Motion reconstruction emanating from images and planar patchesrepresenting the point cloud. The proposed registration method is globally optimal and robust tooutliers. It is based on the theory Sum-of-Squares polynomials and a Branch-and-Bound algorithm.The third set-up consists of uncoupled and uncalibrated 2D cameras. The image sets from thesecameras are registered to the point cloud in a globally optimal manner using a Branch-and-Prunealgorithm. Our method is based on a Linear Matrix Inequality framework that establishes directrelationships between 2D image measurements and 3D scene voxels
Ben, Hamadou Achraf. "Contribution à la cartographie 3D des parois internes de la vessie par cystoscopie à vision active." Phd thesis, Institut National Polytechnique de Lorraine - INPL, 2011. http://tel.archives-ouvertes.fr/tel-00628292.
Повний текст джерелаSimon, Chane Camille. "Intégration de systèmes d'acquisition de données spatiales et spectrales haute résolution, dans le cadre de la génération d'informations appliquées à la conservation du patrimoine." Thesis, Dijon, 2013. http://www.theses.fr/2013DIJOS008/document.
Повний текст джерелаThe concern and interest of this PhD thesis is the registration of featureless 3D and multispectral datasets describing cultural heritage objects.In this context, there are few natural salient features between the complementary datasets, and the use of targets is generally proscribed.We thus develop a technique based on the photogrammetric tracking of the acquisition systems in use.A series of simulations was performed to evaluate the accuracy of our method in three configurations chosen to represent a variety of cultural heritage objects.These simulations show that we can achieve a spatial tracking accuracy of 0.020 mm and an angular accuracy of 0.100 mrad using four 5 Mpx cameras when digitizing an area of 400 mm x 700 mm. The accuracy of the final registration relies on the success of a series of optical and geometrical calibrations and their stability for the duration of the full acquisition process.The accuracy of the tracking and registration was extensively tested in laboratory settings. We first evaluated the potential for multiview 3D registration. Then, the method was used for to project of multispectral images on 3D models.Finally, we used the registered data to improve the reflectance estimation from the multispectral datasets
El, bennioui Youssra. "Fusion et recalage d'images médicales multimodales. Application à la chirurgie de l'endométriose." Electronic Thesis or Diss., Université de Toulouse (2023-....), 2024. http://www.theses.fr/2024TLSEP092.
Повний текст джерелаEndometriosis is a chronic gynecological disease affecting women of childbearing age which is characterized by the development of tissue similar to the uterine lining (the endometrium) outside the uterus, colonizing other nearby organs such as the ovaries, the fallopian tubes or, in rarer cases, the colon. This tissue is influenced by hormonal changes during subsequent menstrual cycles, leading to abdominal and pelvic pain, chronic fatigue and an increased risk of infertility. The diagnosis of endometriosis is based on two medical imaging modalities, namely ultrasound (US) and magnetic resonance imaging (MRI). Depending on the stage of the disease, laparoscopic surgery proves to be the only effective treatment for endometriosis.Besides their use for diagnosis, US and MRI images are used to identify the precise location of lesions and their depth of infiltration before surgery. The US image, performed intravaginally for this application, is a high spatial resolution modality that provides fine internal details of the imaged structures. This modality has some limitations, including a limited field of view and a low signal-to-noise ratio. On the other hand, MRI offers a large field of view of the patient's anatomy with a good signal-to-noise ratio but with relatively low spatial resolution. Therefore, precise anatomical landmarks at the millimeter scale would be undervalued when using this modality alone. In this context, producing an image bringing together the advantages of both modalities (good contrast and good signal-to-noise ratio) would be of great interest. In practical applications, US and MRI examinations are performed separately, resulting in unaligned 2D US images and 3D MRI volumes.The first aim of this PhD thesis is to propose a slice-to-volume registration algorithm of 3D MRI and 2D US images. The goal of this registration would be to extract the MRI slice that best resembles the US image, maximizing an adapted similarity criterion. The registration takes into account a global rigid transformation characterized by rotation and translation parameters which is associated with a local deformation based on B-spline functions. The latter will allow more precise matching between images, making it possible to exploit local geometric deformations within the image.Secondly, a 2D/2D fusion model is proposed for MRI and US images. The method is problem-based inverse, achieving super-resolution of the MRI image and denoising of the US image. The relationship between the gray levels of the two images has been modeled in the literature by a polynomial function. We study the potential interest of replacing this polynomial function by a non-parametric transformation constructed from the theory of Hilbert spaces with reproducing kernels. The fused image obtained with this method combines the advantages of both modalities, and presents a sharper contrast than when using a polynomial. Another significant advantage in favor of the kernel-based transformation is that it is not directly related to the propagation direction of the US scan, which is not easy to obtain in practical applications. The drawback of the proposed approach is its complexity. The model may require the estimation of a few hundred thousand parameters depending on the size of the image and the patches chosen.We propose a second fusion model based on guided filtering, which consists of separating images into base and detail layers, calculating specific weights, and then fusing them. The fused image is obtained by weighting the Base and Detail images of the MRI and the US. The weights assigned to the US image take into account the presence of speckle noise, while the weights assigned to the MRI make it possible to improve the contrast of the fused image.The interest of the proposed models is analyzed by means of quantitative and qualitative tests carried out on several datasets, including synthetic images, images of an experimental phantom and real data
Ben, Hamadou Achraf. "Contribution à la cartographie 3D des parois internes de la vessie par cystoscopie à vision active." Electronic Thesis or Diss., Vandoeuvre-les-Nancy, INPL, 2011. http://www.theses.fr/2011INPL051N.
Повний текст джерелаCystoscopy is currently the reference clinical examination for visual exploration of the inner walls of the bladder. A cystoscope (instrument used in this examination) allows for video acquisition of the bladder epithelium. Nonetheless, each frame of the video displays only a small area of few squared centimeters. This work aims to build 3D maps representing the 3D shape and the texture of the inner walls of the bladder. Such maps should improve and facilitate the interpretation of the cystoscopic data. To reach this purpose, a new flexible algorithm is proposed for the calibration of cystoscopic active vision systems. This algorithm provides the required parameters to achieve accurate reconstruction of 3D points on the surface part imaged at each given moment of the video cystoscopy. Thus, available data for each acquisition are a set of few 3D points (and their corresponding 2D projections) and a 2D image. The aim of the second algorithm described in this work is to place all the data obtained for a sequence in a global coordinate system to generate a 3D point cloud and a 2D panoramic image representing respectively the 3D shape and the texture of the bladder wall imaged in the video. This 3D cartography method allows for the simultaneous estimation of 3D rigid transformations and 2D perspective transformations. These transformations give respectively the link between cystoscope positions and between images of consecutive acquisitions. The results obtained on realistic bladder phantoms show that the proposed method generates 3D surfaces recovering the ground truth shapes
Bouhnaida, Zaïnaba. "Étude comparative de trois systèmes de préparation canalaire en endodontie : Étude in vitro en micro-CT." Thesis, Reims, 2018. http://www.theses.fr/2018REIMO201/document.
Повний текст джерелаThe aim of this study is to compare the respect of the root canal morphology after instrumentation with different shaping systems (One Shape NEW Generation®, Wave One® and Revo-S®), by using Micro-Computed Tomography.We used a fully three-dimensional (3D) methodological process which involved the reconstruction, registration and segmentation. By this methodological process, images have been acquired and processed in order to extract registered canals images before and after the instrumentation. The segmentation artifacts like calcifications and debris have been taken into account. A method to estimate the non-instrumented zones is also described.The canal transportation was calculated for each slice of each root-third by comparing the position of the centroids before and after instrumentation. No significant difference was found between the three instrumentation systems when canal transport means were done.This 4-part methodological approach has enabled the validation of a reproducible 3D imaging protocol. This can be applied in vitro in endodontic research for analysis of the instrumental effects
Rigaud, Stephane Ulysse. "méthodologie de modélisation de la croissance de neurosphères sous microscope à contraste de phase." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-01001639.
Повний текст джерелаVermandel, Maximilien. "Mise en Correspondance Tridimensionnelle d'Images MultimodalesApplication aux Systèmes d'Imageries Projective et Tomographique d'Angiographie Cérébrale." Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2002. http://tel.archives-ouvertes.fr/tel-00159199.
Повний текст джерелаChane, Camille. "Intégration de systèmes d'acquisition de données spatiales et spectrales haute résolution, dans le cadre de la génération d'informations appliquées à la conservation du patrimoine." Phd thesis, Université de Bourgogne, 2013. http://tel.archives-ouvertes.fr/tel-00909743.
Повний текст джерелаMurtin, Chloé Isabelle. "Traitement d’images de microscopie confocale 3D haute résolution du cerveau de la mouche Drosophile." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI081/document.
Повний текст джерелаAlthough laser scanning microscopy is a powerful tool for obtaining thin optical sections, the possible depth of imaging is limited by the working distance of the microscope objective but also by the image degradation caused by the attenuation of both excitation laser beam and the light emitted from the fluorescence-labeled objects. Several workaround techniques have been employed to overcome this problem, such as recording the images from both sides of the sample, or by progressively cutting off the sample surface. The different views must then be combined in a unique volume. However, a straightforward concatenation is often not possible, because the small rotations that occur during the acquisition procedure, not only in translation along x, y and z axes but also in rotation around those axis, making the fusion uneasy. To address this problem we implemented a new algorithm called 2D-SIFT-in-3D-Space using SIFT (scale Invariant Feature Transform) to achieve a robust registration of big image stacks. Our method register the images fixing separately rotations and translations around the three axes using the extraction and matching of stable features in 2D cross-sections. In order to evaluate the registration quality, we created a simulator that generates artificial images that mimic laser scanning image stacks to make a mock pair of image stacks one of which is made from the same stack with the other but is rotated arbitrarily with known angles and filtered with a known noise. For a precise and natural-looking concatenation of the two images, we also developed a module progressively correcting the sample brightness and contrast depending on the sample surface. Those tools we successfully used to generate tridimensional high resolution images of the fly Drosophila melanogaster brain, in particular, its octopaminergic and dopaminergic neurons and their synapses. Those monoamine neurons appear to be determinant in the correct operating of the central nervous system and a precise and systematic analysis of their evolution and interaction is necessary to understand its mechanisms. If an evolution over time could not be highlighted through the pre-synaptic sites analysis, our study suggests however that the inactivation of one of these neuron types triggers drastic changes in the neural network
Humbert, Ludovic. "Contribution à l'automatisation du traitement des radiographies du système ostéoarticulaire pour la modélisation géométrique et l'analyse clinique." Phd thesis, Paris, ENSAM, 2008. http://pastel.archives-ouvertes.fr/pastel-00004241.
Повний текст джерелаDousteyssier, Boris. "Construction d’un modèle morpho mécanique du genou pour la prédiction des conséquences d’une action thérapeutique." Thesis, Lyon, 2017. https://tel.archives-ouvertes.fr/tel-02869689.
Повний текст джерелаKnee degradation and pain when developing osteoarthritis are strongly related not only to the pressure on the cartilage, but also to the knee stability and to the subsequent loadings on the ligaments. Here, we propose a mixed approach, both using medical imaging (MRI, EOS X-ray system) and force platform in conjunction with a finite element model.Two finite element model were created, focusing on the passive stability of the knee while modelling an experiment: the acquisition of the movement of climbing a step decomposed in 4 static EOS images. To do so, a geometric model of the subject’s knee have been fused on the bone physiological positions obtained by EOS imaging. The FEA was carried out according to the experimental boundary conditions so as to ensure the global knee mechanical equilibrium. This allow the model to be validated by comparing its numerical results with the EOS data. This model will reveal the roles of the ligaments during the knee flexion and give pressure maps on the cartilages.For low flexion angles, both models’ results concord well with the experimental data: the bones are in their physiological position once the mechanical equilibrium reached. For higher flexion angles the results are satisfying and promising, showing clear ways to improve the models
Nicolau, Stephane. "Un système de réalité augmentée pour guider les opérations du foie en radiologie interventionnelle." Phd thesis, Université de Nice Sophia-Antipolis, 2004. http://tel.archives-ouvertes.fr/tel-00000006.
Повний текст джерелаDans notre cas, le patient est intubé et sa ventilation contrôlée, nous pouvons donc négliger les effets de la respiration : un recalage rigide 3D/2D de marqueurs radio-opaques collés sur la peau est suffisant pour atteindre la précision requise. Les hypothèses statistiques des critères classiques n'étant pas adéquates pour notre application, nous avons dérivé un nouveau critère généralisant les approches standard. Une évaluation rigoureuse des performances démontre la supériorité de notre méthode en terme de précision et de robustesse.
Pour atteindre le temps réel en salle d'opération, nous avons ensuite développé un ensemble d'algorithmes d'extraction et de mise en correspondance des marqueurs radio-opaques dont nous avons validé la robustesse sur de nombreuses images réelles. La précision du système dépendant de nombreux paramètres (nombre de marqueurs radio-opaques, position des caméras...), elle ne peut pas être établie préalablement de manière définitive. Afin de fournir un système fiable, nous proposons donc une technique de propagation des covariances qui permet d'estimer dynamiquement l'erreur de repositionnement des modèles reconstruits. Une phase de validation méticuleuse, sur des données synthétiques et réelles, démontre que notre prédiction est fiable dans les conditions de notre application.
Après cette validation de chacun des modules, nous montrons la faisabilité et l'intérêt de notre système complet en menant une évaluation sur un mannequin : quatre chirurgiens ont réussi à atteindre des cibles en des temps dix fois inférieurs à ceux usuellement nécessaires pour ce type d'intervention et avec une précision supérieure. Finalement, plusieurs expériences cliniques sur des patients démontrent que notre système est utilisable en salle d'opération et suggèrent son utilisation en routine dans un futur proche.
Weibel, Thomas. "Modèles de minimisation d'énergies discrètes pour la cartographie cystoscopique." Phd thesis, Université de Lorraine, 2013. http://tel.archives-ouvertes.fr/tel-00866824.
Повний текст джерелаMartins, Renato. "Odométrie visuelle directe et cartographie dense de grands environnements à base d'images panoramiques RGB-D." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEM004/document.
Повний текст джерелаThis thesis is in the context of self-localization and 3D mapping from RGB-D cameras for mobile robots and autonomous systems. We present image alignment and mapping techniques to perform the camera localization (tracking) notably for large camera motions or low frame rate. Possible domains of application are localization of autonomous vehicles, 3D reconstruction of environments, security or in virtual and augmented reality. We propose a consistent localization and 3D dense mapping framework considering as input a sequence of RGB-D images acquired from a mobile platform. The core of this framework explores and extends the domain of applicability of direct/dense appearance-based image registration methods. With regard to feature-based techniques, direct/dense image registration (or image alignment) techniques are more accurate and allow us a more consistent dense representation of the scene. However, these techniques have a smaller domain of convergence and rely on the assumption that the camera motion is small.In the first part of the thesis, we propose two formulations to relax this assumption. Firstly, we describe a fast pose estimation strategy to compute a rough estimate of large motions, based on the normal vectors of the scene surfaces and on the geometric properties between the RGB-D images. This rough estimation can be used as initialization to direct registration methods for refinement. Secondly, we propose a direct RGB-D camera tracking method that exploits adaptively the photometric and geometric error properties to improve the convergence of the image alignment.In the second part of the thesis, we propose techniques of regularization and fusion to create compact and accurate representations of large scale environments. The regularization is performed from a segmentation of spherical frames in piecewise patches using simultaneously the photometric and geometric information to improve the accuracy and the consistency of the scene 3D reconstruction. This segmentation is also adapted to tackle the non-uniform resolution of panoramic images. Finally, the regularized frames are combined to build a compact keyframe-based map composed of spherical RGB-D panoramas optimally distributed in the environment. These representations are helpful for autonomous navigation and guiding tasks as they allow us an access in constant time with a limited storage which does not depend on the size of the environment
Bussy, Victor. "Integration of a priori data to optimise industrial X-ray tomographic reconstruction." Electronic Thesis or Diss., Lyon, INSA, 2024. http://www.theses.fr/2024ISAL0116.
Повний текст джерелаThis thesis explores research topics in the field of industrial non-destructive testing (NDT) using X-rays. The application of CT tomography has significantly expanded, and its use has intensified across many industrial sectors. Due to increasing demands and constraints on inspection processes, CT must continually evolve and adapt. Whether in terms of reconstruction quality or inspection time, X-ray tomography is constantly progressing, particularly in the so-called sparse-view strategy. This strategy involves reconstructing an object using the minimum possible number of radiographic projections while maintaining satisfactory reconstruction quality. This approach reduces acquisition times and associated costs. Sparse-view reconstruction poses a significant challenge as the tomographic problem is ill-conditioned, or, as it is often described, ill-posed. Numerous techniques have been developed to overcome this obstacle, many of which rely on leveraging prior information during the reconstruction process. By exploiting data and knowledge available before the experiment, it is possible to improve reconstruction results despite the reduced number of projections. In our industrial context, for example, the computer-aided design (CAD) model of the object is often available, which provides valuable information about the geometry of the object under study. However, it is important to note that the CAD model only offers an approximate representation of the object. In NDT or metrology, it is precisely the differences between an object and its CAD model that are of interest. Therefore, integrating prior information is complex, as this information is often "approximate" and cannot be used as is. Instead, we propose to judiciously use the geometric information available from the CAD model at each step of the process. We do not propose a single method but rather a methodology for integrating prior geometric information during X-ray tomographic reconstruction
Weibel, Thomas. "Modèles de minimisation d'énergies discrètes pour la cartographie cystoscopique." Electronic Thesis or Diss., Université de Lorraine, 2013. http://www.theses.fr/2013LORR0070.
Повний текст джерелаThe aim of this thesis is to facilitate bladder cancer diagnosis. The reference clinical examination is cystoscopy, where an endoscope, inserted into the bladder, allows to visually explore the organ's internal walls on a monitor. The main restriction is the small field of view (FOV) of the instrument, which complicates lesion diagnosis, follow-up and treatment traceability.In this thesis, we propose robust and accurate algorithms to create two- and three-dimensional large FOV maps from cystoscopic video-sequences. Based on recent advances in the field of discrete energy minimization, we propose transformation-invariant cost functions, which allow to robustly register image pairs, related by large viewpoint changes, with sub-pixel accuracy. The transformations linking such image pairs, which current state-of-the-art bladder image registration techniques are unable to robustly estimate, are required to construct maps with several overlapping image trajectories. We detect such overlapping trajectories automatically and perform non-linear global map correction. Finally, the proposed energy minimization based map compositing algorithm compensates small texture misalignments and attenuates strong exposure differences. The obtained textured maps are composed by a maximum of information/quality available from the redundant data of the video-sequence. We evaluate the proposed methods both quantitatively and qualitatively on realistic phantom and clinical data sets. The results demonstrate the robustness of the algorithms, and the obtained maps outperform state-of-the-art approaches in registration accuracy and global map coherence
Rigaud, Stephane Ulysse. "méthodologie de modélisation de la croissance de neurosphères sous microscope à contraste de phase." Electronic Thesis or Diss., Paris 6, 2014. http://www.theses.fr/2014PA066053.
Повний текст джерелаThe study of stem cells is one of the most important fields of research in the biomedical field. Computer vision and image processing have been greatly emphasized in this area for the development of automated solutions for culture and observation of cells. This work proposes a new methodology for observing and modelling the proliferation of neural stem cell under a phase contrast microscope. At each time lapse observation performed by the microscope during the proliferation, the system determines a three-dimensional model of the structure formed by the observed cells. This is achieved by a framework combining analysis, synthesis and selection process. First, an analysis of the images from the microscope segments the neurosphere and the constituent cells. With this analysis, combined with prior knowledge about the cells and their culture protocol, several 3-D possible models are generated through a synthesis process. These models are finally selected and evaluated according to their likelihood with the microscope image using a 3-D to 2-D registration method. Through this approach, we present an automatic visualisation tool and observation of the proliferation of neural stem cell under a phase contrast microscope
Bekhti, Mustapha. "Réseaux de capteurs : application à la poursuite des cibles mobiles." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCD092.
Повний текст джерелаFor decades Unmanned Aerial Vehicles (UAVs) are widely used in modern warfare for surveillance, reconnaissance, sensing, battle damage assessment and attacking. The benefits of UAVs include reduced cost and no warfighter risk. In fact UAVs use is increased by time,especially under the concept of the network centric operation environment and under the concept of revolution in military affairs. On the other hand, the UAVs technology which originates from military applications, arouse the interest of the civilian, and yet, the domestic use began with limited aerial patrols of the nation’s borders, disaster and law enforcement situation. Recently, these products have also been destined to the commercial market and have gained much attention. Although UAVs use is expanding, their level of automation, cooperation and integration in civil application is far from being efficient and the design principles of such cooperation, coordination and self-organization under an Ad-hoc networkof a multi-UAV still need intensive studies and remain an open research problem. In this thesis, the investigated tracks were drawn both from the literature review and from the news topics. Thus, they covered two main classes of contributions, first, path planning and tracking of drones with package delivery and data gathering missions, and second, intrusion detection in a sensitive area through the use of networked drones.The results show that the integration of the drone segment to the terrestrial wireless network presents a relevant added value and opens new perspectives to the use of this technology in the civilian realm
Faget, Xavier. "Application expérimentale de méthodes inverses avancées pour l'imagerie des propriétés électromagnétiques d'un matériau magnéto-diélectrique." Thesis, Aix-Marseille, 2018. http://www.theses.fr/2018AIXM0039/document.
Повний текст джерелаThe subject of this thesis is the non-destructive characterization of complex inhomogeneous magneto-dielectric structures. Successively, the experimental developments, the modelling and the data treatments stages are addressed. A forward model that links the scattered field to the electromagnetic properties is established. This model requires some finite element computations in order to estimate the propagation of the electromagnetic wave in presence of the magneto-dielectric object which is glued on a metallic support. A multistatic bench has been designed and constructed in order to collect measured scattered fields. Several adjustments and calibration procedures have been carried out to reduce the measurement noise and biases. Next, the inverse problem has been dealt with, in order to retrieve the electromagnetic properties of the samples, from the measured scattered field. The inverse problem is mainly solved with a linear approach, with a careful selection of the hyperparameters. Once the system has been fine tuned, six studies have been realized to validate our 2D imaging system. The assessment of the measurement uncertainty, the evaluation of the spatial resolution, the characterization of various magnetics materials and the use of different supports with variable geometries have been performed. So far, all the developments were done under a 2D hypothesis. That is why, we have then focused our research on the design of a 3D innovative imaging setup. To this end, a secondary source moving close to the target has been added in order to gain information in the third direction. A numerical study has been performed to assess the expected performances of this new setup
Jerbi, Taha. "Recalage de structures tridimensionnelles à partir d'acquisitions stéréo-radiographiques basse dose. Application à l'estimation de mouvements humains." Phd thesis, 2012. http://tel.archives-ouvertes.fr/tel-00719664.
Повний текст джерела