Добірка наукової літератури з теми "Real-time biosensors"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Real-time biosensors".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Real-time biosensors"

1

Kunzelmann, Simone, and Martin R. Webb. "Fluorescence detection of GDP in real time with the reagentless biosensor rhodamine–ParM." Biochemical Journal 440, no. 1 (October 27, 2011): 43–49. http://dx.doi.org/10.1042/bj20110349.

Повний текст джерела
Анотація:
The development of novel fluorescence methods for the detection of key biomolecules is of great interest, both in basic research and in drug discovery. Particularly relevant and widespread molecules in cells are ADP and GDP, which are the products of a large number of cellular reactions, including reactions catalysed by nucleoside triphosphatases and kinases. Previously, biosensors for ADP were developed in this laboratory, based on fluorophore adducts with the bacterial actin homologue ParM. It is shown in the present study that one of these biosensors, tetramethylrhodamine–ParM, can also monitor GDP. The biosensor can be used to measure micromolar concentrations of GDP on the background of millimolar concentrations of GTP. The fluorescence response of the biosensor is fast, the response time being <0.2 s. Thus the biosensor allows real-time measurements of GTPase and GTP-dependent kinase reactions. Applications of the GDP biosensor are exemplified with two different GTPases, measuring the rates of GTP hydrolysis and nucleotide exchange.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shalannanda, Wervyan, Ardianto Satriawan, Muhammad Fairuziko Nurrajab, Anchelmia Chyntia Hanna Ayulestari, Diah Ayu Safitri, Finna Alivia Nabila, Casi Setianingsih, and Isa Anshori. "Biosensors for therapeutic drug monitoring: a review." F1000Research 12 (February 13, 2023): 171. http://dx.doi.org/10.12688/f1000research.130863.1.

Повний текст джерела
Анотація:
Therapeutic drug monitoring (TDM) is a crucial and essential step for patient care when an accurate medication dosage is necessary. High-performance liquid chromatography (HPLC) and immunoassays are commonly used methods for TDM, but they are expensive and incapable of real-time monitoring. Biosensor technology is believed to have the potential to perform TDM effectively. Biosensors are flexible and can be tailored to individual patient needs. This article reviews the development of biosensors for TDM, including the types of biosensors that have been fabricated and the drugs they have successfully monitored. Biosensor technology is expected to have a bright future, particularly for real-time monitoring and integration with internet of things (IoT) systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rasooly, Avraham, and Keith E. Herold. "Biosensors for the Analysis of Food- and Waterborne Pathogens and Their Toxins." Journal of AOAC INTERNATIONAL 89, no. 3 (May 1, 2006): 873–83. http://dx.doi.org/10.1093/jaoac/89.3.873.

Повний текст джерела
Анотація:
Abstract Biosensors are devices which combine a biochemical recognition element with a physical transducer. There are various types of biosensors, including electrochemical, acoustical, and optical sensors. Biosensors are used for medical applications and for environmental testing. Although biosensors are not commonly used for food microbial analysis, they have great potential for the detection of microbial pathogens and their toxins in food. They enable fast or real-time detection, portability, and multipathogen detection for both field and laboratory analysis. Several applications have been developed for microbial analysis of food pathogens, including E. coli O157:H7, Staphylococcus aureus, Salmonella, and Listeria monocytogenes, as well as various microbial toxins such as staphylococcal enterotoxins and mycotoxins. Biosensors have several potential advantages over other methods of analysis, including sensitivity in the range of ng/mL for microbial toxins and &lt;100 colony-forming units/mL for bacteria. Fast or real-time detection can provide almost immediate interactive information about the sample tested, enabling users to take corrective measures before consumption or further contamination can occur. Miniaturization of biosensors enables biosensor integration into various food production equipment and machinery. Potential uses of biosensors for food microbiology include online process microbial monitoring to provide real-time information in food production and analysis ofmicrobial pathogens and their toxins in finished food. Biosensors can also be integrated into Hazard Analysis and Critical Control Point programs, enabling critical microbial analysis of the entire food manufacturing process. In this review, the main biosensor approaches, technologies, instrumentation, and applications for food microbial analysis are described.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Saha, Soumyadeep, Manoj Sachdev, and Sushanta K. Mitra. "Recent advances in label-free optical, electrochemical, and electronic biosensors for glioma biomarkers." Biomicrofluidics 17, no. 1 (January 2023): 011502. http://dx.doi.org/10.1063/5.0135525.

Повний текст джерела
Анотація:
Gliomas are the most commonly occurring primary brain tumor with poor prognosis and high mortality rate. Currently, the diagnostic and monitoring options for glioma mainly revolve around imaging techniques, which often provide limited information and require supervisory expertise. Liquid biopsy is a great alternative or complementary monitoring protocol that can be implemented along with other standard diagnosis protocols. However, standard detection schemes for sampling and monitoring biomarkers in different biological fluids lack the necessary sensitivity and ability for real-time analysis. Lately, biosensor-based diagnostic and monitoring technology has attracted significant attention due to several advantageous features, including high sensitivity and specificity, high-throughput analysis, minimally invasive, and multiplexing ability. In this review article, we have focused our attention on glioma and presented a literature survey summarizing the diagnostic, prognostic, and predictive biomarkers associated with glioma. Further, we discussed different biosensory approaches reported to date for the detection of specific glioma biomarkers. Current biosensors demonstrate high sensitivity and specificity, which can be used for point-of-care devices or liquid biopsies. However, for real clinical applications, these biosensors lack high-throughput and multiplexed analysis, which can be achieved via integration with microfluidic systems. We shared our perspective on the current state-of-the-art different biosensor-based diagnostic and monitoring technologies reported and the future research scopes. To the best of our knowledge, this is the first review focusing on biosensors for glioma detection, and it is anticipated that the review will offer a new pathway for the development of such biosensors and related diagnostic platforms.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Christini, David J., Jeff Walden, and Jay M. Edelberg. "Direct biologically based biosensing of dynamic physiological function." American Journal of Physiology-Heart and Circulatory Physiology 280, no. 5 (May 1, 2001): H2006—H2010. http://dx.doi.org/10.1152/ajpheart.2001.280.5.h2006.

Повний текст джерела
Анотація:
Dynamic regulation of biological systems requires real-time assessment of relevant physiological needs. Biosensors, which transduce biological actions or reactions into signals amenable to processing, are well suited for such monitoring. Typically, in vivo biosensors approximate physiological function via the measurement of surrogate signals. The alternative approach presented here would be to use biologically based biosensors for the direct measurement of physiological activity via functional integration of relevant governing inputs. We show that an implanted excitable-tissue biosensor (excitable cardiac tissue) can be used as a real-time, integrated bioprocessor to analyze the complex inputs regulating a dynamic physiological variable (heart rate). This approach offers the potential for long-term biologically tuned quantification of endogenous physiological function.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Raykova, Magdalena R., Damion K. Corrigan, Morag Holdsworth, Fiona L. Henriquez, and Andrew C. Ward. "Emerging Electrochemical Sensors for Real-Time Detection of Tetracyclines in Milk." Biosensors 11, no. 7 (July 9, 2021): 232. http://dx.doi.org/10.3390/bios11070232.

Повний текст джерела
Анотація:
Antimicrobial drug residues in food are strictly controlled and monitored by national laws in most territories. Tetracyclines are a major broad-spectrum antibiotic class, active against a wide range of Gram-positive and Gram-negative bacteria, and they are the leading choice for the treatment of many conditions in veterinary medicine in recent years. In dairy farms, milk from cows being treated with antibiotic drugs, such as tetracyclines, is considered unfit for human consumption. Contamination of the farm bulk tank with milk containing these residues presents a threat to confidence of supply and results in financial losses to farmers and dairy. Real-time monitoring of milk production for antimicrobial residues could reduce this risk and help to minimise the release of residues into the environment where they can cause reservoirs of antimicrobial resistance. In this article, we review the existing literature for the detection of tetracyclines in cow’s milk. Firstly, the complex nature of the milk matrix is described, and the test strategies in commercial use are outlined. Following this, emerging biosensors in the low-cost biosensors field are contrasted against each other, focusing upon electrochemical biosensors. Existing commercial tests that identify antimicrobial residues within milk are largely limited to beta-lactam detection, or non-specific detection of microbial inhibition, with tests specific to tetracycline residues less prevalent. Herein, we review a number of emerging electrochemical biosensor detection strategies for tetracyclines, which have the potential to close this gap and address the industry challenges associated with existing tests.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Jang, Chorom, Hee-Jo Lee, and Jong-Gwan Yook. "Radio-Frequency Biosensors for Real-Time and Continuous Glucose Detection." Sensors 21, no. 5 (March 6, 2021): 1843. http://dx.doi.org/10.3390/s21051843.

Повний текст джерела
Анотація:
This review paper focuses on radio-frequency (RF) biosensors for real-time and continuous glucose sensing reported in the literature, including our recent research. Diverse versions of glucose biosensors based on RF devices and circuits are briefly introduced, and their performances are compared. In addition, the limitations of the developed RF glucose biosensors are discussed. Finally, we present perspectives on state-of-art RF biosensing chips for point-of-care diagnosis and describe their future challenges.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wilson, George S., and Raeann Gifford. "Biosensors for real-time in vivo measurements." Biosensors and Bioelectronics 20, no. 12 (June 2005): 2388–403. http://dx.doi.org/10.1016/j.bios.2004.12.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Eiferman, Daniel S., Long Nguyen, and R. Anthony Perez-Tamayo. "Real-Time Myocardial Glucose Measurement Using Biosensors." ASAIO Journal 54, no. 1 (January 2008): 120–23. http://dx.doi.org/10.1097/mat.0b013e318160f809.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Eiferman, D., L. Nguyen, K. Abe, J. Bohannen, E. Okum, and R. A. Perez-Tamayo. "REAL-TIME MYOCARDIAL GLUCOSE MEASUREMENT USING BIOSENSORS." ASAIO Journal 52, no. 2 (March 2006): 25A. http://dx.doi.org/10.1097/00002480-200603000-00117.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Real-time biosensors"

1

Ng, Shu Rui. "Electrochemical biosensors for real-time detection of angiogenesis." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/25625.

Повний текст джерела
Анотація:
Electrochemical biosensors have been made to detect the metabolic markers, pH, O2 and glucose, and nitric oxide (NO), the signalling molecule involved in angiogenesis. A novel three-dimensional (3-D) graphene/ionic liquid (IL) nanocomposite demonstrates highly sensitive detection of NO in phosphate buffered saline (PBS). An arginine-glycine-aspartic acid (RGD) peptide-functionalised biomimetic graphene film has been used as both a cell culture and sensing matrix to detect NO released by human umbilical vein endothelial cells (HUVECs) in real-time under acetylcholine (Ach) stimulation. The amount of NO released is dose-dependent and inhibited by NG-nitro-L-arginine methyl ester (L-NAME). A poly(ethyleneimine) (PEI)-coated anodically electrodeposited iridium oxide film (AEIROF) exhibiting super-Nernstian response to pH functions as miniature pH sensor for detecting acute changes in extracellular pH due to the interaction of porcine aortic ECs (PAECs) with fibronectin and thrombin. Thrombin causes dissolution of fibronectin, extracellular acidification of PAECs and a change in cell morphology from stretched to round cells. O2 and glucose biosensors based on a novel electropolymerised redox polymer are developed and prepared by one-step electropolymerisation of methylene blue (MB+) and pyrrole for the O2 biosensor, with the addition of glucose oxidase (GOD) for the glucose biosensor. The O2 biosensor demonstrates superior sensitivity towards dissolved O2 at atmospheric (atm) O2 concentrations and below and is insensitive to pH. The glucose biosensor exhibits direct electron transfer (DET) and is insensitive to pH from pH 6 to 8 in N2-purged PBS and from pH 4 to 8 in atm O2 PBS.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Phairatana, Tonghathai. "Bioengineering of novel carbon-based biosensors for real-time biomedical use." Thesis, Imperial College London, 2015. http://hdl.handle.net/10044/1/58345.

Повний текст джерела
Анотація:
The aim of this thesis was to develop novel carbon-based biosensors and sensors for real-time metabolite and drug detection, to provide the next generation of medical devices which can give clinicians relevant chemical information in real-time at the patient bedside. An autocalibration system was developed using LabSmith programmable components to give precise fluid delivery and excellent temporal control of multiple liquid streams. This enables a 5-point calibration to be carried out using two solutions in 12 minutes. Systems using chitosan, poly(ethylene glycol)diglycidyl ether hydrogel, electrodeposition and selfassembly to immobilise enzymes on a combined needle electrode surface were studied and their performances were investigated using a microfluidic platform. The autocalibration system was combined with the graphene oxide-based biosensors in a microchip coupled with a microdialysis probe and was examined as a proof-of-concept clinical on-line analysis system. A reduced graphene oxide-based sensor was fabricated using a combined needle electrode for on-line neurotransmitter detection of dopamine. Its performance was compared with that of a platinum electrode. A microfluidic sensor based on a carbon nanotube-epoxy composite was fabricated to detect the presence of carboplatin (anti-cancer drug) in healthy tissue in real time during chemotherapy. Detection of carboplatin was carried out using differential pulse voltammetry firstly in a beaker, in which carbon nanotube-epoxy composite electrodes performed better than glassy carbon electrodes for oxidation of free purine bases and than DNA-modified carbon nanotube-epoxy composite sensors for detection of carboplatin. Carboplatin detection was then performed in a microfluidic platform. The methodology for on-line carboplatin detection was optimised in terms of the analysis time and for the repeated determination of carboplatin using the same electrode. Microdialysis and microfluidic techniques have been combined to give a proof-of-concept system real-time carboplatin detection using the carbon nanotube-epoxy composite sensors.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Liu, Chang. "Localized Surface Plasmon Resonance Biosensors for Real-Time Biomolecular Binding Study." FIU Digital Commons, 2013. http://digitalcommons.fiu.edu/etd/837.

Повний текст джерела
Анотація:
Surface Plasmon Resonance (SPR) and localized surface plasmon resonance (LSPR) biosensors have brought a revolutionary change to in vitro study of biological and biochemical processes due to its ability to measure extremely small changes in surface refractive index (RI), binding equilibrium and kinetics. Strategies based on LSPR have been employed to enhance the sensitivity for a variety of applications, such as diagnosis of diseases, environmental analysis, food safety, and chemical threat detection. In LSPR spectroscopy, absorption and scattering of light are greatly enhanced at frequencies that excite the LSPR, resulting in a characteristic extinction spectrum that depends on the RI of the surrounding medium. Compositional and conformational change within the surrounding medium near the sensing surface could therefore be detected as shifts in the extinction spectrum. This dissertation specifically focuses on the development and evaluation of highly sensitive LSPR biosensors for in situ study of biomolecular binding process by incorporating nanotechnology. Compared to traditional methods for biomolecular binding studies, LSPR-based biosensors offer real-time, label free detection. First, we modified the gold sensing surface of LSPR-based biosensors using nanomaterials such as gold nanoparticles (AuNPs) and polymer to enhance surface absorption and sensitivity. The performance of this type of biosensors was evaluated on the application of small heavy metal molecule binding affinity study. This biosensor exhibited ~7 fold sensitivity enhancement and binding kinetics measurement capability comparing to traditional biosensors. Second, a miniaturized cell culture system was integrated into the LSPR-based biosensor system for the purpose of real-time biomarker signaling pathway studies and drug efficacy studies with living cells. To the best of our knowledge, this is the first LSPR-based sensing platform with the capability of living cell studies. We demonstrated the living cell measurement ability by studying the VEGF signaling pathway in living SKOV-3 cells. Results have shown that the VEGF secretion level from SKOV-3 cells is 0.0137 ± 0.0012 pg per cell. Moreover, we have demonstrated bevacizumab drug regulation to the VEGF signaling pathway using this biosensor. This sensing platform could potentially help studying biomolecular binding kinetics which elucidates the underlying mechanisms of biotransportation and drug delivery.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Stengel, Gudrun. "Real time monitoring of DNA hybridization and replication using optical and acoustic biosensors." [S.l. : s.n.], 2004. http://deposit.ddb.de/cgi-bin/dokserv?idn=971304572.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hong, Soonjin Barbee Kenneth A. "Quantitative analysis of cell-surface interactions and cell adhesion process in real-time /." Philadelphia, Pa. : Drexel University, 2008. http://hdl.handle.net/1860/2840.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Canelle, Quentin. "Real Time Surface Plasmon Resonance Biosensors, a Powerful Technology to Assess Polyclonal Antibody Avidity." Doctoral thesis, Universite Libre de Bruxelles, 2015. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/216754.

Повний текст джерела
Анотація:
The present research focused on the development of a new methodology to assess the strength of the interaction between vaccine antigens and elicited polyclonal antibodies through SPR biosensors. Quantifying the binding strength of polyclonal antibodies is of first importance to evaluate the quality of the vaccine as well as to increase the scientific knowledge of immune protection mechanisms. To now the development of such tool has been complicated by the non-specific binding caused by high protein abundance in the blood and serum samples but also by the way of interpreting the data resulting from multi-interaction events measured at the same time. At first, we unsuccessfully tried to segregate the individual affinity contribution of each antibody population by measuring the signal as the sum of singular interactions. Differentiation of the singular contribution would have needed the fulfillment of the “additivity” hypothesis, meaning that each antibody bind identically alone or in mixture with other antibody. This hypothesis was not met and mathematical assessment by the sum of singular contribution led to fitting results that did not reflect the biological reality. It was therefore decided to switch the analysis method and to measure the end association binding level reached by the different samples injected at the same specific antibody content. The dissociation behavior was interpreted by the percentage of binding after long and fixed dissociation time. In a first application, we compared the antibodies elicited by two different commercially available vaccines and we showed that the binding interaction was not concentration dependent as, highly different levels were reached when injecting identical antibody concentration. No statistical significant difference was observed between both vaccines. Research firstly focused on the decrease of the non-specific binding and we found that ionic strength was a key parameter, increasing the buffer salt concentration reduced the non-specific binding without diminishing the binding strength. The sample composition was also a key parameter and purifying the IgG allowed to decrease dramatically the undesired binding events. A second application aimed at showing the equivalence between two different antigen constructions for two antibodies population. Even if identical antigen level immobilization is a challenge, the methodology is completely suitable to perform a 2-dimensional comparison (ligand and analyte). A last application was dedicated to the comparison between D and Q-pan Flu vaccines, and results showed that there was no statistical evidence of significant differences between both vaccines. End association level correlated well with haemagglutination inhibition assay at least when serum samples were not diluted at the same antibody content. This last application also showed that throughput may be extended to more than 50 samples per 80 hours
Doctorat en Sciences agronomiques et ingénierie biologique
info:eu-repo/semantics/nonPublished
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zelada, Guillén Gustavo Adolfo. "Ultrasensitive detection of pathogens in real-time. Potentiometric biosensors based on single-walled carbon nanotubes and aptamers." Doctoral thesis, Universitat Rovira i Virgili, 2011. http://hdl.handle.net/10803/51768.

Повний текст джерела
Анотація:
Un gran nombre de plataformes de detecció biològica han incorporat materials nanoestructurats com una estratègia per a millorar diversos paràmetres operacionals i de qualitat tals com reduir els temps d'anàlisis i els límits de detecció. Les tècniques electroquímiques de detecció es prefereixen sobre altres tècniques ja que presenten una sèrie d'avantatges com a rapidesa, facilitat de maneig, cost reduït i la reduïda mida dels detectors comercials. Entre les tècniques electroquímiques, les metodologies més simples, comunes i més fàcils de transportar són aquelles basades en la potenciometria. La nova tendència seguida amb els elèctrodes potenciomètrics d'estat sòlid representa una eina atractiva en l'anàlisi de mostres líquides en temps real. No obstant això, fins avui ha estat difícil dur a terme la detecció electroquímica directa de bacteris i proteïnes, sense utilitzar marcadors químics, donat que les interaccions receptor‐bacteri i receptor‐proteïna no produeixen un senyal elèctric mesurable. En aquesta tesi, es demostra per primera vegada la detecció potenciomètrica en temps real de bacteris i proteïnes relacionades amb diverses malalties. Aquesta tasca va ser duta a terme mitjançant el disseny d'una plataforma universal de detecció utilitzant nanotubs de carboni com a transductors potenciomètrics i aptàmers com a elements de reconeixement molecular. Les excel•lents propietats de transducció ofertes pels nanotubs de carboni combinades amb la gairebé il•limitada possibilitat dels aptàmers de ser dissenyats in vitro per reconèixer ions, proteïnes, virus i bacteris converteix aquesta plataforma en una eina amb possibilitats inesgotables de detecció biològica en temps real.
Un gran número de plataformas de detección biológica han incorporado materiales nanoestructurados como una estrategia para mejorar varios parámetros operacionales y de calidad tales como reducir los tiempos de análisis y los límites de detección. Las técnicas electroquímicas de detección se prefieren sobre otras técnicas debido a que presentan una serie de ventajas tales como rapidez, facilidad de manejo, coste reducido y el reducido tamaño de los detectores comerciales. Entre las técnicas electroquímicas, las metodologías más simples, comunes y más fáciles de transportar son aquellas basadas en la potenciometría. La nueva tendencia seguida con los electrodos potenciométricos de estado sólido representa una herramienta atractiva para el análisis de muestras líquidas en tiempo real. Sin embargo, hasta hoy ha sido difícil llevar a cabo la detección electroquímica directa de bacterias y proteínas sin ULTRASENSITIVE DETECTION OF PATHOGENS IN REAL‐TIME POTENTIOMETRIC BIOSENSORS BASED ON SINGLE‐WALLED CARBON NANOTUBES AND APTAMERS utilizar marcadores químicos, dado que las interacciones receptor‐bacteria y receptor‐proteína no producen una señal eléctrica medible. En esta tesis, se demuestra por primera vez la detección potenciométrica en tiempo real de bacterias y proteínas relacionadas con varias enfermedades. Esta tarea fue llevada a cabo mediante el diseño de una plataforma universal de detección utilizando nanotubos de carbono como transductores potenciométricos y aptámeros como elementos de reconocimiento molecular. Las excelentes propiedades transductoras de los nanotubos de carbono combinadas con la casi ilimitada posibilidad de los aptámeros de ser diseñados in vitro para reconocer iones, proteínas, virus y bacterias convierte esta plataforma en una herramienta con posibilidades inagotables de detección biológica en tiempo real.
Numerous biosensing platforms have incorporated nanostructured materials as a strategy for improving several performance and operational parameters such as reducing the limits of detection or the assay times in both pathogen and protein detection. Electrochemical sensing techniques are preferred over other detection methods because they present a series of advantages such as rapid response, ease of use, low‐cost and small sized commercial detectors. Among the electrochemical techniques, the simplest, most widespread and fieldportable methodologies are based on potentiometry. The new wave of potentiometric solidstate electrodes represents an attractive tool for real‐time bioanalysis in liquid samples. However, to date, it has been difficult to carry out the specific and direct electrochemical detection of whole living bacterial cells or disease‐related proteins without chemical labelling because the interaction receptor‐bacteria/receptor‐protein does not provide a measurable electrochemical signal. In this Thesis, the real‐time potentiometric detection of bacteria and disease‐related proteins is demonstrated for the first time. To accomplish such a challenging task, a novel and universal biosensing platform is designed using single‐walled carbon nanotubes as potentiometric transducers, and aptamers as biorecognition elements. The excellent potentiometric transduction properties of carbon nanotubes combined with the quasi‐unlimited capability of aptamers (RNA and DNA synthetic oligonucleotide segments) to be tailored in vitro against ions, proteins, viruses and bacteria converts such a platform into a
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Teerapanich, Pattamon. "Fluorescence-based nanofluidic biosensor platform for real-time measurement of protein binding kinetics." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30239/document.

Повний текст джерела
Анотація:
L'analyse cinétique d'interactions de protéines offre une multitude d'informations sur les fonctions physiologiques de ces molécules au sein de l'activité cellulaire, et peut donc contribuer à l'amélioration des diagnostics médicaux ainsi qu'à la découverte de nouveaux traitements thérapeutiques. La résonance plasmonique de surface (SPR) est la technique de biodétection optique de référence pour les études cinétiques d'interaction de molécules biologiques. Si la SPR offre une détection en temps réel et sans marquage, elle nécessite en revanche des équipements coûteux et sophistiqués ainsi que du personnel qualifié, limitant ainsi son utilisation au sein de laboratoires de recherche académiques. Dans ces travaux de thèse, nous avons développé une plateforme de biodétection basée sur l'utilisation de nanofentes biofonctionnalisées combinées avec une détection par microscopie à fluorescence. Ce système permet l'observation en temps réel d'interactions protéines-protéines et la détermination des constantes cinétiques associées, avec des temps de réponse optimisés et une excellente efficacité de capture. La fonctionnalité du système a été démontrée par l'étude des cinétiques d'interaction de deux couples modèles de différentes affinités : le couple streptavidine/biotine et le couple IgG de souris/anti-IgG de souris. Une très bonne cohérence entre les constantes cinétiques extraites, celles obtenues par des expériences similaires réalisées en SPR et les valeurs rapportées dans la littérature montre que notre approche pourrait être facilement applicable pour l'étude cinétique d'interactions de protéines avec une sensibilité allant jusqu'au pM, sur une large gamme de constantes de dissociation. De plus, nous avons intégré un générateur de gradient de concentrations microfluidique en amont de nos nanofentes, permettant ainsi des mesures simultanées de cinétiques d'interactions à différentes concentrations d'analyte en une seule expérience. Ce système intégré offre de nombreux avantages, tels qu'une réduction de la consommation des réactifs et des temps d'analyse par rapport aux approches séquentielles classiques. Cette technologie innovante pourrait ainsi être un outil précieux non seulement pour les domaines du biomédical et de la médecine personnalisée mais aussi pour la recherche fondamentale en chimie et biologie
Kinetic monitoring of protein-protein interactions offers fundamental insights of their cellular functions and is a vital key for the improvement of diagnostic tests as well as the discovery of novel therapeutic drugs. Surface plasmon resonance (SPR) is an established biosensor technology routinely used for kinetic studies of biomolecular interactions. While SPR offers the benefits of real-time and label-free detection, it requires expensive and sophisticated optical apparatus and highly trained personnel, thus limiting the accessibility of standard laboratories. In this PhD project, we have developed an alternative and cost-effective biosensor platform exploiting biofunctionalized nanofluidic slits, or nanoslits, combined with a bench-top fluorescence microscope. Our approach enables the visualization of protein interactions in real-time with the possibility to determine associated kinetic parameters along with optimized response times and enhanced binding efficiency. We have demonstrated the effectiveness of our devices through kinetic studies of two representative protein-receptor pairs with different binding affinities: streptavidin-biotin and mouse IgG/anti-mouse IgG interactions. Good agreement of extracted kinetic parameters between our device, SPR measurements and literature values indicated that this approach could be readily applicable to study kinetics of protein interactions with sensitivity down to 1 pM on a large scale of dissociation constants. In addition, we have incorporated a microfluidic gradient generator to our validated nanoslit device, which has allowed one-shot parallel kinetic measurements to be realized in a single-experiment. This integrated system provides advantages of diminished material consumption and analysis time over the conventional kinetic assays. We believe that this innovative technology will drive future advancements not only in the discipline of biomedical and personalized medicine, but also in basic chemical/biological research
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Brawner, Keith. "Modeling Learner Mood in Realtime through Biosensors for Intelligent Tutoring Improvements." Doctoral diss., University of Central Florida, 2013. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5774.

Повний текст джерела
Анотація:
Computer-based instructors, just like their human counterparts, should monitor the emotional and cognitive states of their students in order to adapt instructional technique. Doing so requires a model of student state to be available at run time, but this has historically been difficult. Because people are different, generalized models have not been able to be validated. As a person's cognitive and affective state vary over time of day and seasonally, individualized models have had differing difficulties. The simultaneous creation and execution of an individualized model, in real time, represents the last option for modeling such cognitive and affective states. This dissertation presents and evaluates four differing techniques for the creation of cognitive and affective models that are created on-line and in real time for each individual user as alternatives to generalized models. Each of these techniques involves making predictions and modifications to the model in real time, addressing the real time datastream problems of infinite length, detection of new concepts, and responding to how concepts change over time. Additionally, with the knowledge that a user is physically present, this work investigates the contribution that the occasional direct user query can add to the overall quality of such models. The research described in this dissertation finds that the creation of a reasonable quality affective model is possible with an infinitesimal amount of time and without “ground truth” knowledge of the user, which is shown across three different emotional states. Creation of a cognitive model in the same fashion, however, was not possible via direct AI modeling, even with all of the “ground truth” information available, which is shown across four different cognitive states.
Ph.D.
Doctorate
Electrical Engineering and Computing
Engineering and Computer Science
Computer Engineering
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Shah, Niksha Chimanlal Meghji. "Construction and development of bioluminescent Pseudomonas aeruginosa strains : application in biosensors for preservative efficacy testing." Thesis, University of Hertfordshire, 2014. http://hdl.handle.net/2299/15592.

Повний текст джерела
Анотація:
Whole cell biosensors have been extensively used for monitoring toxicity and contamination of compounds in environmental biology and microbial ecology. However, their application in the pharmaceutical and cosmetics industries for preservative efficacy testing (PET) has been limited. According to several pharmacopoeias, preservatives should be tested for microbial activity using traditional viable count techniques; the use of whole cell microbial biosensors potentially provides an alternative, fast, and efficient method. The aim of the study was to construct and develop whole cell microbial biosensors with Pseudomonas aeruginosa ATCC 9027. Constitutive promoters: PlysS, Pspc, Ptat, Plpp and PldcC and the lux-cassette were inserted into plasmid pME4510 and transformed into P. aeruginosa ATCC 9027 cells to produce bioluminescent strains. Plasmids were found to be maintained stably (~50 copies per cell) throughout the growth and death cycle. The novel bioluminescent strains were validated in accordance with the pharmacopoeia using bioluminescence detection and quantification followed by comparison with the traditional plate counting method. The bioluminescent method was found to be accurate, precise and equivalent at a range of 103 – 107 CFU/mL, as compared with plate counting. Recovery of bacterial cells was quantified using bioluminescence; this method proved to be accurate with percentage recoveries between 70-130% for all bioluminescent strains. The method was also more precise (relative standard deviation less than 15%) than the traditional plate counting method or the ATP bioluminescent method. Therefore, the bioluminescent constructs passed/exceeded pharmacopoeial specified criteria for range, limit of detection, accuracy, precision and equivalence. Physiology of the validated bioluminescent strains was studied by assessing the growth and death patterns using constitutive gene expression linked with bacterial replication. Promoter strengths were evaluated at various stages of the growth and death pattern and related to promoter sequences. PlysS, Ptat and Plpp were relatively strong promoters whilst PldcC and Pspc were relatively weak promoters. Relative promoter strength decreased in the order of Plpp>Ptat>PlysS>PldcC>Pspc during the exponential phase whilst Ptat was stronger than Plpp during the stationary phase of growth. Plpp had its highest level of expression during the exponential phase, while Ptat had relatively stable lux expression during the stationary phase. Correlations between relative bioluminescence and CFU at 24 hours were greater than 0.9 indicating a strong relationship for all bioluminescent strains. Reduction in correlation coefficients to approximately 0.6 between relative bioluminescence and CFU and between relative fluorescence and CFU beyond 24 hours indicated that a certain proportion of cells were viable but non-culturable. Tat-pME-lux showed steady bioluminescence compared to CFU count (R>0.9) throughout 28 days of growth. Equivalence analysis showed no significant difference between the bioluminescence and plate count method throughout 28 days of growth for all five bioluminescent strains. Applicability of these novel bioluminescent strains was evaluated for preservative efficacy tests (PET) using bacterial replication and bioluminescence as a measure of constitutive gene expression. PET using benzalkonium chloride and benzyl alcohol showed no significant difference between the bioluminescent method and the plate count method. Good correlations between bioluminescence, CFU count and fluorescence were obtained for benzalkonium chloride (BKC) concentrations (R>0.9) between 0.0003% and 0.0025% against strains lysR25, lppR4 and tatH5. Similarly, good correlations (R>0.9) between the three parameters were obtained for benzyl alcohol (BA) concentrations between 0.125% and 2% against strains lysR25, lppR4 and tatH5. The bioluminescent method and traditional plate counting method were equivalent for concentrations of BKC (0.0003 - 0.02%) and BA (0.25 - 2%) during preservative efficacy tests. These bioluminescent constructs therefore are good candidates for selection for preservative efficacy testing. The bioluminescent method and traditional plate counting method were also found to be equivalent for construct tatH5 at a concentration of 0.125% BA. PET testing with BKC and BA showed that tatH5-pMElux (R>0.9) had consistently high correlation coefficients between CFU and relative bioluminescence. Together with the results from growth and death kinetics, where tatH5 showed the greatest constitutive expression, it can be concluded that P. aeruginosa ATCC 9027 tatH5-pMElux is the best construct for testing various antimicrobial agents. This study has shown that according to the pharmacopoeial requirements, the bioluminescent method is more accurate, precise and equivalent to the traditional plate counting method and therefore can be utilised instead of the traditional plate counting method for the purpose of preservative efficacy testing.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Real-time biosensors"

1

Elsom, Jacqueline. Development of a quartz crystal based biosensor for real-time monitoring of particulate cell interactions. 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Real-time biosensors"

1

Haring, Alexander P., Ellen Cesewski, and Blake N. Johnson. "Piezoelectric Cantilever Biosensors for Label-free, Real-time Detection of DNA and RNA." In Biosensors and Biodetection, 247–62. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-6911-1_17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Binkowski, Brock F., Frank Fan, and Keith V. Wood. "Luminescent Biosensors for Real-Time Monitoring of Intracellular cAMP." In Methods in Molecular Biology, 263–71. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-160-4_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Palecek, Sean P. "High-Throughput Screening, Microfluidics, Biosensors, and Real-Time Phenotyping." In Stem Cell Engineering, 45–63. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05074-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zheng, Gengfeng, and Charles M. Lieber. "Nanowire Biosensors for Label-Free, Real-Time, Ultrasensitive Protein Detection." In Methods in Molecular Biology, 223–37. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-319-6_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Divyasorubini, Seerpatham, Shyami Menaka Kandage, Senal Liyanage, Charitha Rajapakse, and Gayathri N. Silva. "Microbial Biosensors for Real-Time Monitoring of the Bioremediation Processes." In Bioremediation of Environmental Pollutants, 111–44. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86169-8_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

van Wuijckhuijse, Arjan L., and Ben L. M. van Baar. "Recent Advances in Real-time Mass Spectrometry Detection of Bacteria." In Principles of Bacterial Detection: Biosensors, Recognition Receptors and Microsystems, 929–54. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-75113-9_36.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Liu, Xiaobo, Eduard Dumitrescu, and Silvana Andreescu. "Electrochemical Biosensors for Real-Time Monitoring of Reactive Oxygen and Nitrogen Species." In ACS Symposium Series, 301–27. Washington, DC: American Chemical Society, 2015. http://dx.doi.org/10.1021/bk-2015-1200.ch013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Gesellchen, Frank, Alessandra Stangherlin, Nicoletta Surdo, Anna Terrin, Anna Zoccarato, and Manuela Zaccolo. "Measuring Spatiotemporal Dynamics of Cyclic AMP Signaling in Real-Time Using FRET-Based Biosensors." In Methods in Molecular Biology, 297–316. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-126-0_16.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rossi, Michele, and Marco Tartagni. "Portable, Integrated Lock-in-Amplifier-Based System for Real-Time Impedimetric Measurements on Nanowires Biosensors." In Beyond-CMOS Nanodevices 1, 73–82. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984772.ch5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Nelson, Carl P., and R. A. John Challiss. "The Use of Translocating Fluorescent Biosensors for Real-Time Monitoring of GPCR-Mediated Signaling Events." In Methods in Molecular Biology, 329–43. Totowa, NJ: Humana Press, 2011. http://dx.doi.org/10.1007/978-1-61779-126-0_18.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Real-time biosensors"

1

Vikalo, H., and A. Hassibi. "Estimation in real-time affinity-based biosensors." In 2008 42nd Asilomar Conference on Signals, Systems and Computers. IEEE, 2008. http://dx.doi.org/10.1109/acssc.2008.5074763.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chai, Peter R., Rochelle K. Rosen, and Edward W. Boyer. "Ingestible Biosensors for Real-Time Medical Adherence Monitoring: MyTMed." In 2016 49th Hawaii International Conference on System Sciences (HICSS). IEEE, 2016. http://dx.doi.org/10.1109/hicss.2016.426.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lue, Jiann-Hwa, Ting-Jou Ding, Tsung-Hsun Yang, Jenq-Yang Chang, and Wen-Yih Chen. "Real-time monitoring on peptide synthesis by GMR biosensors." In 2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE, 2011. http://dx.doi.org/10.1109/bmei.2011.6098754.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Krishnamurthy, Vikram, Kai Yiu Luk, Bruce Cornell, and Don Martin. "Real-Time Molecular Detectors using Gramicidin Ion Channel Nano-Biosensors." In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07. IEEE, 2007. http://dx.doi.org/10.1109/icassp.2007.366701.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shamaiah, Manohar, Xiaohu Shen, and Haris Vikalo. "On parameter estimation for diffusion processes in real-time biosensors." In 2010 44th Asilomar Conference on Signals, Systems and Computers. IEEE, 2010. http://dx.doi.org/10.1109/acssc.2010.5757571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

de Silva, Buddhika, Anirudh Natarajan, Mehul Motani, and Kee-Chaing Chua. "A real-time exercise feedback utility with body sensor networks." In 2008 5th International Summer School and Symposium on Medical Devices and Biosensors. IEEE, 2008. http://dx.doi.org/10.1109/issmdbs.2008.4575013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

De, A., J. van Nieuwkasteele, E. T. Carlen, and A. van den Berg. "Real-time measurements of PNA:DNA hybridization kinetics with silicon nanowire biosensors." In 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). IEEE, 2013. http://dx.doi.org/10.1109/transducers.2013.6627386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Chang, An-Cheng, and Mary B. Tabacco. "Real-time detection of bacterial aerosols by fiber optic-based biosensors." In Environmental and Industrial Sensing, edited by Yud-Ren Chen and Shu-I. Tu. SPIE, 2001. http://dx.doi.org/10.1117/12.418738.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

García-Rupérez, J., J. G. Castelló, V. Toccafondo, and P. Pérez-Millán. "Real-time and low-cost biosensors based on photonic bandgap structures." In SPIE Photonics Europe. SPIE, 2012. http://dx.doi.org/10.1117/12.921934.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Soh, Hyongsok T. "Real-time biosensors for continuous measurements of specific biomolecules in vivo." In Integrated Sensors for Biological and Neural Sensing, edited by Hooman Mohseni. SPIE, 2021. http://dx.doi.org/10.1117/12.2580234.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Real-time biosensors"

1

Delwiche, Michael, Boaz Zion, Robert BonDurant, Judith Rishpon, Ephraim Maltz, and Miriam Rosenberg. Biosensors for On-Line Measurement of Reproductive Hormones and Milk Proteins to Improve Dairy Herd Management. United States Department of Agriculture, February 2001. http://dx.doi.org/10.32747/2001.7573998.bard.

Повний текст джерела
Анотація:
The original objectives of this research project were to: (1) develop immunoassays, photometric sensors, and electrochemical sensors for real-time measurement of progesterone and estradiol in milk, (2) develop biosensors for measurement of caseins in milk, and (3) integrate and adapt these sensor technologies to create an automated electronic sensing system for operation in dairy parlors during milking. The overall direction of research was not changed, although the work was expanded to include other milk components such as urea and lactose. A second generation biosensor for on-line measurement of bovine progesterone was designed and tested. Anti-progesterone antibody was coated on small disks of nitrocellulose membrane, which were inserted in the reaction chamber prior to testing, and a real-time assay was developed. The biosensor was designed using micropumps and valves under computer control, and assayed fluid volumes on the order of 1 ml. An automated sampler was designed to draw a test volume of milk from the long milk tube using a 4-way pinch valve. The system could execute a measurement cycle in about 10 min. Progesterone could be measured at concentrations low enough to distinguish luteal-phase from follicular-phase cows. The potential of the sensor to detect actual ovulatory events was compared with standard methods of estrus detection, including human observation and an activity monitor. The biosensor correctly identified all ovulatory events during its testperiod, but the variability at low progesterone concentrations triggered some false positives. Direct on-line measurement and intelligent interpretation of reproductive hormone profiles offers the potential for substantial improvement in reproductive management. A simple potentiometric method for measurement of milk protein was developed and tested. The method was based on the fact that proteins bind iodine. When proteins are added to a solution of the redox couple iodine/iodide (I-I2), the concentration of free iodine is changed and, as a consequence, the potential between two electrodes immersed in the solution is changed. The method worked well with analytical casein solutions and accurately measured concentrations of analytical caseins added to fresh milk. When tested with actual milk samples, the correlation between the sensor readings and the reference lab results (of both total proteins and casein content) was inferior to that of analytical casein. A number of different technologies were explored for the analysis of milk urea, and a manometric technique was selected for the final design. In the new sensor, urea in the sample was hydrolyzed to ammonium and carbonate by the enzyme urease, and subsequent shaking of the sample with citric acid in a sealed cell allowed urea to be estimated as a change in partial pressure of carbon dioxide. The pressure change in the cell was measured with a miniature piezoresistive pressure sensor, and effects of background dissolved gases and vapor pressures were corrected for by repeating the measurement of pressure developed in the sample without the addition of urease. Results were accurate in the physiological range of milk, the assay was faster than the typical milking period, and no toxic reagents were required. A sampling device was designed and built to passively draw milk from the long milk tube in the parlor. An electrochemical sensor for lactose was developed starting with a three-cascaded-enzyme sensor, evolving into two enzymes and CO2[Fe (CN)6] as a mediator, and then into a microflow injection system using poly-osmium modified screen-printed electrodes. The sensor was designed to serve multiple milking positions, using a manifold valve, a sampling valve, and two pumps. Disposable screen-printed electrodes with enzymatic membranes were used. The sensor was optimized for electrode coating components, flow rate, pH, and sample size, and the results correlated well (r2= 0.967) with known lactose concentrations.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії