Добірка наукової літератури з теми "Real-time combustion control"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Real-time combustion control".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Real-time combustion control"

1

Kemal, Abid, and Craig T. Bowman. "Real-time adaptive feedback control of combustion instability." Symposium (International) on Combustion 26, no. 2 (1996): 2803–9. http://dx.doi.org/10.1016/s0082-0784(96)80119-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Winne, Olaf, Helmut Beikirch, and Johannes Filz. "A Safety Real-Time Middleware for Combustion Control." IFAC Proceedings Volumes 46, no. 28 (2013): 286–91. http://dx.doi.org/10.3182/20130925-3-cz-3023.00054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Hou, Yuchun, Zhen Huang, Xingcai Lu, Junhuan Fang, and Linlin Zu. "Fuel design real-time to control HCCI combustion." Chinese Science Bulletin 51, no. 21 (November 2006): 2673–80. http://dx.doi.org/10.1007/s11434-006-2153-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wu, Yuh Yih, Bo Chiuan Chen, and Anh Trung Tran. "Semi-Direct Injection Engine Modeling for Real Time Control." Advanced Materials Research 347-353 (October 2011): 2504–10. http://dx.doi.org/10.4028/www.scientific.net/amr.347-353.2504.

Повний текст джерела
Анотація:
The Semi-Direct Injection (SDI) system has been shown to improve small engine efficiency and exhaust by utilizing a lean burn method. In order to better understand how to more readily utilize the control systems in SDI engine, the real-time operation of an SDI engine was modeled. A charging model was developed by using a filling-and-emptying model to simulate air exchange in an engine, including varying the intake manifold structure. A single-zone model was applied to a combustion model and the effects of air/fuel ratio and swirl ratio on combustion duration were also considered. The calculated results of the intake manifold pressure, heat release rate, and cylinder pressure were compared with the experimental data. The results of this study show that this modeling process approximates reality.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Furlong, Edward R., Douglas S. Baer, and Ronald K. Hanson. "Real-time adaptive combustion control using diode-laser absorption sensors." Symposium (International) on Combustion 27, no. 1 (January 1998): 103–11. http://dx.doi.org/10.1016/s0082-0784(98)80395-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Barta, Jason, and Gregory James Hampson. "Real-time Combustion Diagnostics and Control for Improved Engine Management." MTZ industrial 6, no. 1 (March 2016): 26–31. http://dx.doi.org/10.1007/s40353-016-0009-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Powell, B. K., G. P. Lawson, and G. Hogh. "Advanced Real-Time Powertrain Systems Analysis." Journal of Engineering for Gas Turbines and Power 110, no. 3 (July 1, 1988): 325–33. http://dx.doi.org/10.1115/1.3240125.

Повний текст джерела
Анотація:
This paper describes a combined analytical and experimental hardware-in-the-loop powertrain systems analysis methodology. Central to the implementation of this methodology is a real-time dynamic system simulation computer such as the high-speed Applied Dynamics Model AD10. For automotive engine control system studies, wide bandwidth in-cylinder combustion pressure sensor signals are input to the AD10 computer. Control commands are calculated and communicated at high data rates to throttle valve, spark ignition, and fuel injector actuators. Both simulation and experimental results are presented. Using this approach, the functional improvements associated with various control philosophies can be determined.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bittle, Joshua A., and Timothy J. Jacobs. "A computationally efficient combustion trajectory prediction model developed for real-time diesel combustion control." International Journal of Engine Research 17, no. 2 (January 13, 2015): 246–58. http://dx.doi.org/10.1177/1468087414566513.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

DePape, Pieter, and Igor Novosselov. "Model-Based Approach for Combustion Monitoring Using Real-Time Chemical Reactor Network." Journal of Combustion 2018 (October 1, 2018): 1–12. http://dx.doi.org/10.1155/2018/8704792.

Повний текст джерела
Анотація:
Flame stability and pollution control are significant problems in the design and operation of any combustion system. Real-time monitoring and analysis of these phenomena require sophisticated equipment and are often incompatible with practical applications. This work explores the feasibility of model-based combustion monitoring and real-time evaluation of proximity to lean blowout (LBO). The approach uses temperature measurements, coupled with Chemical Reactor Network (CRN) model to interpret the data in real-time. The objective is to provide a computationally fast means of interpreting measurements regarding proximity to LBO. The CRN-predicted free radical concentrations and their trends and ratios are studied in each combustion zone. Flame stability and a blowout of an atmospheric pressure laboratory combustor are investigated experimentally and via a phenomenological real-time Chemical Reactor Network (CRN). The reactor is operated on low heating value fuel stream, i.e., methane diluted with nitrogen with N2/CH4volume ratios of 2.25 and 3.0. The data show a stable flame-zone carbon monoxide (CO) level over the entire range of the fuel-air equivalence ratio (Φ), and a significant increase in hydrocarbon emissions approaching blowout. The CRN trends agree with the data: the calculated concentrations of hydroxide (OH), O-atom, and H-atom monotonically decrease with the reduction of Φ. The flame OH blowout threshold is 0.025% by volume for both fuel mixtures. The real-time CRN allows for augmentation of combustion temperature measurements with modeled free radical concentrations and monitoring of unmeasurable combustion characteristics such as pollution formation rates, combustion efficiency, and proximity to blowout. This model-based approach for process monitoring can be useful in applications where the combustion measurements are limited to temperature and optical methods, or continuous gas sampling is not practical.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Yang, Xiaojian, and Guoming G. Zhu. "A control-oriented hybrid combustion model of a homogeneous charge compression ignition capable spark ignition engine." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226, no. 10 (May 31, 2012): 1380–95. http://dx.doi.org/10.1177/0954407012443334.

Повний текст джерела
Анотація:
To implement the homogeneous charge compression ignition combustion mode in a spark ignition engine, it is necessary to have smooth mode transition between the spark ignition and homogeneous charge compression ignition combustions. The spark ignition–homogeneous charge compression ignition hybrid combustion mode modeled in this paper describes the combustion mode that starts with the spark ignition combustion and ends with the homogeneous charge compression ignition combustion. The main motivation of studying the hybrid combustion mode is that the percentage of the homogeneous charge compression ignition combustion is a good parameter for combustion mode transition control when the hybrid combustion mode is used during the transition. This paper presents a control oriented model of the spark ignition–homogeneous charge compression ignition hybrid combustion mode, where the spark ignition combustion phase is modeled under the two-zone assumption and the homogeneous charge compression ignition combustion phase under the one-zone assumption. Note that the spark ignition and homogeneous charge compression ignition combustions are special cases in this combustion model. The developed model is capable of simulating engine combustion over the entire operating range, and it was implemented in a real-time hardware-in-the-loop simulation environment. The simulation results were compared with those of the corresponding GT-Power model, and good correlations were found for both spark ignition and homogeneous charge compression ignition combustions.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Real-time combustion control"

1

Christopher, Matthew L. "Real time control of combustor and engine processes." Thesis, Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/17802.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Johnson, Clifford Edgar. "Adaptive control of combution instabilities using real-time modes observation." Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-03232006-223052/.

Повний текст джерела
Анотація:
Thesis (Ph. D.)--Mechanical Engineering, Georgia Institute of Technology, 2006.
Zinn, Ben, Committee Chair ; Glezer, Ari, Committee Member ; Shelton, Samuel, Committee Member ; Lieuwen, Tim, Committee Member ; Neumeier, Yedidia, Committee Member.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dudley, J. W. O. "Forward in-situ combustion : Real-time mass and energy balances, reaction kinetics and control." Thesis, University of Bath, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.380609.

Повний текст джерела
Анотація:
Enhanced oil recovery by dry forward in-situ combustion has been studied in a combustion tube. Twelve experiments are reported exploring the effects of three factors: oxygen flow, partial pressure and mole fraction, each factor at two levels. The pressures used went up to 790 kPa, and the oxygen mole fraction to 35%. It was discovered that the oxygen partial pressure had no statistically significant effect. The oil recovery was independent of the factors used. The combustion time was dominated by the oxygen flow, as were the reaction rates, while fuel and oxygen consumption depended mainly on the oxygen mole fraction. Increasing the oxygen mole fraction reduced the consumption figures. The reaction stoichiometry was substantially independent of the three factors. It was also found that the total pressure had no statistically significant effect on oil recovery, combustion time, reaction rates, fuel consumption or stoichiometry. The oil produced by the in-situ combustion process tended to be of lower viscosity and density than the original oil. Oil-water emulsions were produced which could not be broken. The experiments were controlled by a computer, and the PID control algorithms and associated equipment proved succesful. Linked in with the control routines was a model of the process to calculate fluid saturations and flows during the course of the experiment. Measured information was used directly in the mass and energy balances. The resultant fluid saturations supplied a reasonable match with experimental oil saturations from two experiments that were stopped early. The computed liquid production histories also matched up well with the experimental results. The oil saturations from the numerical model were used in developing a robust method for calculating reaction constants from the experimental data. A simplified surface-reaction scheme was used involv~ng low-temperature oxidation and fuel burnoff to explain the effects of flow, pressure and oxygen mole fraction on the process.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Horváth, Laura. "Closed Loop Combustion Control Demonstrator, Analysis of real-time sensory feedback and state estimation." Thesis, KTH, Maskinkonstruktion (Inst.), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-236517.

Повний текст джерела
Анотація:
Idag finns det en ökad efterfrågan på förbättrad motorstyrning inom motorutvecklingen. Återkoppling av relevanta förbränningsparametrar för att optimera förbränningsprocessen har undersökts som en eventuell lösning. Den här typen av kontroll baserar sig på realtidsinformation från motorn som sedan skickas till motorstyrenheten (Engine Control Unit, ECU) för att optimera bränsleinsprutningen. Denna kontroll skapar en övervakad förbränning som kan uppdateras kontinuerligt under drift. Signalbearbetningen består också av uppskattning av parametrar, som är svåra att mäta i motornsmiljö exempelvis värmeavgivning kopplat till vevaxelvinkel (10%, 50% och 90% brunnet). Motorstyrenheten kan använda denna vevaxelvinkel som en återkopplingssignal, och om nödvändigt så kan insprutningsfasningen uppdateras. Värdena som kommer från givarna hjälper också att upptäcka om vissa parametrar i motorn överstiger ett kritiskt värde, så att fel kan upptäckas. Realtidsmätning och bearbetning av sådan information är en komplex och resurskrävande uppgift när det gäller beräkning, vilket gör det nödvändigt att använda en ytterligare, snabb enhet för bearbetning. Den kompakta realtidsenheten som användes under projektet innehöll nödvändiga moduler för kommunikation samt en FPGA och ett CANgränssnitt. Dessa moduler gjorde det möjligt att uppfylla krav på hastighet, minne, provtagning, interpolering, medelvärdesberäkning av cykler samt beräkning av återkopplingssignalen och överföring till motorstyrenhet. Resultaten visar hur realtidsberäkningarna matchar resultaten med öppen styrning. Resultaten visar att omfattande synkronisering behövs för att matcha motorfasen med analoga sensorer, såsom tryckgivaren, som kan uppta en ganska stor del av minnet beroende på arkitekturen men genom att överväga tidskrav kan minnet sparas genom sekventiell körning. Det observerades också att burs kan störa beräkningarna på ett sätt att vissa beräkningsmodeller kan leda till helt felaktiga resultat, så det är önskvärt att få en signal som är så ostörd som möjligt.
There is an increasing demand for improved engine control in the area of engine development in order to improve engine life cycle, reduce emissions, increase efficiency, and optimize the combustion process. Closed-loop combustion control has been investigated as a possible solution to these demands. This kind of control relies on real-time sensor information coming from the engine. Its processing is based on what feedback signal is generated to the Engine Control Unit (ECU) in order to find the optimal time for fuel injection. This creates a monitored combustion process and an injection strategy that can be updated continuously during operation. The processing of the sensor signals involves estimation of parameters that are difficult to sense in an engine environment. Examples of such parameters are the heat release, and the calculation of the phase of the engine cycle (degree of the revolving crankshaft) where ten, fifty and ninety percent of the fuel completes its combustion. These crank angle degrees can be used by the ECU as a feedback signal, enabling to change the fuel injection strategy, if needed. The values coming from the sensors also help detecting if certain parameters of the engine surpass a critical value, so malfunction can be detected. Real-time acquisition and processing of such information is a complex and heavy task in terms of computation, which makes it necessary to use an additional, fast processing unit. The compact real-time board that was used during this thesis work, containing an analog and digital input and output module, as well as an FPGA and an interface for CAN communication had the possibility to meet speed and memory requirements to perform sampling, interpolation, averaging of a certain number of cycles, calculating the feedback signal and transmitting it to the engine control unit. The results show how the real time calculations, with necessary simplifications to meet speed requirements, match the results of models with offline and non real-time calculation. It was also observed how the closed-loop combustion affected the injection strategy, combined with the existing open-loop calculation model. The findings show that extensive synchronization is needed in order to pair the engine phase with analog sensors such as the pressure sensor, which can occupy quite a large part of the memory depending on the architecture, but by considering timing requirements, memory can be saved by sequential execution. It was also observed that noise can disturb the calculations to such an extent that certain calculation models can lead to completely wrong results, so it is desirable to have a signal that is as clean as possible.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bohlin, Henrik. "Development of a FPGA-based development platform for real-time control of combustion engine parameters." Thesis, Linköpings universitet, Fysik och elektroteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-70240.

Повний текст джерела
Анотація:
Today’s increased regulatory demands on emissions and hard competition drives manufacturers of heavy vehicles to try new technologies in an attempt to fulfill regulations and get ahead of competitors. This paper describes the development of a platform that is to be used as a tool to evaluate the possibilities of incorporating an FPGA in the future ECUs of Scania CV AB. Requirements for such a platform are examined and presented. These requirements are then implemented as a technology demonstrator able to sample signals from sensors and performing computations using the sampled data. The technology demonstrator is also equipped with an interface to which current ECUs can be connected.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Grasreiner, Sebastian. "Combustion modeling for virtual SI engine calibration with the help of 0D/3D methods." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2012. http://nbn-resolving.de/urn:nbn:de:bsz:105-qucosa-90518.

Повний текст джерела
Анотація:
Spark ignited engines are still important for conventional as well as for hybrid power trains and are thus objective to optimization. Today a lot of functionalities arise from software solutions, which have to be calibrated. Modern engine technologies provide an extensive variability considering their valve train, fuel injection and load control. Thus, calibration efforts are really high and shall be reduced by introduction of virtual methods. In this work a physical 0D combustion model is set up, which can cope with a new generation of spark ignition engines. Therefore, at first cylinder thermodynamics are modeled and validated in the whole engine map with the help of a real-time capable approach. Afterwards an up to date turbulence model is introduced, which is based on a quasi-dimensional k-epsilon-approach and can cope with turbulence production from large scale shearing. A simplified model for ignition delay is implemented which emphasizes the transfer from laminar to turbulent flame propagation after ignition. The modeling is completed with the calculation of overall heat release rates in a 0D entrainment approach with the help of turbulent flame velocities. After validation of all sub-models, the 0D combustion prediction is used in combination with a 1D gas exchange analysis to virtually calibrate the modern engine torque structure and the ECU function for exhaust gas temperature with extensive simulations
Moderne Ottomotoren spielen heute sowohl in konventionellen als auch hybriden Fahrzeugantrieben eine große Rolle. Aktuelle Konzepte sind hochvariabel bezüglich Ventilsteuerung, Kraftstoffeinspritzung und Laststeuerung und ihre Optimierungspotentiale erwachsen zumeist aus neuen Softwarefunktionen. Deren Applikation ist zeit- und kostenintensiv und soll durch virtuelle Methoden unterstützt werden. In der vorliegenden Arbeit wird ein physikalisches 0D Verbrennungsmodell für Ottomotoren aufgebaut und bis zur praktischen Anwendung geführt. Dafür wurde zuerst die Thermodynamik echtzeitfähig modelliert und im gesamten Motorenkennfeld abgeglichen. Der Aufbau eines neuen Turbulenzmodells auf Basis der quasidimensionalen k-epsilon-Gleichung ermöglicht anschließend, die veränderlichen Einflüsse globaler Ladungsbewegung auf die Turbulenz abzubilden. Für den Brennverzug wurde ein vereinfachtes Modell abgeleitet, welches den Übergang von laminarer zu turbulenter Flammenausbreitung nach der Zündung in den Vordergrund stellt. Der restliche Brennverlauf wird durch die physikalische Ermittlung der turbulenten Brenngeschwindigkeit in einem 0D Entrainment-Ansatz dargestellt. Nach Validierung aller Teilmodelle erfolgt die virtuelle Bedatung der Momentenstruktur und der Abgastemperaturfunktion für das Motorsteuergerät
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Real-time combustion control"

1

K, Mongia Rajiv, Dibble Robert W, and NASA Glenn Research Center, eds. Real-time optical fuel-to-air ratio sensor for gas turbine combustors. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

K, Mongia Rajiv, Dibble Robert W, and NASA Glenn Research Center, eds. Real-time optical fuel-to-air ratio sensor for gas turbine combustors. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

K, Mongia Rajiv, Dibble Robert W, and NASA Glenn Research Center, eds. Real-time optical fuel-to-air ratio sensor for gas turbine combustors. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Real-time optical fuel-to-air ratio sensor for gas turbine combustors. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Real-time combustion control"

1

"Combustion Instabilities." In Real-Time Optimization by Extremum-Seeking Control, 143–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2004. http://dx.doi.org/10.1002/0471669784.ch10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhao, Dan. "Real-time mode decomposition and proper orthogonal/dynamic mode decomposition analyses of aeroacoustics and ramjet thermoacoustic instability." In Thermoacoustic Combustion Instability Control, 673–739. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-89910-9.00008-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Prasanth, B., Deepa Kaliyaperumal, R. Jeyanthi, and Saravanan Brahmanandam. "Real-Time Optimization of Regenerative Braking System in Electric Vehicles." In Electric Vehicles and the Future of Energy Efficient Transportation, 193–218. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-7626-7.ch008.

Повний текст джерела
Анотація:
In the present era, electric vehicles (EV) have revolutionized the world with their dominant features like cleanliness and high efficiency compared to that of the internal combustion (IC) engine-based vehicles. To crave for the higher efficiency of the EV during the braking, the kinetic energy of the EV is converted into electrical energy, which is harvested into storage system, called regenerative braking. Various techniques such as artificial neural network (ANN) and fuzzy-based controllers consider factors like state of charge of the battery and supercapacitor and brake demand for calculating the regenerative braking energy. A force distribution curve is designed to ensure that the braking force is distributed and applied on the four wheels simultaneously. In real-time optimization, an operating area is formed for maximizing the regenerative force which is evaluated by linear programming. It is proved that the drive range of the vehicle is increased by 25.7% compared to the one with non-RBS. In this work, RTO-based control loop for regenerative braking system is simulated in MATLAB/Simulink.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Real-time combustion control"

1

Ponti, Fabrizio, Vittorio Ravaglioli, Davide Moro, and Matteo De Cesare. "Combustion Noise Real-Time Evaluation and Processing for Combustion Control." In ASME 2012 Internal Combustion Engine Division Spring Technical Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ices2012-81203.

Повний текст джерела
Анотація:
Newly developed Diesel engine control strategies are mainly aimed at pollutant emissions reduction, due to the increasing request for engine-out emissions and fuel consumption reduction. In order to reduce engine-out emissions, the development of closed-loop combustion control algorithms has become crucial. Modern closed-loop combustion control strategies are characterized by two main aspects: the use of high EGR rates (the goal being to obtain highly premixed combustions) and the control of the center of combustion. In order to achieve the target center of combustion, conventional combustion control algorithms correct the measured value by varying Main injection timing. It is possible to obtain a further reduction in pollutant emissions through a proper variation of the injection parameters. Modern Diesel engine injection systems allow designing injection patterns with many degrees of freedom, due to the large number of tuneable injection parameters (such as start and duration of each injection). Each injection parameter’s variation causes variations in the whole combustion process and, consequently, in pollutant emissions production. Injection parameters variations have a strong influence on other quantities that are related to combustion process effectiveness, such as noise radiated by the engine. This work presents a methodology that allows real-time evaluating combustion noise on-board a vehicle. The radiated noise can be evaluated through a proper in-cylinder pressure signal processing. Even though in-cylinder pressure sensor on-board installation is still uncommon, it is believed that in-cylinder pressure measurements will be regularly available on-board thanks to the newly developed piezo-resistive sensors. In order to set-up the methodology, several experimental tests have been performed on a 1.3 liter Diesel engine mounted in a test cell. The engine was run, in each operating condition, both activating and deactivating pre-injections, since pre-injections omission usually produces a decrease in pollutant emissions production (especially in particulate matter) and a simultaneous increase in engine noise. The investigation of the correlation between combustion process and engine noise can be used to set up a closed-loop algorithm for optimal combustion control based on engine noise prediction.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Leithgoeb, R., F. Henzinger, A. Fuerhapter, K. Gschweitl, and A. Zrim. "Optimization of New Advanced Combustion Systems Using Real-Time Combustion Control." In SAE 2003 World Congress & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2003. http://dx.doi.org/10.4271/2003-01-1053.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ohyama, Yoshishige. "Engine Control Using a Real-Time Combustion Model." In SAE 2001 World Congress. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2001. http://dx.doi.org/10.4271/2001-01-0256.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Neumeier, Y., and Ben Zinn. "Active control of combustion instabilities with real time operation of unstable combustor modes." In 34th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Giuliani, Fabrice, Bernhard Wagner, Jakob Woisetschla¨ger, and Franz Heitmeir. "Laser Vibrometry for Real-Time Combustion Stability Diagnostic." In ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90413.

Повний текст джерела
Анотація:
Laser-based diagnostics for combustion monitoring are promising sensing techniques for the upcoming generation of build-in gas turbines measurement and control devices. Their principles are usually based on direct measurement of line-of-sight transmission, absorption, scattering or re-emission of laser light through the flame. We discuss here how a similar method based this time on interferometry can provide a refined analysis on dynamics of injected reactants and flame stability. Measurements are performed on a resonant premixed air/methane flame using Laser Vibrometry (LV). A method for detection of combustion instability within the primary zone is described, and dual LV measurements performed over the full flame cross section provide a refined analysis of the flow patterns. This technique, originally dedicated to structural dynamics, shows a high potential for low-cost and rapid flow characterisation during the benchmark tests of a gas turbine combustor. The discussion ends on feasibility for embarking Laser Vibrometry as a real-time combustion monitor.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Furlong, E., R. Mihalcea, M. Webber, D. Baer, and R. Hanson. "Diode laser sensors for real-time control of pulsed combustion systems." In 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1998. http://dx.doi.org/10.2514/6.1998-3949.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Patel, Akash, Johannes Eichmeier PhD, Joachim Schwarte, and Archana Mane. "A Real-Time Chemical Equilibrium Mechanism for Control-Oriented Combustion Models." In Symposium on International Automotive Technology. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2021. http://dx.doi.org/10.4271/2021-26-0327.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Corti, Enrico, and Claudio Forte. "Spark Advance Real-Time Optimization Based on Combustion Analysis." In ASME 2010 Internal Combustion Engine Division Fall Technical Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/icef2010-35134.

Повний текст джерела
Анотація:
Future emission regulations could force manufacturers to install in-cylinder pressure sensors on production engines. The availability of such a signal opens a new scenario in terms of combustion control: many settings that previously were optimized off-line, can now be monitored and calibrated in realtime. One of the most effective factors influencing performance and efficiency is the combustion phasing: in gasoline engines Electronic Control Units (ECU) manage the Spark Advance (SA) in order to set the optimal combustion phase. SA optimal values are usually determined by means of calibration procedures carried out on the test bench by changing the ignition angle while monitoring Brake and Indicated Mean Effective Pressure (BMEP, IMEP) and Brake Specific Fuel Consumption (BSFC). The optimization process relates BMEP, IMEP and BSFC mean values with the control setting (SA). However, the effect of SA on combustion is not deterministic, due to the cycle-to-cycle variation: the analysis of mean values requires many engine cycles to be significant of the performance obtained with the given control setting. This paper presents a novel approach to SA optimization, with the objective of improving the performance analysis robustness, while reducing the test time. The approach can be either used in the calibration phase or in on-board applications, if the in-cylinder pressure signal is available: this would allow maintaining the optimization active throughout the entire engine life. The methodology is based on the observation that, for a given running condition, IMEP can be considered a function of a single combustion parameter, represented by the 50% Mass Fraction Burned (50%MFB). Due to cycle-to-cycle variation, many different MFB50 and IMEP values are obtained during a steady state test carried out with constant SA, but these values are related by means of a unique relationship. The distribution on the plane IMEP-MFB50 forms a parabola, therefore the optimization could be carried out by choosing SA values maintaining the scatter around the vertex. Unfortunately the distribution shape is slightly influenced by heat losses (i.e., by SA): this effect must be taken into account in order to avoid over-advanced calibrations. SA is then controlled by means of a PID (Proportional Integer Derivative) controller, fed by an error that is defined based on the previous considerations: a contribution is related to the MFB50-IMEP distribution, and a second contribution is related to the net Cumulative Heat Release (CHRNET)-IMEP distribution. The latter is able to take into account for heat losses. Firstly, the methodology has been tested on in-cylinder pressure data, collected from different SI engines; then, it has been implemented in real-time, by means of a programmable combustion analyzer: the system performs a cycle-to-cycle combustion analysis, evaluating the combustion parameters necessary to calculate the target SA, which is then actuated by the ECU. The approach proved to be efficient, reducing the number of engine cycles necessary for the calibration to less than 1000 per operating condition.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hauser, Michael, Yue Li, Jihang Li, and Asok Ray. "Real-time combustion state identification via image processing: A dynamic data-driven approach." In 2016 American Control Conference (ACC). IEEE, 2016. http://dx.doi.org/10.1109/acc.2016.7525429.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Geddes, D. J. "A real-time simulation of a 200 MW thermal power plant for optimising combustion control." In UKACC International Conference on Control (CONTROL '98). IEE, 1998. http://dx.doi.org/10.1049/cp:19980341.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Real-time combustion control"

1

Wagner, R. M., and K. Sisken. Real-Time Control of Diesel Combustion Quality. Office of Scientific and Technical Information (OSTI), June 2010. http://dx.doi.org/10.2172/983054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wagner, Robert M. Final CRADA Report ORNL-00-0609, Real-Time Control of Diesel Combustion Quality. Office of Scientific and Technical Information (OSTI), July 2010. http://dx.doi.org/10.2172/983843.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Sheen, S. H., H. T. Chien, and A. C. Raptis. Advanced sensors for real-time control of advanced natural-gas reciprocating engine combustion. Office of Scientific and Technical Information (OSTI), November 2003. http://dx.doi.org/10.2172/820524.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Sheen, S. H., H. T. Chien, and A. C. Raptis. Advanced sensors for real-time control of combustion in advanced natural-gas reciprocating engines. Office of Scientific and Technical Information (OSTI), January 2002. http://dx.doi.org/10.2172/791172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zinn, Ben T., Eugene Lubarsky, and Yedidia Neumeier. Real-Time Control for Optimal Liquid Rocket Combustor Performance. Fort Belvoir, VA: Defense Technical Information Center, December 2005. http://dx.doi.org/10.21236/ada443134.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії