Добірка наукової літератури з теми "Read-Out Circuits"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Read-Out Circuits".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Read-Out Circuits"

1

Safari, Leila, Gianluca Barile, Vincenzo Stornelli, and Giuseppe Ferri. "A Review on VCII Applications in Signal Conditioning for Sensors and Bioelectrical Signals: New Opportunities." Sensors 22, no. 9 (May 8, 2022): 3578. http://dx.doi.org/10.3390/s22093578.

Повний текст джерела
Анотація:
This study reviews second-generation voltage conveyor (VCII)-based read-out circuits for sensors and bioelectrical signal conditioning from existing literature. VCII is the dual circuit of a second-generation current conveyor (CCII), which provides the possibility of processing signals in the current domain while providing output signals in the voltage form. The scope of this paper is to discuss the benefits and opportunities of new VCII-based read-out circuits over traditional ones and bioelectrical signals. The achieved main benefits compared to conventional circuits are the simpler read-out circuits, producing an output signal in a voltage form that can be directly used, improved accuracy, possibility of gain adjustment using a single grounded resistor, and the possibility of connecting several SiPM sensors to the readout circuit. The circuits studied in this paper include VCII- based read-out circuits suitable for all types of sensors configured in the current-mode Wheatstone bridge (CMWB) topology, the VCII-based read-out circuits solutions reported for silicon photomultiplier, spiral-shaped ultrasonic PVDF and differential capacitive sensors, and, finally, a simple readout circuitry for sensing bioelectrical signals. There are still not many VCII-based readout circuits, and we hope that the outcome of this study will enhance this area of research and inspire new ideas.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Im, Saemin, Na-Hoo Lee, Kyoungho Baik, and Sang-Gyu Park. "An Automatic Gain Control Circuits for the Microphone Read-out Integrated Circuit." JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE 20, no. 5 (October 31, 2020): 447–55. http://dx.doi.org/10.5573/jsts.2020.20.5.447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhou, Xin Jie, Jing He Wei, and Lei Lei Li. "A SEE Hardened Read-Out Circuit of EEPROM for Space Application." Applied Mechanics and Materials 198-199 (September 2012): 1105–9. http://dx.doi.org/10.4028/www.scientific.net/amm.198-199.1105.

Повний текст джерела
Анотація:
As wide application of EEPROM devices in space and military field, more and more researches focus on its radiation hardened characteristics in international. To improve the single-event effect (SEE) tolerant ability of read-out circuits in the memory, a radiation hardened circuit is designed. The design kernels of radiation hardened latch-flip are given and designed to resist the single-event upset (SEU) effect. A correction circuit is proposed to resist the single-event transient (SET) effect. The performances of this design are: SEU (LET)th ≥ 27 MeV•cm2/mg, SEL(LET)th ≥ 75 MeV•cm2/mg , read out time ≤200 ns. The new design not only satisfied the needs of present work, but supplies a worthful reference for radiation hardened circuit design in future.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Galeazzi, M., D. F. Bogorin, F. Gatti, and L. Parodi. "RLC Resonant Circuits to Read Out Transition Edge Sensors." IEEE Transactions on Applied Superconductivity 19, no. 3 (June 2009): 514–16. http://dx.doi.org/10.1109/tasc.2009.2017853.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Lu, Weijun, Ning Bao, Tangren Zheng, Xiaorui Zhang, and Yutong Song. "Memristor-Based Read/Write Circuit with Stable Continuous Read Operation." Electronics 11, no. 13 (June 27, 2022): 2018. http://dx.doi.org/10.3390/electronics11132018.

Повний текст джерела
Анотація:
In recent years, computation-intensive applications, such as artificial intelligence, video processing and encryption, have been developing rapidly. On the other hand, the problems of “storage wall” and “power consumption wall” for the traditional storage and computing separated architectures limit the computing performance. The computational circuits and memory cells based on nonvolatile memristors are unified and become a competitive solution to this problem. However, there are various problems that prevent memristor-based circuits from entering practical applications, one of which is the memristor state deviation problem caused by continuous reading. In this paper, we study some circuits studied by predecessors on read/write circuit, compare the experimental results, analyze the reason for the resistance state deviation of memristor, and put forward a new parallel structure of memristor based on opposite polarity. The logic “1” and logic “0” are represented by the positive and negative voltage difference of two memristors with opposite polarity, which can effectively alleviate the problem of the resistance state deviation caused by continuous reading. A reading voltage of 2 V is applied to the four circuits at the same time, and continuous reading is carried out until the output voltage becomes stable. The voltage offset of the optimized circuit when reading logic “0” is reduced to 78 mV, which is significantly smaller than that of other circuits. In addition, when reading logic “1”, it has the effect of enhancing the information stored in the memristor.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gottardi, L., J. van de Kuur, S. Bandler, M. Bruijn, P. de Korte, J. R. Gao, R. den Hartog, et al. "AC Read-Out Circuits for Single Pixel Characterization of TES Microcalorimeters and Bolometers." IEEE Transactions on Applied Superconductivity 21, no. 3 (June 2011): 272–75. http://dx.doi.org/10.1109/tasc.2010.2100090.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Zaraee, Negin, Boyou Zhou, Kyle Vigil, Mohammad M. Shahjamali, Ajay Joshi, and M. Selim Unlu. "Gate-Level Validation of Integrated Circuits With Structured-Illumination Read-Out of Embedded Optical Signatures." IEEE Access 8 (2020): 70900–70912. http://dx.doi.org/10.1109/access.2020.2987088.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nowack, K. C., M. Shafiei, M. Laforest, G. E. D. K. Prawiroatmodjo, L. R. Schreiber, C. Reichl, W. Wegscheider, and L. M. K. Vandersypen. "Single-Shot Correlations and Two-Qubit Gate of Solid-State Spins." Science 333, no. 6047 (August 4, 2011): 1269–72. http://dx.doi.org/10.1126/science.1209524.

Повний текст джерела
Анотація:
Measurement of coupled quantum systems plays a central role in quantum information processing. We have realized independent single-shot read-out of two electron spins in a double quantum dot. The read-out method is all-electrical, cross-talk between the two measurements is negligible, and read-out fidelities are ~86% on average. This allows us to directly probe the anticorrelations between two spins prepared in a singlet state and to demonstrate the operation of the two-qubit exchange gate on a complete set of basis states. The results provide a possible route to the realization and efficient characterization of multiqubit quantum circuits based on single quantum dot spins.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Borgarino, Mattia. "Circuit-Based Compact Model of Electron Spin Qubit." Electronics 11, no. 4 (February 10, 2022): 526. http://dx.doi.org/10.3390/electronics11040526.

Повний текст джерела
Анотація:
Today, an electron spin qubit on silicon appears to be a very promising physical platform for the fabrication of future quantum microprocessors. Thousands of these qubits should be packed together into one single silicon die in order to break the quantum supremacy barrier. Microelectronics engineers are currently leveraging on the current CMOS technology to design the manipulation and read-out electronics as cryogenic integrated circuits. Several of these circuits are RFICs, as VCO, LNA, and mixers. Therefore, the availability of a qubit CAD model plays a central role in the proper design of these cryogenic RFICs. The present paper reports on a circuit-based compact model of an electron spin qubit for CAD applications. The proposed model is described and tested, and the limitations faced are highlighted and discussed.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kim, Younghee, Hongzhou Jin, Dohoon Kim, Panbong Ha, Min-Kyu Park, Joon Hwang, Jongho Lee, et al. "Design of Synaptic Driving Circuit for TFT eFlash-Based Processing-In-Memory Hardware Using Hybrid Bonding." Electronics 12, no. 3 (January 29, 2023): 678. http://dx.doi.org/10.3390/electronics12030678.

Повний текст джерела
Анотація:
This paper presents a synaptic driving circuit design for processing in-memory (PIM) hardware with a thin-film transistor (TFT) embedded flash (eFlash) for a binary/ternary-weight neural network (NN). An eFlash-based synaptic cell capable of programming negative weight values to store binary/ternary weight values (i.e., ±1, 0) and synaptic driving circuits for erase, program, and read operations of synaptic arrays have been proposed. The proposed synaptic driving circuits improve the calculation accuracy of PIM operation by precisely programming the sensing current of the eFlash synaptic cell to the target current (50 nA ± 0.5 nA) using a pulse train. In addition, during PIM operation, the pulse-width modulation (PWM) conversion circuit converts 8-bit input data into one continuous PWM pulse to minimize non-linearity in the synaptic sensing current integration step of the neuron circuit. The prototype chip, including the proposed synaptic driving circuit, PWM conversion circuit, neuron circuit, and digital blocks, is designed and laid out as the accelerator for binary/ternary weighted NN with a size of 324 × 80 × 10 using a 0.35 μm CMOS process. Hybrid bonding technology using bump bonding and wire bonding is used to package the designed CMOS accelerator die and TFT eFlash-based synapse array dies into a single chip package.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Read-Out Circuits"

1

Yakopcic, Chris. "Memristor Device Modeling and Circuit Design for Read Out Integrated Circuits, Memory Architectures, and Neuromorphic Systems." University of Dayton / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1398725462.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Chen, Jian. "ULTRA LOW POWER READ-OUT INTEGRATED CIRCUIT DESIGN." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1345480982.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Yan, Rong Shen. "Circuit techniques for CMOS amplifier accuracy and robustness improvement in high-side current sensing Read-out circuit." Thesis, University of Macau, 2017. http://umaclib3.umac.mo/record=b3691122.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Claro, Marcel Santos. "Novas tecnologias para detecção infravermelha de alto desempenho." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-02082017-153952/.

Повний текст джерела
Анотація:
Neste trabalho, foi estudado a aplicação de novas heteroestruturas semicondutoras para detecção de radiação na região do infravermelho médio. Pontos quânticos de submonocamada, detectores de cascateamento quântico e pontos quânticos de InAlAs foram testados como opção para corrigir as deficiências em responsividade, corrente de escuro e temperatura de operação, comuns nas heteroestruturas convencionais baseadas em poços quânticos e pontos quânticos de InAs obtidos no regime de crescimento Stranski-Krastanov. Também foi projetado, fabricado e testado um circuito eletrônico de leitura de sinal misto para integração com matrizes de sensores e produção de imagens. Esse tipo de circuito possui uma série de vantagens em relação aos dispositivos convencionais que costumam ser completamente analógicos.
In this work, we studied the application of new types of semiconductor heterostructures for mid-infrared detection. Submonolayer quantum dots (SML-QDs), quantum-cascade detectors (QCDs) and InAlAs quantum dots were tested as an option to circumvent the common shortcomings of responsivity, dark current and operating temperature of the usual heterestructures based on quantum wells (QWs) and InAs Stranski-Krastanov quantum dots. We also designed, fabricated and tested a mixed-signal read-out circuit aiming the fabrication of focalplane arrays (FPAs) for applications to infrared imaging. This kind of architecture has several advantages over a fully analog design.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Savary, Eric. "Conception et intégration d'une électronique de conditionnement pour un capteur audio à base de nano-fils de silicium." Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4716.

Повний текст джерела
Анотація:
Les microphones sont des capteurs qui permettent à nos systèmes électroniques de prendre connaissance de notre environnement acoustique en fournissant un signal électrique représentatif des vibrations de l’air. Ils sont employés dans la plupart des systèmes multimédia, mais aussi dans les appareils auditifs. Dans l’implant auditif, le microphone se substitue à l’oreille humaine capable de détecter des pressions acoustiques variants de quelque μPa à quelques Pa. Les microphones, sont en général accompagnés d’un circuit électronique spécifique qui permet leur exploitation au coeur d’un système hétérogène. Depuis les toutes premières transductions acoustique-électriques, le microphone a été perfectionné avec la mise en oeuvre de nouveau principes de transduction et l’élaboration de circuit de conditionnement plus performants. Dernièrement, l’introduction de la technologie MEMS (Micro Electro Mechanical Systems) a permis de réaliser des microphones extrêmement compacts et peu couteux. Ces travaux de recherches concernent la réalisation d’un circuit électronique dédié à l’exploitation d’un transducteur M&NEMS (Micro & Nano Electro Mechanical Systems) survenant comme une évolution du MEMS. Pour commencer l’étude, le principe de transduction et l’application du microphone sont étudiés. Les circuits existants sont examinés en détail et adaptés au transducteur M&NEMS. Les résultats potentiels sont discutés et situés dans l’application. Dans un second temps, un circuit de conditionnement spécifique est proposé. Les résultats sont présentés puis le circuit électronique dédié est intégré sur silicium. Les performances des blocs fonctionnels intégrés sont mesurées et présentées
Microphones are sensors which allow gauging acoustic environment through an electric representation of vibrations in the air. They can be found in most multimedia equipment and in hearing aids. In this particular application, microphone substitutes a human ear which is able to sense pressure level of sound ranging from a μPa to few Pa. The read-out circuit of microphones converts physical signal from transducer into electronic signals that can be used in any heterogeneous system involving audio processing. Transducers of microphones have known successive generation of improvement. The latest refinement is related to the emergence of MEMS (Micro Electro Mechanical Systems) technology which is suitable to build compact sensor. This thesis explores the design of a readout-circuit using an innovative M&NEMS (Micro & Nano Electro Mechanical Systems) technology derived from MEMS. The thesis is structured beginning with review of existing circuits for M&NEMS microphone. A comparative study is reported considering the proposed technical specifications using simulations and a prototype was realized using discrete components. In the second phase, an innovative circuit was proposed as an ASIC solution targeting M&NEMS technology developed at CEA-LETI. The performance evaluation and the physical measurements of the proposed ASIC are detailed
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Chu, Hua-Wei, and 朱華緯. "Silicon Photodiode and Read-out Circuits for Biomedical Fluorescence Detection." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/37138406106592655813.

Повний текст джерела
Анотація:
碩士
國立高雄師範大學
電子工程學系
100
In this thesis, silicon photodiodes and read-out circuits for biomedical fluorescence detection are studied. Silicon photodiode structures are design and then the photocurrent signal is read out by a read-out circuit. Firstly, three types of silicon photodiodes are designed, They are the first type of the basic structure, the second type of the light well structure and the third type of diffraction and the light-retaining wall structure, respectively. For the three types, the measurement of current-voltage characteristics is used to analyze the photocurrent induced by shining the excitation light, violet light with a wavelength of 410 nm or so, and excited fluorescence, green light with a wavelength of 540 nm or so, on the photodiode.It is expected that the photocurrent resulting from fluorescent is much larger than that from excitation light. The excitation light is generated by a light-emitting diode (LED). Because of the material nature of silicon, the responsivity ratio of green and violet lights is not large enough that the photodiodes can be applied to fluorescence detection. Therefore, the small responsitivity ratio is improved by the structural design of fluorescence detection.By fixing the LED on the side of the photodiode and shining the analyzed fluorescent target with a certain incident angle, the excitation light is directed away from the photodiode and only fluorescence is directly shined on the photodiode. With the designed structure for fluorescent measurement, the responsitivity ratio of fluorescence and excitation light is more than 20. that which is bound with fluorophore, Devices and circuits are fabricated by using the TSMC 0.35µm CMOS BioMEMS process, which is supported by National Chip Implementation Center. The third type of photodiode is used to do the concentration detection of fluorescent material. the plot of the photocurrent versus concentration, including 6mg/ld, 8mg/ld, 10mg/ld, 12mg/ld, and 14mg/ld, is measured. As for the readout circuit, the three kinds of circuits are designed. The first kind is a circuit with a output of oscillation pulse. The discharging current of capacitors depends on the mirrored photocurrent. Output frequency is proportional to the photocurrent with a measured linearity of 0.994. The output frequency versus concentration of fluorescent material shows a linearity of 0.98. The second kind is a readout circuit of pulse width resulting from the fluorescent photocurrent charging for a fixed voltage difference. The simulated relationship of pulse width versus photocurrent shows a linearity of 0.99. The third kind is a readout circuit of pulse width resulting from the fluorescent photocurrent charging for a fixed interval and then the discharging by a fixed current. The linearity of the simulated output characteristic is 0.993.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Chiang, Yen-An, and 姜彥安. "Design and implementation of Pressure Sensor and Read-out circuits utilizing CMOS Process." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/62086211820181981491.

Повний текст джерела
Анотація:
碩士
國立臺灣大學
電機工程學研究所
93
In the recent years, due to the invention of various digital camcorders and pressure sensors which are easy to carry with DC voltages supplied by batteries, CMOS technology makes sensor more attractive than ever. Since late 90’s, Micro Electro Mechanical Systems (MEMS) revolutionize the traditional ways of electrical, electronic, and mechanical engineering which have the same type of characteristics as IC. Now, this technology has even advanced to the era of wireless connection, optical communication and bio-engineering products. Using this technique, it has many advantages such as minimizing chips’ volume, low consumption of power, and low production fees. It is also widely used in sensor and driver. We can see that micro-system is the trend of future engineering field. Also, in terms of the sensors, pressure sensor has the highest growing rate in the market. This thesis has finished and developed useful pressure sensing system, calculation amplifier and status amplifier which are merged into integrated circuit. In addition, the thesis had successfully simulated using Pspice based on TSMC 0.35 um CMOS MEMS to develop capacitor- pressure sensor and read out the circuits using Pspice will be the first step of simulation. This article’s best contribution is to start up our laboratory room in order to self-design and produce analog integrated circuit which can be used in detection of low signals and construct our laboratory’s library on integrated circuits. In the future, it is usable for other designers to directly utilize this circuit to design high level analog integrated circuits.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Yen, Po-Hsien, and 嚴柏顯. "Uncooled Long Wavelength Infrared Sensors Using Cytochrome C Protein on Suspending Electrodes with CMOS Read Out Circuits." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/age768.

Повний текст джерела
Анотація:
碩士
國立臺灣大學
光電工程學研究所
107
Cytochrome c protein has been published several times for its high temperature coefficient of resistance(TCR). The high temperature coefficient of resistance of cytochrome c thin film was suitable for infrared sensing. However, its reliability is a severe problem. This paper proposes a different solution for cytochrome c protein, which enhances reliability significantly. The performance of an uncooled microbolometer is effected by TCR and thermal insulation. In this paper, we use cytochrome c protein as infrared accepter, and fabricated on the chip with inkjet printer. The chip is composed of two parts. One is detection area, the other is readout circuit. Detection area is composed of 9 pixels with suspension structure to enhance thermal insulation. Readout circuit is a serial circuit, it can read voltages on pixels one by one. The infrared sensor is fabricated by TSMC and 2 post progress. The compatibility with CMOS progress, high temperature coefficient of resistance(TCR) and enhanced reliability of cytochrome c protein solution make it possible to have a cheap, little size and sensitive uncooled infrared microbolometer. The measured voltage difference on the protein-based microbolometer with fabricated read-out integrated circuits was 0.14-1.19 Volts per 0.5°C increments. The TCR value is 29%. The responsivity value is 1.5*105 Volt/Watt. The 1/f noise value of the cytochrome c thin film was 6.83*10-5 V/Hz1/2 at 60Hz. The NETD value of pixel is calculated to be 69.4 mK. We believe that this approach provides an inexpensive and standard CMOS fabrication process to lower the high cost of microbolometers in future.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Tsai, Hsuan-Ming, and 蔡軒名. "Study on the hydrogen ion-sensitive field-effect-transistors using the hydrogenated amorphous carbon and hydrogenated amorphous silicon for the gate materials and their read-out circuits." Thesis, 2001. http://ndltd.ncl.edu.tw/handle/86865785383750838026.

Повний текст джерела
Анотація:
碩士
國立雲林科技大學
電子與資訊工程研究所碩士班
89
In this thesis, the principle of the MOSFET was be used for ISFET. The gate metal of the MOSFET was substituted for the insulator over the SiO2 (such as Ta2O5, Al2O3, Si3N4, a-C:H, a-Si:H…, etc..),which must be sensitive for the H+ and OH- in the buffer solution. Reference electrode was used to supply the reference potential for the buffer solution. The threshold voltage (VT) of the ISFET will shift in the various pH buffer solutions. Hence, the pH value of the solution can be detected by the ISFET. In this thesis, the sensing films of hydrogenated amorphous silicon (a-Si:H) and the hydrogenated amorphous carbon (a-C:H) deposited by the plasma enhanced-low pressure chemical vapor deposition system (PE-LPCVD) were studied. There are many unstable factors to affect the applications of the pH-ISFET, especially the temperature effect, hysteresis and drift, which were aimed to study in this thesis. For the a-Si:H, the hysteresis and drift were studied. About the a-C:H, the three unstable factors would all be studied in our research. Otherwise, we found the sensitivity of the a-C:H gate pH-ISFET can be different in the various conditions of the deposition process. The relationship of the sensitivity versus the deposition conditions was focused on the gas flow, power density and deposition pressure. And the read-out circuit would be finally studied in the thesis.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chen, Guan-Ru, and 陳冠儒. "Impedance Estimation Read-out Circuit Frontend and Baseband Circuit for Real-time Calculation Therewith." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/qv2ps9.

Повний текст джерела
Анотація:
碩士
國立中山大學
電機工程學系研究所
107
This thesis was driven by an MOST project, ”Rapid Quantitative Measurement System for CEA/PSA/ALKP Tumor Markers in Urine,” to develop two research topics, including an impedance estimation read-out circuit for BIA-type biomedical sensors and an impedance and phase calculation baseband circuit. Both designs are realized using TSMC 0.18 m CMOS Mixed Signal/RF Process to justify the proposed theory and method. The first design is an impedance estimation front-end read-out circuit for BIA-type biomedical sensors, which is composed of low-frequency operational amplifiers and a unity gain buffer owing to the signal frequency range of the BIA-type biomedical sensors is 100 Hz 1 MHz. To increase the design margin, the operating frequency range of the proposed circuit is deliberately selected to be 10 Hz 2 MHz. However, since it is impossible to include real of BIA-type biomedical sensors in the simulation, an equivalent model (RC Model) is constructed by capacitors and resistors to ensure the integrity of the simulated environment. The equivalent model has impedance and phase behavior very close to that of the BIA-type biosensors. The measurement results on silicon to show maximum error of 7.7 kΩ at 10 Hz, and the phase maximum error of 12 at 50 kHz. The baseband circuit calculating the impedance and phase in real time is proposed to provide a solution carrying out the estimation of the impedance and phase of the BIAtype biomedical sensors automatically. The baseband circuit is also added with functions of the instant update of real-time change of the input signal frequency. The reason is that the digital solution has a better noise rejection capability and feasibility to be integrated with other digital signal processing modules.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Read-Out Circuits"

1

Wu, Rong, Johan H. Huijsing, and Kofi A. A. Makinwa. Precision Instrumentation Amplifiers and Read-Out Integrated Circuits. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-3731-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Rong, Wu. Precision Instrumentation Amplifiers and Read-Out Integrated Circuits. New York, NY: Springer New York, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rong, Wu, Johan H. Huijsing, and Kofi A. Makinwa. Precision Instrumentation Amplifiers and Read-Out Integrated Circuits. Springer, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Read-Out Circuits"

1

Wu, Rong, Johan H. Huijsing, and Kofi A. A. Makinwa. "Read-Out Integrated Circuits." In Precision Instrumentation Amplifiers and Read-Out Integrated Circuits, 137–78. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3731-4_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wu, Rong, Johan H. Huijsing, and Kofi A. A. Makinwa. "Introduction." In Precision Instrumentation Amplifiers and Read-Out Integrated Circuits, 1–20. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3731-4_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wu, Rong, Johan H. Huijsing, and Kofi A. A. Makinwa. "Dynamic Offset Cancellation Techniques for Operational Amplifiers." In Precision Instrumentation Amplifiers and Read-Out Integrated Circuits, 21–49. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3731-4_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wu, Rong, Johan H. Huijsing, and Kofi A. A. Makinwa. "Current-Feedback Instrumentation Amplifiers and Gain Accuracy Improvement Techniques." In Precision Instrumentation Amplifiers and Read-Out Integrated Circuits, 51–67. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3731-4_3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wu, Rong, Johan H. Huijsing, and Kofi A. A. Makinwa. "A Chopper Instrumentation Amplifier with Offset Reduction Loop." In Precision Instrumentation Amplifiers and Read-Out Integrated Circuits, 69–105. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3731-4_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Wu, Rong, Johan H. Huijsing, and Kofi A. A. Makinwa. "A Chopper Instrumentation Amplifier with Gain Error Reduction Loop." In Precision Instrumentation Amplifiers and Read-Out Integrated Circuits, 107–36. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3731-4_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wu, Rong, Johan H. Huijsing, and Kofi A. A. Makinwa. "Conclusions." In Precision Instrumentation Amplifiers and Read-Out Integrated Circuits, 179–82. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-3731-4_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Ferri, G., F. R. Parente, V. Stornelli, G. Barile, G. Pennazza, and M. Santonico. "CCII-Based Linear Ratiometric Capacitive Sensing by Analog Read-Out Circuits." In Lecture Notes in Electrical Engineering, 398–405. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55077-0_50.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, L. X., and J. P. Leburton. "Electrostatic Cross-Talk Between Quantum Dot and Quantum Point Contact Charge Read-Out in Few-Electron Quantum Dot Circuits." In Physical Models for Quantum Dots, 223–36. New York: Jenny Stanford Publishing, 2021. http://dx.doi.org/10.1201/9781003148494-13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Conso, Fabrizio, Marco Grassi, Piero Malcovati, and Andrea Baschirotto. "A Very Large Dynamic Range Integrated Interface Circuit for Heterogeneous Resistive Gas Sensors Matrix Read-Out." In Lecture Notes in Electrical Engineering, 271–77. Boston, MA: Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0935-9_46.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Read-Out Circuits"

1

Pipino, A., F. Resta, L. Mangiagalli, F. Fary, M. De Matteis, H. Kroha, R. Richter, O. Kortner, and A. Baschirotto. "sMDT Detectors Read-Out in 28nm technology." In 2019 26th IEEE International Conference on Electronics, Circuits and Systems (ICECS). IEEE, 2019. http://dx.doi.org/10.1109/icecs46596.2019.8964714.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lee, Chen-Yi, Kelvin Yi-Tse Lai, and Shu-Yu Hsu. "Event-driven read-out circuits for energy-efficient sensor-SoC's." In 2014 International Symposium on VLSI Design, Automation and Test (VLSI-DAT). IEEE, 2014. http://dx.doi.org/10.1109/vlsi-dat.2014.6834912.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gupta, Hari Shanker, Subhananda Chakrabarti, Maryam Shojaei Baghini, D. K. Sharma, A. S. Kiran Kumar, Sanjeev Mehta, Sandip Paul, Ravi Shankar Chaurasia, and A. Roychowdhury. "Efficient implementation of high performance Read out Integrated Circuit." In 2014 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC). IEEE, 2014. http://dx.doi.org/10.1109/edssc.2014.7061270.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mohan, Charanraj, Jose M. de la Rosa, Elisa Vianello, Luca Perniola, Carlo Reita, Bernabe Linares-Barranco, and Teresa Serrano-Gotarredona. "A Current Attenuator for Efficient Memristive Crossbars Read-Out." In 2019 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2019. http://dx.doi.org/10.1109/iscas.2019.8702604.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wu, Rong, Johan H. Huijsing, and Kofi A. A. Makinwa. "A 21b ±40mV range read-out IC for bridge transducers." In 2011 IEEE International Solid- State Circuits Conference - (ISSCC). IEEE, 2011. http://dx.doi.org/10.1109/isscc.2011.5746241.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Takhti, Mohammad, Yueh-Ching Teng, and Kofi Odame. "A high frequency read-out channel for bio-impedance measurement." In 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2016. http://dx.doi.org/10.1109/iscas.2016.7527546.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Resta, F., M. De Matteis, G. Rota, A. Pezzotta, A. Pipino, and A. Baschirotto. "IC-PIX28: A 28nm read-out channel for pixel detector." In 2015 IEEE International Conference on Electronics, Circuits, and Systems (ICECS). IEEE, 2015. http://dx.doi.org/10.1109/icecs.2015.7440329.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Tiwari, Bhawna, Prabal Bhatnagar, Pydi Ganga Bahubalindruni, and Pedro Barquinha. "Low-Power Ethanol Sensor Read-Out Circuit using a-InGaZnO TFTs." In 2020 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2020. http://dx.doi.org/10.1109/iscas45731.2020.9181093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Xing, Jinling, Alexander Serb, and Themistoklis Prodromakis. "An ultra-low voltage RRAM read-out technique employing dithering principles." In 2016 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2016. http://dx.doi.org/10.1109/iscas.2016.7538870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Xie, Lijie, Jiawei Shen, Andrea Mifsud, Chaohan Wang, Abdulaziz Alshaya, and Christos Papavassiliou. "A Wide Dynamic Range Read-out System For Resistive Switching Technology." In 2022 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2022. http://dx.doi.org/10.1109/iscas48785.2022.9937616.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії