Добірка наукової літератури з теми "Rational Homogeneous variety"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Rational Homogeneous variety".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Rational Homogeneous variety"

1

Zhu, Yi. "HOMOGENEOUS SPACE FIBRATIONS OVER SURFACES." Journal of the Institute of Mathematics of Jussieu 18, no. 2 (2017): 293–327. http://dx.doi.org/10.1017/s1474748017000081.

Повний текст джерела
Анотація:
By studying the theory of rational curves, we introduce a notion of rational simple connectedness for projective homogeneous spaces. As an application, we prove that over a function field of an algebraic surface over an algebraically closed field, a variety whose geometric generic fiber is a projective homogeneous space admits a rational point if and only if the elementary obstruction vanishes.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Morishita, Masanori, and Takao Watanabe. "A note on the mean value theorem for special homogeneous spaces." Nagoya Mathematical Journal 143 (September 1996): 111–17. http://dx.doi.org/10.1017/s0027763000005948.

Повний текст джерела
Анотація:
Let G be a connected linear algebraic group and X an algebraic variety, both defined over Q, the field of rational numbers. Suppose that G acts on X transitively and the action is defined over Q. Suppose that the set of rational points X(Q) is non-empty. Choosing x ∈ X(Q) allows us to identify G/Gx and X as varieties over Q, there Gx is the stabilizer of x.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Almeida, L. C. O., and S. C. Coutinho. "On Homogenous Minimal Involutive Varieties." LMS Journal of Computation and Mathematics 8 (2005): 301–15. http://dx.doi.org/10.1112/s1461157000001005.

Повний текст джерела
Анотація:
AbstractЅ(2n,k) be the variety of homogeneous polynomials of degree k in 2n variables. The authors of this paper give a computer-assisted proof that there is an analytic open set Ω of Ѕ(4,3) such that the surface F = 0 is a minimal homogeneous involutive variety of ℂ4 for all F ∈ Ω. As part of the proof, they give an explicit example of a polynomial with rational coefficients that belongs to Ω.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lee, Kyoung-Seog, and Kyeong-Dong Park. "Equivariant Ulrich bundles on exceptional homogeneous varieties." Advances in Geometry 21, no. 2 (2021): 187–205. http://dx.doi.org/10.1515/advgeom-2020-0018.

Повний текст джерела
Анотація:
Abstract We prove that the only rational homogeneous varieties with Picard number 1 of the exceptional algebraic groups admitting irreducible equivariant Ulrich vector bundles are the Cayley plane E 6/P 1 and the E 7-adjoint variety E 7/P 1. From this result,we see that a general hyperplane section F 4/P 4 of the Cayley plane also has an equivariant but non-irreducible Ulrich bundle.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Carrillo-Pacheco, Jesús, and Fausto Jarquín-Zárate. "A Family Of Low Density Matrices In Lagrangian–Grassmannian." Special Matrices 6, no. 1 (2018): 237–48. http://dx.doi.org/10.1515/spma-2018-0019.

Повний текст джерела
Анотація:
Abstract The aim of this paper is twofold. First, we show a connection between the Lagrangian- Grassmannian variety geometry defined over a finite field with q elements and the q-ary Low-Density Parity- Check codes. Second, considering the Lagrangian-Grassmannian variety as a linear section of the Grassmannian variety, we prove that there is a unique linear homogeneous polynomials family, up to linear combination, such that annuls the set of its rational points.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

MOSSA, ROBERTO. "BALANCED METRICS ON HOMOGENEOUS VECTOR BUNDLES." International Journal of Geometric Methods in Modern Physics 08, no. 07 (2011): 1433–38. http://dx.doi.org/10.1142/s0219887811005841.

Повний текст джерела
Анотація:
Let E → M be a holomorphic vector bundle over a compact Kähler manifold (M, ω) and let E = E1 ⊕ ⋯ ⊕ Em → M be its decomposition into irreducible factors. Suppose that each Ej admits a ω-balanced metric in Donaldson–Wang terminology. In this paper we prove that E admits a unique ω-balanced metric if and only if [Formula: see text] for all j, k = 1,…, m, where rj denotes the rank of Ej and Nj = dim H0(M, Ej). We apply our result to the case of homogeneous vector bundles over a rational homogeneous variety (M, ω) and we show the existence and rigidity of balanced Kähler embedding from (M, ω) into Grassmannians.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Huneke, Craig, and Matthew Miller. "A Note on the Multiplicity of Cohen-Macaulay Algebras with Pure Resolutions." Canadian Journal of Mathematics 37, no. 6 (1985): 1149–62. http://dx.doi.org/10.4153/cjm-1985-062-4.

Повний текст джерела
Анотація:
Let R = k[X1, …, Xn] with k a field, and let I ⊂ R be a homogeneous ideal. The algebra R/I is said to have a pure resolution if its homogeneous minimal resolution has the formSome of the known examples of pure resolutions include the coordinate rings of: the tangent cone of a minimally elliptic singularity or a rational surface singularity [15], a variety defined by generic maximal Pfaffians [2], a variety defined by maximal minors of a generic matrix [3], a variety defined by the submaximal minors of a generic square matrix [6], and certain of the Segre-Veronese varieties [1].If I is in addition Cohen-Macaulay, then Herzog and Kühl have shown that the betti numbers bi are completely determined by the twists di.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Müller, J. Steffen. "Explicit Kummer varieties of hyperelliptic Jacobian threefolds." LMS Journal of Computation and Mathematics 17, no. 1 (2014): 496–508. http://dx.doi.org/10.1112/s1461157014000126.

Повний текст джерела
Анотація:
AbstractWe explicitly construct the Kummer variety associated to the Jacobian of a hyperelliptic curve of genus 3 that is defined over a field of characteristic not equal to 2 and has a rational Weierstrass point defined over the same field. We also construct homogeneous quartic polynomials on the Kummer variety and show that they represent the duplication map using results of Stoll.Supplementary materials are available with this article.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Alekseevsky, Dmitri V., Jan Gutt, Gianni Manno, and Giovanni Moreno. "Lowest degree invariant second-order PDEs over rational homogeneous contact manifolds." Communications in Contemporary Mathematics 21, no. 01 (2019): 1750089. http://dx.doi.org/10.1142/s0219199717500894.

Повний текст джерела
Анотація:
For each simple Lie algebra [Formula: see text] (excluding, for trivial reasons, type [Formula: see text]), we find the lowest possible degree of an invariant second-order PDE over the adjoint variety in [Formula: see text], a homogeneous contact manifold. Here a PDE [Formula: see text] has degree [Formula: see text] if [Formula: see text] is a polynomial of degree [Formula: see text] in the minors of [Formula: see text], with coefficient functions of the contact coordinate [Formula: see text], [Formula: see text], [Formula: see text] (e.g., Monge–Ampère equations have degree 1). For [Formula: see text] of type [Formula: see text] or [Formula: see text], we show that this gives all invariant second-order PDEs. For [Formula: see text] of types [Formula: see text] and [Formula: see text], we provide an explicit formula for the lowest-degree invariant second-order PDEs. For [Formula: see text] of types [Formula: see text] and [Formula: see text], we prove uniqueness of the lowest-degree invariant second-order PDE; we also conjecture that uniqueness holds in type [Formula: see text].
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Chipalkatti, Jaydeep. "Apolar Schemes of Algebraic Forms." Canadian Journal of Mathematics 58, no. 3 (2006): 476–91. http://dx.doi.org/10.4153/cjm-2006-020-3.

Повний текст джерела
Анотація:
AbstractThis is a note on the classical Waring's problem for algebraic forms. Fix integers (n, d, r, s), and let ∧ be a general r-dimensional subspace of degree d homogeneous polynomials in n+1 variables. Let denote the variety of s-sided polar polyhedra of ∧. We carry out a case-by-case study of the structure of for several specific values of (n, d, r, s). In the first batch of examples, is shown to be a rational variety. In the second batch, is a finite set of which we calculate the cardinality.
Стилі APA, Harvard, Vancouver, ISO та ін.
Більше джерел
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії