Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Rational degree.

Статті в журналах з теми "Rational degree"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Rational degree".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Denker, William A., and Gary J. Herron. "Generalizing rational degree elevation." Computer Aided Geometric Design 14, no. 5 (June 1997): 399–406. http://dx.doi.org/10.1016/s0167-8396(96)00036-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Nguyen Dat, Dang. "EXTENDED DEGREE OF RATIONAL MAPS." Journal of Science Natural Science 64, no. 6 (June 2019): 23–30. http://dx.doi.org/10.18173/2354-1059.2019-0027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Oja, Peeter. "Low degree rational spline interpolation." BIT Numerical Mathematics 37, no. 4 (December 1997): 901–9. http://dx.doi.org/10.1007/bf02510359.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Coskun, Izzet, and Eric Riedl. "Normal bundles of rational curves on complete intersections." Communications in Contemporary Mathematics 21, no. 02 (February 27, 2019): 1850011. http://dx.doi.org/10.1142/s0219199718500116.

Повний текст джерела
Анотація:
Let [Formula: see text] be a general Fano complete intersection of type [Formula: see text]. If at least one [Formula: see text] is greater than [Formula: see text], we show that [Formula: see text] contains rational curves of degree [Formula: see text] with balanced normal bundle. If all [Formula: see text] are [Formula: see text] and [Formula: see text], we show that [Formula: see text] contains rational curves of degree [Formula: see text] with balanced normal bundle. As an application, we prove a stronger version of the theorem of Tian [27], Chen and Zhu [4] that [Formula: see text] is separably rationally connected by exhibiting very free rational curves in [Formula: see text] of optimal degrees.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

BJÖRKLUND, JOHAN. "REAL ALGEBRAIC KNOTS OF LOW DEGREE." Journal of Knot Theory and Its Ramifications 20, no. 09 (September 2011): 1285–309. http://dx.doi.org/10.1142/s0218216511009248.

Повний текст джерела
Анотація:
In this paper, we study rational real algebraic knots in ℝP3. We show that two real rational algebraic knots of degree ≤ 5 are rigidly isotopic if and only if their degrees and encomplexed writhes are equal. We also show that any smooth irreducible knot which admits a plane projection with less than or equal to four crossings has a rational parametrization of degree ≤6. Furthermore an explicit construction of rational knots of a given degree with arbitrary encomplexed writhe (subject to natural restrictions) is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Matsuoka, Takashi, and Fumio Sakai. "The degree of rational cuspidal curves." Mathematische Annalen 285, no. 2 (October 1989): 233–47. http://dx.doi.org/10.1007/bf01443516.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Krajnc, Marjeta, Karla Počkaj, and Vito Vitrih. "Construction of low degree rational motions." Journal of Computational and Applied Mathematics 256 (January 2014): 92–103. http://dx.doi.org/10.1016/j.cam.2013.07.014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Downs, T. "A degree property of rational matrices." Linear Algebra and its Applications 72 (December 1985): 73–84. http://dx.doi.org/10.1016/0024-3795(85)90143-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Chardin, M., S. H. Hassanzadeh, and A. Simis. "Degree of rational maps versus syzygies." Journal of Algebra 573 (May 2021): 641–62. http://dx.doi.org/10.1016/j.jalgebra.2021.01.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Leviatan, D., and D. S. Lubinsky. "Degree of Approximation by Rational Functions with Prescribed Numerator Degree." Canadian Journal of Mathematics 46, no. 3 (June 1, 1994): 619–33. http://dx.doi.org/10.4153/cjm-1994-033-1.

Повний текст джерела
Анотація:
AbstractWe prove a Jackson type theorem for rational functions with prescribed numerator degree: For continuous functions f: [—1,1] —> ℝ with ℓ sign changes in (—1,1), there exists a real rational function Rℓ,n(x) with numerator degree ℓ and denominator degree at most n, that changes sign exactly where f does, and such thatHere C is independent of f, n and ℓ, and ωφ is the Ditzian-Totik modulus of continuity. For special functions such as f(x) = sign(x)|x|α we consider improvements of the Jackson rate.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

HASSELBLATT, BORIS, and JAMES PROPP. "Degree-growth of monomial maps." Ergodic Theory and Dynamical Systems 27, no. 5 (October 2007): 1375–97. http://dx.doi.org/10.1017/s0143385707000168.

Повний текст джерела
Анотація:
AbstractFor projectivizations of rational maps, Bellon and Viallet defined the notion of algebraic entropy using the exponential growth rate of the degrees of iterates. We want to call this notion to the attention of dynamicists by computing algebraic entropy for certain rational maps of projective spaces (Theorem 6.2) and comparing it with topological entropy (Theorem 5.1). The particular rational maps we study are monomial maps (Definition 1.2), which are closely related to toral endomorphisms. Theorems 5.1 and 6.2 that imply that the algebraic entropy of a monomial map is always bounded above by its topological entropy, and that the inequality is strict if the defining matrix has more than one eigenvalue outside the unit circle. Also, Bellon and Viallet conjectured that the algebraic entropy of every rational map is the logarithm of an algebraic integer, and Theorem 6.2 establishes this for monomial maps. However, a simple example using a monomial map shows that a stronger conjecture of Bellon and Viallet is incorrect, in that the sequence of algebraic degrees of the iterates of a rational map of projective space need not satisfy a linear recurrence relation with constant coefficients.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Manes, Michelle. "ℚ-rational cycles for degree-2 rational maps having an automorphism". Proceedings of the London Mathematical Society 96, № 3 (24 листопада 2007): 669–96. http://dx.doi.org/10.1112/plms/pdm044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Canci, Jung Kyu, and Solomon Vishkautsan. "Quadratic maps with a periodic critical point of period 2." International Journal of Number Theory 13, no. 06 (December 5, 2016): 1393–417. http://dx.doi.org/10.1142/s1793042117500786.

Повний текст джерела
Анотація:
We provide a complete classification of possible graphs of rational preperiodic points of endomorphisms of the projective line of degree 2 defined over the rationals with a rational periodic critical point of period 2, under the assumption that these maps have no periodic points of period at least 7. We explain how this extends results of Poonen on quadratic polynomials. We show that there are exactly 13 possible graphs, and that such maps have at most nine rational preperiodic points. We provide data related to the analogous classification of graphs of endomorphisms of degree 2 with a rational periodic critical point of period 3 or 4.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Fusi, Davide. "On rational varieties of small rationality degree." Advances in Geometry 18, no. 4 (October 25, 2018): 483–94. http://dx.doi.org/10.1515/advgeom-2017-0059.

Повний текст джерела
Анотація:
Abstract We prove a stronger version of a criterion of rationality given by Ionescu and Russo. We use this stronger version to define an invariant for rational varieties (we call it rationality degree), and we classify rational varieties for small values of the invariant.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Oara, Cristian, and Andras Varga. "Minimal Degree Coprime Factorization of Rational Matrices." SIAM Journal on Matrix Analysis and Applications 21, no. 1 (January 1999): 245–78. http://dx.doi.org/10.1137/s0895479898339979.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Hajja, Mowaffaq. "Radical and rational means of degree two." Mathematical Inequalities & Applications, no. 4 (2003): 581–93. http://dx.doi.org/10.7153/mia-06-54.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Ferjančič, Karla, Marjeta Knez, and Vito Vitrih. "On C2 rational motions of degree six." Journal of Computational and Applied Mathematics 388 (May 2021): 113324. http://dx.doi.org/10.1016/j.cam.2020.113324.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Lubbes, Niels. "Minimal degree rational curves on real surfaces." Advances in Mathematics 345 (March 2019): 263–88. http://dx.doi.org/10.1016/j.aim.2019.01.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Rees, M. "Components of degree two hyperbolic rational maps." Inventiones Mathematicae 100, no. 1 (December 1990): 357–82. http://dx.doi.org/10.1007/bf01231191.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Schicho, Josef. "The parametric degree of a rational surface." Mathematische Zeitschrift 254, no. 1 (March 28, 2006): 185–98. http://dx.doi.org/10.1007/s00209-006-0941-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Rault, Patrick X. "On uniform bounds for rational points on rational curves of arbitrary degree." Journal of Number Theory 133, no. 9 (September 2013): 3112–18. http://dx.doi.org/10.1016/j.jnt.2013.03.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

D’Mello, Shane. "Classification of real rational knots of low degree in the 3-sphere." Journal of Knot Theory and Its Ramifications 26, no. 04 (April 2017): 1750020. http://dx.doi.org/10.1142/s0218216517500201.

Повний текст джерела
Анотація:
In this paper, we classify, up to rigid isotopy, real rational knots of degrees less than or equal to [Formula: see text] in a real quadric homeomorphic to the 3-sphere. We also study their connections with rigid isotopy classes of real rational knots of low degree in [Formula: see text] and classify real rational curves of degree 6 in the 3-sphere with exactly one ordinary double point.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Maniatis, Yiorgo N. "Ontology, epistemology and politics in Plato’s Republic." ΣΧΟΛΗ. Ancient Philosophy and the Classical Tradition 15, no. 2 (2021): 468–500. http://dx.doi.org/10.25205/1995-4328-2021-15-2-468-500.

Повний текст джерела
Анотація:
In the present work I examine the rational relationship that exists among the ontology, the epistemology, and the politics in Plato’s Republic, and to what degree these three theories support each other with rational foundations. In particular, this study examines to what degree the platonic ontology and epistemology support rationally and sufficiently the platonic political theory of the φιλόσοφοι-βασιλεῖς of the ἀρίστη πολιτεία in the Republic.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

CASTRAVET, ANA-MARIA. "RATIONAL FAMILIES OF VECTOR BUNDLES ON CURVES." International Journal of Mathematics 15, no. 01 (February 2004): 13–45. http://dx.doi.org/10.1142/s0129167x0400220x.

Повний текст джерела
Анотація:
Let C be a smooth projective complex curve of genus g≥2 and let M be the moduli space of rank 2, stable vector bundles on C, with fixed determinant of degree 1. For any k≥1, we find all the irreducible components of the space of rational curves on M, of degree k. In particular, we find the maximal rationally connected fibrations of these components. We prove that there is a one-to-one correspondence between moduli spaces of rational curves on M and moduli spaces of rank 2 vector bundles on ℙ1×C.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Song, Jinfang, and Yaoqiu Kuang. "An Analysis on Female Education Level, Income and Fertility Rate in China." E3S Web of Conferences 251 (2021): 01088. http://dx.doi.org/10.1051/e3sconf/202125101088.

Повний текст джерела
Анотація:
The present population economic theories are all established at a hypothesis: parents are fully rational in decisions at every birth. The hypothesis is actually contradicted with the reality. This paper attempts to explain the fertility behavior of persons with different cultural degrees and income levels without the fully rational hypothesis. The paper puts forward a hypothesis that fertility rate has negative correlation with cultural degree, and proves it through two routes. One is higher cultural degree means longer education duration, which must occupy female reproductive period. The other route is that persons who get higher cultural degree are generally more rational, therefore less accidental pregnancy and childbearing occur.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Hu, Qian-qian, and Guo-jin Wang. "Representing conics by low degree rational DP curves." Journal of Zhejiang University SCIENCE C 11, no. 4 (April 2010): 278–89. http://dx.doi.org/10.1631/jzus.c0910148.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Browning, Timothy, and Pankaj Vishe. "Rational curves on smooth hypersurfaces of low degree." Algebra & Number Theory 11, no. 7 (September 7, 2017): 1657–75. http://dx.doi.org/10.2140/ant.2017.11.1657.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Tent, Joan. "2-Length and rational characters of odd degree." Archiv der Mathematik 96, no. 3 (March 2011): 201–6. http://dx.doi.org/10.1007/s00013-011-0229-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Dietmann, Rainer. "Linear spaces on rational hypersurfaces of odd degree." Bulletin of the London Mathematical Society 42, no. 5 (July 30, 2010): 891–95. http://dx.doi.org/10.1112/blms/bdq052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Harris, Joe, and Jason Starr. "Rational curves on hypersurfaces of low degree, II." Compositio Mathematica 141, no. 01 (December 1, 2004): 35–92. http://dx.doi.org/10.1112/s0010437x04001253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Xu, Chunhui. "Rational behaviour and cooperation degree in competitive situations." International Journal of Systems Science 30, no. 4 (January 1999): 369–77. http://dx.doi.org/10.1080/002077299292326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Busé, Laurent, Yairon Cid‐Ruiz, and Carlos D'Andrea. "Degree and birationality of multi‐graded rational maps." Proceedings of the London Mathematical Society 121, no. 4 (May 2, 2020): 743–87. http://dx.doi.org/10.1112/plms.12336.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Pérez-Dı́az, Sonia, and J. Rafael Sendra. "Computation of the degree of rational surface parametrizations." Journal of Pure and Applied Algebra 193, no. 1-3 (October 2004): 99–121. http://dx.doi.org/10.1016/j.jpaa.2004.02.011.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Freund, Michael. "The Degree of Rational Approximation to Meromorphic Functions." Zeitschrift für Analysis und ihre Anwendungen 7, no. 3 (1988): 193–202. http://dx.doi.org/10.4171/zaa/296.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Carpentier, Sylvain, Alberto De Sole, and Victor G. Kac. "Singular Degree of a Rational Matrix Pseudodifferential Operator." International Mathematics Research Notices 2015, no. 13 (June 10, 2014): 5162–95. http://dx.doi.org/10.1093/imrn/rnu093.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Siegele, J., D. F. Scharler, and H. P. Schröcker. "Rational motions with generic trajectories of low degree." Computer Aided Geometric Design 76 (January 2020): 101793. http://dx.doi.org/10.1016/j.cagd.2019.101793.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Ball, J. A., J. Kim, L. Rodman, and M. Verma. "Minimal-degree coprime factorizations of rational matrix functions." Linear Algebra and its Applications 186 (June 1993): 117–64. http://dx.doi.org/10.1016/0024-3795(93)90288-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Ball, Joseph A., and Jeongook Kim. "Stability and McMillan degree for rational matrix interpolants." Linear Algebra and its Applications 196 (January 1994): 207–32. http://dx.doi.org/10.1016/0024-3795(94)90325-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ding, Zhiguo, and Michael E. Zieve. "Low-degree permutation rational functions over finite fields." Acta Arithmetica 202, no. 3 (2022): 253–80. http://dx.doi.org/10.4064/aa210521-12-11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Im, Bo-Hae, and Michael Larsen. "Waring’s Problem for Rational Functions in One Variable." Quarterly Journal of Mathematics 71, no. 2 (February 3, 2020): 439–49. http://dx.doi.org/10.1093/qmathj/haz052.

Повний текст джерела
Анотація:
Abstract Let $f\in{\mathbb{Q}}(x)$ be a non-constant rational function. We consider ‘Waring’s problem for $f(x)$,’ i.e., whether every element of ${\mathbb{Q}}$ can be written as a bounded sum of elements of $\{f(a)\mid a\in{\mathbb{Q}}\}$. For rational functions of degree $2$, we give necessary and sufficient conditions. For higher degrees, we prove that every polynomial of odd degree and every odd Laurent polynomial satisfies Waring’s problem. We also consider the ‘easier Waring’s problem’: whether every element of ${\mathbb{Q}}$ can be represented as a bounded sum of elements of $\{\pm f(a)\mid a\in{\mathbb{Q}}\}$.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Korshunov, R. A. "Using the fictive points to transform entities in the process of map updating." Geodesy and Cartography 924, no. 6 (July 20, 2017): 17–24. http://dx.doi.org/10.22389/0016-7126-2017-924-6-17-24.

Повний текст джерела
Анотація:
The method of transformation of a vectorized situation from remote-sensed data to digital map, using fictive points, by means of rational polynoms of different degrees is reported. Those points are not really existing corresponding points of entities and their images in the picture. Actually they are the intersections of appropriate corresponding lines both on the map and on the picture (photo). These lines have been drawn through the identical edges of contours and also new vectors, formed by fictive points. Those ones were used to calculate transform parameters of rational polynoms. We may take the degrees of polynoms (the numerator and denominator) separately from the first to the third degree. The degree of rational polynoms be applied depends on situation in the map and on the geometry of material in use. If any coefficient in particular polynoms of 1t, 2nd or 3d degree, making near zero contribution, useful to eliminate it. This enlarges degree of freedom in resolution. These parameters are used for transfer entity of actualization direct from picture on the digital map. Method was tested on the special maid application ad models and on real images and maps.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Guedj, Vincent. "Ergodic properties of rational mappings with large topological degree." Annals of Mathematics 161, no. 3 (May 1, 2005): 1589–607. http://dx.doi.org/10.4007/annals.2005.161.1589.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Favre, Charles, and Jan-Li Lin. "Degree growth of rational maps induced from algebraic structures." Conformal Geometry and Dynamics of the American Mathematical Society 21, no. 13 (October 25, 2017): 353–68. http://dx.doi.org/10.1090/ecgd/312.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Ran, Z. "The Degree of the Divisor of Jumping Rational Curves." Quarterly Journal of Mathematics 52, no. 3 (September 1, 2001): 367–83. http://dx.doi.org/10.1093/qjmath/52.3.367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Prokhorov, V. A. "ON THE DEGREE OF RATIONAL APPROXIMATION OF MEROMORPHIC FUNCTIONS." Russian Academy of Sciences. Sbornik Mathematics 81, no. 1 (February 28, 1995): 1–20. http://dx.doi.org/10.1070/sm1995v081n01abeh003611.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Ferjančič, Karla, Marjeta Krajnc, and Vito Vitrih. "Construction of G 3 rational motion of degree eight." Applied Mathematics and Computation 272 (January 2016): 127–38. http://dx.doi.org/10.1016/j.amc.2015.08.073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Yu, Dan-sheng, and Song-ping Zhou. "Copositive approximation by rational functions with prescribed numerator degree." Applied Mathematics-A Journal of Chinese Universities 24, no. 4 (December 2009): 411–16. http://dx.doi.org/10.1007/s11766-009-2076-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Dikshit, H. P., A. Ojha, and R. A. Zalik. "Wachspress type rational complex planar splines of degree (3,1)." Advances in Computational Mathematics 2, no. 2 (March 1994): 235–49. http://dx.doi.org/10.1007/bf02521110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Počkaj, Karla. "Hermite G 1 rational spline motion of degree six." Numerical Algorithms 66, no. 4 (August 18, 2013): 721–39. http://dx.doi.org/10.1007/s11075-013-9756-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Valiunas, Motiejus. "Rational growth and degree of commutativity of graph products." Journal of Algebra 522 (March 2019): 309–31. http://dx.doi.org/10.1016/j.jalgebra.2019.01.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії