Статті в журналах з теми "Real-time acquisition"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Real-time acquisition.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Real-time acquisition".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Rusinkiewicz, Szymon, Olaf Hall-Holt, and Marc Levoy. "Real-time 3D model acquisition." ACM Transactions on Graphics 21, no. 3 (July 2002): 438–46. http://dx.doi.org/10.1145/566654.566600.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wong, M., D. Zhang, W. K. Kong, and G. Lu. "Real-time palmprint acquisition system design." IEE Proceedings - Vision, Image, and Signal Processing 152, no. 5 (2005): 527. http://dx.doi.org/10.1049/ip-vis:20049040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Backus, P. R., J. C. Jordan, and D. G. Harper. "Real time data acquisition in SETI." Acta Astronautica 26, no. 3-4 (March 1992): 169–72. http://dx.doi.org/10.1016/0094-5765(92)90090-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Braunbeck, G., M. Kaindl, A. M. Waeber, and F. Reinhard. "Decoherence mitigation by real-time noise acquisition." Journal of Applied Physics 130, no. 5 (August 7, 2021): 054302. http://dx.doi.org/10.1063/5.0048140.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Jaravine, Victor A., and Vladislav Yu Orekhov. "Targeted Acquisition for Real-Time NMR Spectroscopy." Journal of the American Chemical Society 128, no. 41 (October 2006): 13421–26. http://dx.doi.org/10.1021/ja062146p.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Taylor, S., and R. Taylor. "Parallel processing and real-time data acquisition." IEEE Transactions on Nuclear Science 37, no. 2 (April 1990): 355–60. http://dx.doi.org/10.1109/23.106644.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Muratore, John, Troy Heindel, Terri Murphy, Arthur Rasmussen, and Robert McFarland. "Real-time data acquisition at mission control." Communications of the ACM 33, no. 12 (December 1990): 18–31. http://dx.doi.org/10.1145/96267.96277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Buono, S., I. Gaponenko, R. Jones, L. Mapelli, G. Mornacchi, D. Prigent, E. Sanchez-Corral, et al. "Real-time UNIX in HEP data acquisition." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 352, no. 1-2 (December 1994): 213–15. http://dx.doi.org/10.1016/0168-9002(94)91503-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Rottmann, J., D. Kozono, R. Mak, A. Chen, F. L. Hacker, and R. I. Berbeco. "Verification Real-Time Image Acquisition System (VERITAS)." International Journal of Radiation Oncology*Biology*Physics 90, no. 1 (September 2014): S892—S893. http://dx.doi.org/10.1016/j.ijrobp.2014.05.2541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Singh, Baljeet, Nitin Kumar, Irshad Ahmed, and Karun Yadav. "Real-Time Object Detection Using Deep Learning." International Journal for Research in Applied Science and Engineering Technology 10, no. 5 (May 31, 2022): 3159–60. http://dx.doi.org/10.22214/ijraset.2022.42820.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract: The computer vision field known as real-time acquisition is large, dynamic, and complex. Local image process refers to the acquisition of one object in an image, while Objects refers to the acquisition of multiple objects in an image. In digital photos and videos, this sees semantic class objects. Tracking features, video surveilance, pedestrian detection, census, self-driving cars, face recognition, sports tracking, and many other applications used to find real-time object. Convolution Neural Networks is an in-depth study tool for OpenCV (Opensource Computer Vision), a set of basic computer-assisted programming tasks. Computer visualization, in-depth study, and convolutional neural networks are some of the words used in this paper..
11

Saputra, H., A. Suhandi, A. Setiawan, A. Permanasari, and R. A. Putra. "Real-time data acquisition of dynamic moving objects." Journal of Physics: Conference Series 1806, no. 1 (March 1, 2021): 012046. http://dx.doi.org/10.1088/1742-6596/1806/1/012046.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Tang, Guoliang, Zi Wang, Shijie Liu, Chunlai Li, and Jianyu Wang. "Real-Time Hyperspectral Video Acquisition with Coded Slits." Sensors 22, no. 3 (January 21, 2022): 822. http://dx.doi.org/10.3390/s22030822.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We propose a real-time hyperspectral video acquisition system that uses coded slits. Conventional imaging spectrometers usually have scanning mechanisms that reduce the temporal resolution or sacrifice the spatial resolution to acquire spectral information instantly. Recently, computational spectral imaging has been applied to realize high-speed or high-performance spectral imaging. However, the most current computational spectral imaging systems take a long time to reconstruct spectral data cubes from limited measurements, which limits real-time hyperspectral video acquisition. In this work, we propose a new computational spectral imaging system. We substitute the slit in a conventional scanning-based imaging spectrometer with coded slits, which can achieve the parallel acquisition of spectral data and thus an imaging speed that is several times higher. We also apply an electronically controlled translation stage to use different codes at each exposure level. The larger amount of data allows for fast reconstruction through matrix inversion. To solve the problem of a trade-off between imaging speed and image quality in high-speed spectral imaging, we analyze the noise in the system. The severe readout noise in our system is suppressed with S-matrix coding. Finally, we build a practical prototype that can acquire hyperspectral video with a high spatial resolution and a high signal-to-noise ratio at 5 Hz in real time.
13

Reichardt, Thomas A., Michael S. Klassen, Galen B. King, and Normand M. Laurendeau. "Real-time acquisition of laser-induced fluorescence decays." Applied Optics 34, no. 6 (February 20, 1995): 973. http://dx.doi.org/10.1364/ao.34.000973.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Koninckx, T. P., and L. Van Gool. "Real-time range acquisition by adaptive structured light." IEEE Transactions on Pattern Analysis and Machine Intelligence 28, no. 3 (March 2006): 432–45. http://dx.doi.org/10.1109/tpami.2006.62.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Abidin, Ahmad Faizal Zainal, Mohammad Huzaimy Jusoh, Elster James, Syed Abdul Mutalib Al Junid, and Ahmad Ihsan Mohd Yassin. "Real-Time Remote Monitoring with Data Acquisition System." IOP Conference Series: Materials Science and Engineering 99 (November 19, 2015): 012011. http://dx.doi.org/10.1088/1757-899x/99/1/012011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Atmoko, R. A., R. Riantini, and M. K. Hasin. "IoT real time data acquisition using MQTT protocol." Journal of Physics: Conference Series 853 (May 2017): 012003. http://dx.doi.org/10.1088/1742-6596/853/1/012003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Denby, B., P. Gole, A. Sartori, and G. Tecchiolli. "Real time data acquisition techniques in meteorological applications." IEEE Transactions on Nuclear Science 45, no. 4 (1998): 1840–44. http://dx.doi.org/10.1109/23.710947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Cinque, Guglielmo. "Parameter setting in “instantaneous” and real-time acquisition." Behavioral and Brain Sciences 12, no. 2 (June 1989): 336. http://dx.doi.org/10.1017/s0140525x00048913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

van der Laan, Marten D. "Data acquisition for real-time process control systems." Annual Review in Automatic Programming 18 (January 1994): 109–14. http://dx.doi.org/10.1016/0066-4138(94)90019-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Catipovic, Josko. "Real‐time data acquisition from mid‐ocean observatories." Journal of the Acoustical Society of America 95, no. 5 (May 1994): 2808. http://dx.doi.org/10.1121/1.409729.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Islam, Sheikh Md Rabiul, Akram Hossain, and Asif Abdullah. "Real-Time Acquisition and Classification of Electrocardiogram Signal." Journal of Engineering Research and Sciences 1, no. 11 (November 2022): 8–15. http://dx.doi.org/10.55708/js0111002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

van der Laan, Marten D. "Data Acquisition for Real-Time Process Control Systems." IFAC Proceedings Volumes 27, no. 6 (June 1994): 109–14. http://dx.doi.org/10.1016/s1474-6670(17)45975-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Wang, Yi, Meng Zhang, Shuai Ji, and Jingdong Wang. "Design of Multi-channel Real-time Signal Acquisition System." Journal of Physics: Conference Series 2189, no. 1 (February 1, 2022): 012007. http://dx.doi.org/10.1088/1742-6596/2189/1/012007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract In order to improve the accuracy of the real-time signal acquisition, a real-time signal acquisition system based on high speed ADC and FPGA is proposed in this paper. AD9208 is used to realize high speed acquisition and DDC processing of original signal. FPGA 7V690T is used to realize digital channelization and fine FFT processing. This system can realize massive data storage and real-time signal display. The test results show that this system can effectively realize real-time signal acquisition and processing, and has strong anti-interference ability.
24

Huang, Feng, and Jian Kai Zhao. "Design of Multi-Channel Data Acquisition System Based on PXI 6281." Applied Mechanics and Materials 34-35 (October 2010): 1739–41. http://dx.doi.org/10.4028/www.scientific.net/amm.34-35.1739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The paper designed a multi-channel data acquisition system based on PXI 6281. It used DAQmx technology in LabVIEW for synchronous analog channel data acquisition. It realized multi-channel real-time data acquisition, processing, display and data auto-saving. Data acquisition system consists of three major modules: the pressure measurement module, the motor speed measurement modules and real-time temperature measurement module. It has advantage of short cycle of technological upgrading, development and low maintenance costs. It has some reference value for other data acquisitions.
25

Mehrdad, S., M. Satari, M. Safdary, and P. Moallem. "TOWARD REAL TIME UAVS’ IMAGE MOSAICKING." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (June 6, 2016): 941–46. http://dx.doi.org/10.5194/isprs-archives-xli-b1-941-2016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Anyone knows that sudden catastrophes can instantly do great damage. Fast and accurate acquisition of catastrophe information is an essential task for minimize life and property damage. Compared with other ways of catastrophe data acquisition, UAV based platforms can optimize time, cost and accuracy of the data acquisition, as a result UAVs’ data has become the first choice in such condition. In this paper, a novel and fast strategy is proposed for registering and mosaicking of UAVs’ image data. Firstly, imprecise image positions are used to find adjoining frames. Then matching process is done by a novel matching method. With keeping Sift in mind, this fast matching method is introduced, which uses images exposure time geometry, SIFT point detector and rBRIEF descriptor vector in order to match points efficiency, and by efficiency we mean not only time efficiency but also elimination of mismatch points. This method uses each image sequence imprecise attitude in order to use Epipolar geometry to both restricting search space of matching and eliminating mismatch points. In consideration of reaching to images imprecise attitude and positions we calibrated the UAV’s sensors. After matching process, RANSAC is used to eliminate mismatched tie points. In order to obtain final mosaic, image histograms are equalized and a weighted average method is used to image composition in overlapping areas. The total RMSE over all matching points is 1.72 m.
26

Mehrdad, S., M. Satari, M. Safdary, and P. Moallem. "TOWARD REAL TIME UAVS’ IMAGE MOSAICKING." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLI-B1 (June 6, 2016): 941–46. http://dx.doi.org/10.5194/isprsarchives-xli-b1-941-2016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Anyone knows that sudden catastrophes can instantly do great damage. Fast and accurate acquisition of catastrophe information is an essential task for minimize life and property damage. Compared with other ways of catastrophe data acquisition, UAV based platforms can optimize time, cost and accuracy of the data acquisition, as a result UAVs’ data has become the first choice in such condition. In this paper, a novel and fast strategy is proposed for registering and mosaicking of UAVs’ image data. Firstly, imprecise image positions are used to find adjoining frames. Then matching process is done by a novel matching method. With keeping Sift in mind, this fast matching method is introduced, which uses images exposure time geometry, SIFT point detector and rBRIEF descriptor vector in order to match points efficiency, and by efficiency we mean not only time efficiency but also elimination of mismatch points. This method uses each image sequence imprecise attitude in order to use Epipolar geometry to both restricting search space of matching and eliminating mismatch points. In consideration of reaching to images imprecise attitude and positions we calibrated the UAV’s sensors. After matching process, RANSAC is used to eliminate mismatched tie points. In order to obtain final mosaic, image histograms are equalized and a weighted average method is used to image composition in overlapping areas. The total RMSE over all matching points is 1.72 m.
27

Chen, Yun Jun, Xiu Ming Jiang, Gong Yuan Yang, and Yan Cai. "Design and Implementation of Real-Time Audio Transmission System." Advanced Materials Research 433-440 (January 2012): 2887–91. http://dx.doi.org/10.4028/www.scientific.net/amr.433-440.2887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Continuous Multi-channel digital audio signals system not only guarantees the continuity of signal acquisition, but has the real-time control ability in the process of signal acquisition. This paper proposes the producer/consumer design pattern which can make program designing quicker, simpler and more efficient. Through the example of continuous sound signal acquisition, the designing idea for the Producer/consumer design pattern is described in details and the design process of this program on the Delphi platform is given. The result shows that the introduction of the producer/consumer design pattern in the use of program design which has serious request in real-time and continuous sound signal acquisition and playing can make the processes response faster and more efficient.
28

Gavalian, Gagik. "Real-time charged track reconstruction for CLAS12." Journal of Instrumentation 19, no. 05 (May 1, 2024): C05050. http://dx.doi.org/10.1088/1748-0221/19/05/c05050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract This paper presents the results of charged particle track reconstruction in CLAS12 using artificial intelligence. In our approach, we use machine learning algorithms to reconstruct tracks, including their momentum and direction, with high accuracy from raw hits of the CLAS12 drift chambers. The reconstruction is performed in real-time, with the rate of data acquisition, and allows for the identification of event topologies in real-time. This approach revolutionizes the Nuclear Physics experiments' data processing, allowing us to identify and categorize the experimental data on the fly, and will lead to a significant reduction in experiment data processing. It can also be used in streaming readout applications leading to more efficient data acquisition and post-processing.
29

Peppin, William A., and Walter F. Nicks. "Real-Time Analog and Digital Data Acquisition Through CUSP." Seismological Research Letters 63, no. 2 (April 1, 1992): 181–89. http://dx.doi.org/10.1785/gssrl.63.2.181.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract The University of Nevada Seismological Laboratory operates an array of 60 analog short-period and 10 three-component digital telemetered seismic stations, 90 data traces in all, in Nevada and eastern California. Formerly, the seismic data streams were recorded and processed on three separate computers running disparate software and writing incompatible data formats which made access to the digital data quite cumbersome. These systems were recently replaced by a single computer system, a MicroVAX II running VAX/VMS, together with Generic CUSP (Caltech -U.S.G.S. Seismic Processing System), a controlled software system from the U.S.G.S. in Menlo Park. Telemetered digital data are stored simultaneously in two ways, unique to this network. First, these digital data are brought asynchronously into the computer using a standard direct-memory access interface and recorded continuously on an Exabyte 8-mm helical-scan tapedrive. Second, the digital data are passed through a D to A converter and intermixed with the incoming analog data stream used for routine network processing. This analog data stream is then itself digitized and presented to the computer. In this way, calibrated digital waveforms are available in the routine data processing stream, now entirely comprised of digital waveforms, used to locate earthquakes. At the same time, this allows easy access to these data in research applications involving the processing of seismic waveforms.
30

Xue, Ru, Zong Sheng Wu, and Mei Yun Shao. "Real-Time Data Acquisition System for Remote Vital Sign." Applied Mechanics and Materials 333-335 (July 2013): 442–46. http://dx.doi.org/10.4028/www.scientific.net/amm.333-335.442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A data acquisition system for remote vital sign is designed. The system detect humans vital signs through the body temperature, blood pressure and pulse sensors ,and transmit them to the microprocessor after processing, then the microprocessor send the data to remote monitoring center on receiving the instruction .The monitoring center analysis the data and decide what and how to do. The monitoring centers can response various change of data rapidly and implement real-time rescue guide according to different situations.
31

Lu, Peter J., Peter A. Sims, Hidekazu Oki, James B. Macarthur, and David A. Weitz. "Target-locking acquisition with real-time confocal (TARC) microscopy." Optics Express 15, no. 14 (June 27, 2007): 8702. http://dx.doi.org/10.1364/oe.15.008702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Mitéran, Johel, Jean-Philippe Zimmer, Michel Paindavoine, and Julien Dubois. "Real-Time 3D Face Acquisition Using Reconfigurable Hybrid Architecture." EURASIP Journal on Image and Video Processing 2007 (2007): 1–8. http://dx.doi.org/10.1155/2007/81387.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Mitéran, Johel, Jean-Philippe Zimmer, Michel Paindavoine, and Julien Dubois. "Real-Time 3D Face Acquisition Using Reconfigurable Hybrid Architecture." EURASIP Journal on Image and Video Processing 2007, no. 1 (2007): 081387. http://dx.doi.org/10.1186/1687-5281-2007-081387.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

庞, 高峰. "Remote Real-Time Hyperspectral Video Acquisition Based on Zynq." Instrumentation and Equipments 06, no. 01 (2018): 28–37. http://dx.doi.org/10.12677/iae.2018.61005.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Gressel, Michael G., William A. Heitbrink, James D. McGlothlin, and Thomas J. Fischbach. "Advantages of Real-Time Data Acquisition for Exposure Assessment." Applied Industrial Hygiene 3, no. 11 (November 1988): 316–20. http://dx.doi.org/10.1080/08828032.1988.10389864.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Bera, Priyanka, and Rajarshi Gupta. "Hybrid encoding algorithm for real time compressed electrocardiogram acquisition." Measurement 91 (September 2016): 651–60. http://dx.doi.org/10.1016/j.measurement.2016.05.085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Bartolini, P., R. Eramo, A. Taschin, M. De Pas, and R. Torre. "A real-time acquisition system for pump–probe spectroscopy." Philosophical Magazine 87, no. 3-5 (January 21, 2007): 731–40. http://dx.doi.org/10.1080/14786430600953780.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Hu, Kun, Xu Wang, Yuan Yao, Xin Gao, and Ge Jin. "Real-Time Data Acquisition for Single Photon Imaging Detector." IEEE Transactions on Nuclear Science 63, no. 2 (April 2016): 1076–82. http://dx.doi.org/10.1109/tns.2016.2538281.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Linkens, D. A., and H. O. Nyongesa. "Real-Time Acquisition of Fuzzy Rules Using Genetic Algorithms." IFAC Proceedings Volumes 25, no. 10 (June 1992): 335–39. http://dx.doi.org/10.1016/s1474-6670(17)50843-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Linkens, D. A., and H. O. Nyongesa. "Real-time acquisition of fuzzy rules using genetic algorithms." Annual Review in Automatic Programming 17 (January 1992): 335–39. http://dx.doi.org/10.1016/s0066-4138(09)91055-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Sigdel, Madhav, Marc L. Pusey, and Ramazan S. Aygun. "Real-Time Protein Crystallization Image Acquisition and Classification System." Crystal Growth & Design 13, no. 7 (June 5, 2013): 2728–36. http://dx.doi.org/10.1021/cg3016029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Welch, J. Nerney, J. A. Johnson, R. Badr, M. R. Bax, S. K. S. So, T. M. Krummel, and R. Shahidi. "Quantifiable real-time 3D ultrasound data acquisition and visualization." International Congress Series 1230 (June 2001): 1245–46. http://dx.doi.org/10.1016/s0531-5131(01)00250-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

., Saraswati Teli. "SMART REAL TIME EMBEDDED ARDUINO BASED DATA ACQUISITION SYSTEM." International Journal of Research in Engineering and Technology 04, no. 08 (August 25, 2015): 258–62. http://dx.doi.org/10.15623/ijret.2015.0408045.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Huesman, R. H., G. J. Klein, and T. K. Fleming. "A Hybrid UNIX Controller for Real-Time Data Acquisition." IEEE Transactions on Nuclear Science 43, no. 3 (June 1996): 2150. http://dx.doi.org/10.1109/tns.1996.502309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Nele, L., E. Sarno, and A. Keshari. "An image acquisition system for real-time seam tracking." International Journal of Advanced Manufacturing Technology 69, no. 9-12 (July 24, 2013): 2099–110. http://dx.doi.org/10.1007/s00170-013-5167-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Wright, Ronald C., Stephen J. Riederer, Farhad Farzaneh, Phillip J. Rossman, and Yu Liu. "Real-time MR fluoroscopic data acquisition and image reconstruction." Magnetic Resonance in Medicine 12, no. 3 (December 1989): 407–15. http://dx.doi.org/10.1002/mrm.1910120314.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Dutreve, Ludovic, Alexandre Meyer, and Sada Bouakaz. "Easy acquisition and real-time animation of facial wrinkles." Computer Animation and Virtual Worlds 22, no. 2-3 (April 2011): 169–76. http://dx.doi.org/10.1002/cav.395.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Arjona, Rosario, and Iluminada Baturone. "A hardware solution for real-time intelligent fingerprint acquisition." Journal of Real-Time Image Processing 9, no. 1 (November 2, 2012): 95–109. http://dx.doi.org/10.1007/s11554-012-0286-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Lee, SeungWoo, So Jeong Nam, and Jai-Kyung Lee. "Real-time data acquisition system and HMI for MES." Journal of Mechanical Science and Technology 26, no. 8 (August 2012): 2381–88. http://dx.doi.org/10.1007/s12206-012-0615-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Uthaiah M S, Hiren, and Jagan Babu A. "Real Time Patient Monitoring System." International Transactions on Electrical Engineering and Computer Science 3, no. 1 (March 31, 2024): 34–40. http://dx.doi.org/10.62760/iteecs.3.1.2024.75.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This research introduces a comprehensive real-time patient monitoring system leveraging IoT for continuous data acquisition. The system employs Blynk, a mobile app, for real-time alerts through email and mobile notifications. Monitoring vital parameters such as temperature, humidity, and heart rate, the collected data is displayed on an LCD and stored in the cloud via the Blynk platform. An integrated buzzer ensures immediate alerts for abnormal values, enhancing the system's responsiveness. This innovative approach enhances patient care by providing instant notifications and access to crucial health metrics, contributing to proactive medical interventions.

До бібліографії