Статті в журналах з теми "Rate-shaping"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Rate-shaping.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Rate-shaping".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Chen, Zexin, Ming Tang, Songnian Fu, Yuncai Wang, and Yuwen Qin. "Blind Identification of the Shaping Rate for Probabilistic Shaping QAM Signal." IEEE Photonics Technology Letters 33, no. 18 (September 15, 2021): 998–1001. http://dx.doi.org/10.1109/lpt.2021.3083989.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jörg, Christian, Joschka Schaub, Daniel Neumann, and Stefan Pischinger. "Diesel Combustion Control via Rate Shaping." MTZ worldwide 79, no. 4 (March 9, 2018): 16–21. http://dx.doi.org/10.1007/s38313-018-0001-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Eleftheriadis, A., and P. Batra. "Dynamic rate shaping of compressed digital video." IEEE Transactions on Multimedia 8, no. 2 (April 2006): 297–314. http://dx.doi.org/10.1109/tmm.2005.864346.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Liu, Yi, Pengfei Huang, Alexander W. Bergman, and Paul H. Siegel. "Rate-Constrained Shaping Codes for Structured Sources." IEEE Transactions on Information Theory 66, no. 8 (August 2020): 5261–81. http://dx.doi.org/10.1109/tit.2020.2986318.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Neumann, Daniel, Stefan Pischinger, Joschka Schaub, and Benedikt Heuser. "Flex-fuel Capability Using Digital Combustion Rate Shaping." MTZ worldwide 80, no. 5 (April 12, 2019): 30–37. http://dx.doi.org/10.1007/s38313-019-0024-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hjorth, Jens, Christa Gall, and Michał J. Michałowski. "SHAPING THE DUST MASS-STAR-FORMATION RATE RELATION." Astrophysical Journal 782, no. 2 (January 31, 2014): L23. http://dx.doi.org/10.1088/2041-8205/782/2/l23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Inoue, Masahiro, Masahisa Kawashima, and Hideyoshi Tominaga. "Variable bit-rate video transmission using traffic shaping." Electronics and Communications in Japan (Part I: Communications) 79, no. 12 (1996): 56–64. http://dx.doi.org/10.1002/ecja.4410791206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Graziano, Barbara, Benedikt Heuser, and Paul Grzeschik. "Improved Combustion in Diesel Engines by Injection Rate Shaping." Auto Tech Review 4, no. 11 (November 2015): 24–29. http://dx.doi.org/10.1365/s40112-015-1026-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Huan-Yun Wei, Shih-Chiang Tsao, and Ying-Dar Lin. "Assessing and improving TCP rate shaping over edge gateways." IEEE Transactions on Computers 53, no. 3 (March 2004): 259–75. http://dx.doi.org/10.1109/tc.2004.1261834.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Graziano, Barbara, Benedikt Heuser, and Paul Grzeschik. "Improved Combustion in Diesel Engines by Injection Rate Shaping." MTZ worldwide 76, no. 3 (February 4, 2015): 4–9. http://dx.doi.org/10.1007/s38313-014-1022-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Chen, Trista Pei-chun, and Tsuhan Chen. "Error concealment aware rate shaping for wireless video transport." Signal Processing: Image Communication 18, no. 10 (November 2003): 889–905. http://dx.doi.org/10.1016/j.image.2003.08.007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Gültekin, Yunus Can, Tobias Fehenberger, Alex Alvarado, and Frans M. J. Willems. "Probabilistic Shaping for Finite Blocklengths: Distribution Matching and Sphere Shaping." Entropy 22, no. 5 (May 21, 2020): 581. http://dx.doi.org/10.3390/e22050581.

Повний текст джерела
Анотація:
In this paper, we provide a systematic comparison of distribution matching (DM) and sphere shaping (SpSh) algorithms for short blocklength probabilistic amplitude shaping. For asymptotically large blocklengths, constant composition distribution matching (CCDM) is known to generate the target capacity-achieving distribution. However, as the blocklength decreases, the resulting rate loss diminishes the efficiency of CCDM. We claim that for such short blocklengths over the additive white Gaussian noise (AWGN) channel, the objective of shaping should be reformulated as obtaining the most energy-efficient signal space for a given rate (rather than matching distributions). In light of this interpretation, multiset-partition DM (MPDM) and SpSh are reviewed as energy-efficient shaping techniques. Numerical results show that both have smaller rate losses than CCDM. SpSh—whose sole objective is to maximize the energy efficiency—is shown to have the minimum rate loss amongst all, which is particularly apparent for ultra short blocklengths. We provide simulation results of the end-to-end decoding performance showing that up to 1 dB improvement in power efficiency over uniform signaling can be obtained with MPDM and SpSh at blocklengths around 200. Finally, we present a discussion on the complexity of these algorithms from the perspectives of latency, storage and computations.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Chia-Chiang Ho, Ja-Ling Wu, and Wen-Huang Cheng. "A practical foveation-based rate-shaping mechanism for MPEG videos." IEEE Transactions on Circuits and Systems for Video Technology 15, no. 11 (November 2005): 1365–72. http://dx.doi.org/10.1109/tcsvt.2005.856929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Xia, B., and L. R. Chen. "Ring Resonator Arrays for Pulse Repetition Rate Multiplication and Shaping." IEEE Photonics Technology Letters 18, no. 19 (October 2006): 1999–2001. http://dx.doi.org/10.1109/lpt.2006.882285.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Akbulut, M., S. Bhooplapur, I. Ozdur, J. Davila-Rodriguez, and P. J. Delfyett. "Dynamic line-by-line pulse shaping with GHz update rate." Optics Express 18, no. 17 (August 10, 2010): 18284. http://dx.doi.org/10.1364/oe.18.018284.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Ganss-Puchstein, R., C. C. W. Ruppel, and H. R. Stocker. "Spectrum shaping SAW filters for high-bit-rate digital radio." IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 35, no. 6 (November 1988): 673–84. http://dx.doi.org/10.1109/58.9323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Scharf, Elias, Jakob Dremel, Robert Kuschmierz, and Jürgen Czarske. "Video-rate lensless endoscope with self-calibration using wavefront shaping." Optics Letters 45, no. 13 (June 29, 2020): 3629. http://dx.doi.org/10.1364/ol.394873.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Harada, Masaaki, and Kenji Sakurai. "Narrow pulse shaping for high‐counting‐rate x‐ray measurements." Review of Scientific Instruments 67, no. 2 (February 1996): 615–16. http://dx.doi.org/10.1063/1.1146618.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Jacobs, Stephen, and Alexandros Eleftheriadis. "Streaming Video Using Dynamic Rate Shaping and TCP Congestion Control." Journal of Visual Communication and Image Representation 9, no. 3 (September 1998): 211–22. http://dx.doi.org/10.1006/jvci.1998.0389.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Han, Yang, Djordjevic, Yue, Wang, Qu, and Anderson. "Joint Probabilistic-Nyquist Pulse Shaping for an LDPC-Coded 8-PAM Signal in DWDM Data Center Communications." Applied Sciences 9, no. 23 (November 20, 2019): 4996. http://dx.doi.org/10.3390/app9234996.

Повний текст джерела
Анотація:
M-ary pulse-amplitude modulation (PAM) meets the requirements of data center communication because of its simplicity, but coarse entropy granularity cannot meet the dynamic bandwidth demands, and there is a large capacity gap between uniform formats and the Shannon limit. The dense wavelength division multiplexing (DWDM) system is widely used to increase the channel capacity, but low spectral efficiency of the intensity modulation/direct detection (IM/DD) solution restricts the throughput of the modern DWDM data center networks. Probabilistic shaping distribution is a good candidate to offer us a fine entropy granularity and efficiently reduce the gap to the Shannon limit, and Nyquist pulse shaping is widely used to increase the spectral efficiency. We aim toward the joint usage of probabilistic shaping and Nyquist pulse shaping with low-density parity-check (LDPC) coding to improve the bit error rate (BER) performance of 8-PAM signal transmission. We optimized the code rate of the LDPC code and compared different Nyquist pulse shaping parameters using simulations and experiments. We achieved a 0.43 dB gain using Nyquist pulse shaping, and a 1.1 dB gain using probabilistic shaping, while the joint use of probabilistic shaping and Nyquist pulse shaping achieved a 1.27 dB gain, which offers an excellent improvement without upgrading the transceivers.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Ranjan, Ritesh, and Prabhanjan Kumar Pranav. "Cost analysis of manual bund shaping in paddy fields: Economical and physiological." Research in Agricultural Engineering 67, No. 4 (December 17, 2021): 181–89. http://dx.doi.org/10.17221/23/2021-rae.

Повний текст джерела
Анотація:
Bund shaping is one of the essential operations in preparing a paddy transplanting field. This operation is undertaken manually by spades in a traditional way as this has not been mechanised thus far. Therefore, this study was conducted to expose this operation by evaluating the economic, as well as physiological, cost involved in the bund shaping. For the economic cost, the study was conducted in nine different districts of Assam (India). The bund length for the estimated area was measured and estimated for one ha of land. The average rate of manual bund shaping was also measured to calculate the cost involved in this operation. Moreover, for the physiological cost, ten experienced subjects were calibrated and measured for their maximum aerobic capacity by sub-maximal exercise in laboratory condition. Furthermore, the heart rate was measured during the manual bund shaping and was then correlated with the calibrated data. It was found that the average required bund shaping length per ha was 3 669 m which was associated with a cost of 2 062.8 rupees. It was found that the bund shaping consumed 76.96% of the maximum volume of the oxygen consumption capacity of the subjects; however, the energy expenditure rate with respect to time and bund length were 7.37 kcal·min<sup>–1</sup> and 4.33 kcal·m<sup>–1</sup>, respectively. Hence, bund shaping in a paddy field comes under a severe workload category which emphasises the need of mechanisation for the bund shaping operation.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Teji, Munish Kumar, and Vikas Saini. "Bit Error Rate evaluation of Pulse Shaping Filters under AWGN Channel." International Journal of Computer Trends and Technology 41, no. 1 (November 25, 2016): 48–53. http://dx.doi.org/10.14445/22312803/ijctt-v41p109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Merker, Günter P., and Thaddäus Delebinski. "Injection rate shaping for diesel engines assisted by optical measurement systems." MTZ worldwide 68, no. 9 (September 2007): 22–25. http://dx.doi.org/10.1007/bf03226856.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Le, Dat, Bradley W. Pietrzak, and Gregory M. Shaver. "Dynamic surface control of a piezoelectric fuel injector during rate shaping." Control Engineering Practice 30 (September 2014): 12–26. http://dx.doi.org/10.1016/j.conengprac.2014.04.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Le, Dat, Jin Shen, Neha Ruikar, and Gregory M. Shaver. "Dynamic modeling of a piezoelectric fuel injector during rate shaping operation." International Journal of Engine Research 15, no. 4 (September 25, 2013): 471–87. http://dx.doi.org/10.1177/1468087413492737.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Guthier, C. V., D. W. Cail, P. F. Orio, and R. A. Cormack. "Regional Dose Shaping for Low-Dose-Rate Brachytherapy Inverse Treatment Planning." International Journal of Radiation Oncology*Biology*Physics 99, no. 2 (October 2017): E667—E668. http://dx.doi.org/10.1016/j.ijrobp.2017.06.2210.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Li, Linqing, Lianhong Zhang, Bing Yu, Kaifeng Wang, and Fucong Liu. "An efficient spur gear shaping method based on homogenizing cutting area through variational circular feed rate." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 231, no. 9 (September 22, 2015): 1587–98. http://dx.doi.org/10.1177/0954405415601639.

Повний текст джерела
Анотація:
Gear shaping is a widely applied technology to produce spur gears. Generally, the pinion cutter and the gear workpiece rotate uniformly with a given gear ratio during the conventional gear shaping process, which can cause a large variation of the cutting area per stroke in cutting tooth spaces. It makes the cutting force less than the rated capacity of the gear shaper in most cutting strokes and thus reduces the process efficiency. To overcome such a shortage, a new spur gear shaping method is proposed in this article, in which the cutting area per stroke is homogenized to a target value through optimizing the circular feed rate. The new method can enhance process efficiency by keeping the cutting force equivalent to the rated capacity of the gear shaper. The specific algorithm includes a number of aspects: cutting area calculation, gear profile generation, cutting area analysis of conventional gear shaping, and cutting area homogenization. Additionally, the new spur gear shaping method is demonstrated and validated using a VERICUT simulation. From the simulation results, it is found that the process efficiency is improved up to 40% via the efficient gear shaping because of the reduced number of shaping strokes. Hence, the new spur gear shaping method is applicable for computer numerical control gear shapers to improve the process efficiency significantly without any additional hardware changes.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Lutz, Christian, Cemal Esen, and Ralf Hellmann. "Ultrashort-pulsed laser processing with spatial and temporal beam shaping using a spatial light modulator and burst modes." IOP Conference Series: Materials Science and Engineering 1135, no. 1 (November 1, 2021): 012026. http://dx.doi.org/10.1088/1757-899x/1135/1/012026.

Повний текст джерела
Анотація:
Abstract We report on the effect of simultaneous spatial and temporal beam shaping on the ablation rate, ablation efficiency and the resulting surface characteristics of micromachined stainless steel using ultrashort-pulsed lasers. Beam shaping and the use of pulse bursts are promising methods to allocate the over the last decades increasing laser power of ultrashort-pulsed lasers in ablation processes. While the individual effects of beam shaping and pulse bursts on the ablation characteristics have recently been examined, the combination of both has not yet been adequately investigated. Using a spatial light modulator to generate different spot distributions with up to six spots and different separations it is possible to spatially distribute the available laser power. In combination with temporal beam shaping using a 200 kHz repetition rate and pulse bursts with a 40 MHz intra-burst rate, we investigate the influences in a scanning-based process and find an increasing ablation rate and efficiency for higher fluences. Subsequently using bursts in combination with a multi-spot beam profile, we found a distinctive emergence of cone like protrusions and a smoothing effect for fluences between 1.5 J/cm² and 3 J/cm² with six spot beam profile.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wallace, R. J., and S. M. Copley. "Shaping Silicon Nitride With a Carbon Dioxide Laser by Overlapping Multiple Grooves." Journal of Engineering for Industry 111, no. 4 (November 1, 1989): 315–21. http://dx.doi.org/10.1115/1.3188766.

Повний текст джерела
Анотація:
In this research, the feasibility of shaping Si3N4 by overlapping multiple grooves produced with a continuously operated CO2 laser beam is demonstrated. The relationships of process parameters such as material removal rate and arithmetic average surface roughness to machine parameters such as feed and speed have been investigated. Strategies for laser shaping are discussed and an economic evaluation of laser shaping is presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

AZETSU, Akihiko, Yoshifumi WAKISAKA, Yasuhiko FUKUCHI, and Chikashi OIKAWA. "Effect of Fuel Injection Rate Shaping on Spray Combustion. 1st Report. An Electronically Controllable Fuel Injection System for Variable Injection Rate Shaping and Analysis of Spray Characteristics." Transactions of the Japan Society of Mechanical Engineers Series B 64, no. 624 (1998): 2737–43. http://dx.doi.org/10.1299/kikaib.64.2737.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Prayoga, Kadek Agus Mahabojana Dwi, NMAE Dewi Wirastuti, and Nyoman Pramaita. "Analisis Unjuk Kerja Improved Sinc Power Pulse pada Sistem OFDM Melalui Kanal Frequency Selective Fading." Majalah Ilmiah Teknologi Elektro 18, no. 3 (September 4, 2019): 323. http://dx.doi.org/10.24843/mite.2019.v18i03.p04.

Повний текст джерела
Анотація:
Kombinasi antara sistem OFDM (orthogonal frequency division multiplexing) dan Pulse Shaping mampu mengurangi Inter Carrier Interference (ICI) dan error yang terjadi. Penelitian ini bertujuan untuk mengetahui perbandingan performansi dari sistem OFDM tanpa pulse shaping dan OFDM dengan pulse shaping Improved Sinc Power (ISP) pulse yang melalui kanal Frequency Selective Fading, ditinjau dari BER (bit error rate) berbanding Eb/No (energy per bit to noise power spectral density ratio). Penelitian ini menggunakan metode simulasi dengan menggunakan program Matlab R2018a. Hasil dari simulasi didapat unjuk kerja sistem OFDM dengan pulse shaping ISP pulsememiliki hasil yang lebih baik dari OFDM tanpa pulse shaping. Pada kanal transmisi Frequency Selective Fading untuk mencapi nilai BER sebesar 10-1 sistem OFDM dengan pulse shaping ISP pulse dibutuhkan Eb/No sebesar 2 dB. Sedangkan pada sistem OFDM tanpa pulse shaping dibutuhkan Eb/No sebesar 10 dB. Kata Kunci — OFDM, Pulse Shaping, ICI, ISP pulse, Frequency Selective Fading.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Abdullah, M. F. E., Y. Toyama, S. Saruwatari, S. Akiyama, T. Shimada, and T. Aizawa. "Spray Tip Penetration of Inversed-delta Injection Rate Shaping in Non-Vapourising Condition." International Journal of Automotive and Mechanical Engineering 16, no. 3 (October 4, 2019): 7048–60. http://dx.doi.org/10.15282/ijame.16.3.2019.16.0528.

Повний текст джерела
Анотація:
The performance and emissions of diesel engine are highly depending on the fuel delivery process thus, injection rate shaping approach is expected to be crucial in the development of a highly efficient and clean modern engine. A novel rate shaping injector called TAIZAC (TAndem Injection Zapping ACtivation) is used to realise an injection rate shaping of progressive ramp-down of high initial injection pressure as in inversed-delta shape. This study aims to investigate diesel spray tip penetration behaviour in inverseddelta injection rate shaping. The experiments are conducted under a high-density nonvapourising condition in a constant volume combustion chamber. High-speed diffused back illumination DBI imaging of the diesel spray is acquired at 30,000 fps using mercury lamp as the light source. The tip penetration of the inversed-delta injection is smaller than that of rectangle injection regardless of their injection momentum which is proportional to t0.5 and t0.43 in rectangle and inversed-delta injection case, respectively. To examine the potential of inversed-delta injection on wall heat loss reduction, diesel spray flame impinges to a MEMS sensor located at 28-mm downstream. It is interesting to note that the heat flux in 200 MPa inversed-delta injection is reduced by approximately 15% compared to 200 MPa rectangle injection even though their tip penetration starts to diverge at approximately 30 mm; indicates the TAIZAC injector potential in improving engine thermal efficiency.
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Yaokawa, Jun, Yasushi Iwata, Yoshio Sugiyama, Mitsuhiro Kobayashi, and Yuta Egawa. "Theoretical Analysis of Maximum Pulling Rate in Capillary Shaping of Pure Aluminum." MATERIALS TRANSACTIONS 60, no. 2 (February 1, 2019): 316–21. http://dx.doi.org/10.2320/matertrans.f-m2018850.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Jörg, Christian, Thorsten Schnorbus, Simon Jarvis, Ben Neaves, Kiran Bandila, and Daniel Neumann. "Feedforward Control Approach for Digital Combustion Rate Shaping Realizing Predefined Combustion Processes." SAE International Journal of Engines 8, no. 3 (April 14, 2015): 1041–54. http://dx.doi.org/10.4271/2015-01-0876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Jackson, Trent, Timothy Hahn, Wenhao Lin, Richard S. Wolff, and Brendan Mumey. "Bit error rate reduction by power shaping in WDM networks with EDFAs." Optical Fiber Technology 15, no. 5-6 (October 2009): 425–30. http://dx.doi.org/10.1016/j.yofte.2009.07.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

kour, Gurpreet, Rajesh Mehra, and Monika Singh. "Bit Error Rate Analysis of Square Root Raised Cosine Pulse Shaping Filter." International Journal of Engineering Trends and Technology 28, no. 4 (October 25, 2015): 183–89. http://dx.doi.org/10.14445/22315381/ijett-v28p235.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Dinda, Sirshendu, Soumendra Nath Bandyopadhyay, and Debabrata Goswami. "Rapid programmable pulse shaping of femtosecond pulses at the MHz repetition rate." OSA Continuum 2, no. 4 (March 20, 2019): 1386. http://dx.doi.org/10.1364/osac.2.001386.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Gu, Chenglin, Yina Chang, Dapeng Zhang, Jiyi Cheng, and Shih-Chi Chen. "Femtosecond laser pulse shaping at megahertz rate via a digital micromirror device." Optics Letters 40, no. 17 (August 21, 2015): 4018. http://dx.doi.org/10.1364/ol.40.004018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Tague, John A., and Lisa M. Shimoda. "Precision waveform shaping and precompensation for high data rate space communications systems." International Journal of Satellite Communications 12, no. 2 (March 1994): 157–66. http://dx.doi.org/10.1002/sat.4600120204.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Ahmed, Adel A., Sharaf J. Malebary, Waleed Ali, and Omar M. Barukab. "Smart Traffic Shaping Based on Distributed Reinforcement Learning for Multimedia Streaming over 5G-VANET Communication Technology." Mathematics 11, no. 3 (January 30, 2023): 700. http://dx.doi.org/10.3390/math11030700.

Повний текст джерела
Анотація:
Vehicles serve as mobile nodes in a high-mobility MANET technique known as the vehicular ad hoc network (VANET), which is used in urban and rural areas as well as on highways. The VANET, based on 5G (5G-VANET), provides advanced facilities to the driving of vehicles such as reliable communication, less end-to-end latency, a higher data rate transmission, reasonable cost, and assured quality of experience (QoE) for delivered services. However, the crucial challenge with these recent technologies is to design a real-time multimedia traffic shaping that maintains smooth connectivity under the unpredictable change of channel capacity and data rate due to handover for rapid vehicle mobility among roadside units. This research proposes a smart real-time multimedia traffic shaping to control the amount and the rate of the traffic sent to the 5G-VANET based on distributed reinforcement learning (RMDRL). The proposed mechanism selects the accurate decisions of coding parameters such as quantization parameters, group of pictures, and frame rate that are used to manipulate the required traffic shaping of the multimedia stream on the 5G-VANET. Furthermore, the impact of the aforementioned three coding parameters has been comprehensively studied using five video clips to achieve the optimal traffic rate value for real-time multimedia streaming on 5G communication. The proposed algorithm outperforms the baseline traffic shaping in terms of peak-signal-to-noise-ratio (PSNR) and end-to-end frame delay. This research will open new comfortable facilities for vehicle manufacturing to enhance the data communication system on the 5G-VANET.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Liu, Yi, Ming Wang, Wenjie Wan, Jianbin Zhou, Xu Hong, Fei Liu, and Jie Yu. "Counting-loss correction method based on dual-exponential impulse shaping." Journal of Synchrotron Radiation 27, no. 6 (September 25, 2020): 1609–13. http://dx.doi.org/10.1107/s1600577520010954.

Повний текст джерела
Анотація:
Under the condition of high counting rate, the phenomenon of nuclear pulse signal pile-up using a single exponential impulse shaping method is still very serious, and leads to a severe loss in counting rate. A real nuclear pulse signal can be expressed as a dual-exponential decay function with a certain rising edge. This paper proposes a new dual-exponential impulse shaping method and shows its deployment in hardware to test its performance. The signal of a high-performance silicon drift detector under high counting rate in an X-ray fluorescence spectrometer is obtained. The result of the experiment shows that the new method can effectively shorten the dead-time caused by nuclear signal pile-up and correct the counting rate.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Zhang, Yao, Hongxiang Wang, Yuefeng Ji, and Yu Zhang. "Parallel Distribution Matcher Base on CCDM for Probabilistic Amplitude Shaping in Coherent Optical Fiber Communication." Photonics 9, no. 9 (August 25, 2022): 604. http://dx.doi.org/10.3390/photonics9090604.

Повний текст джерела
Анотація:
As a typical high-order modulation format optimization technology, constellation probability shaping enhances generalized mutual information (GMI) by optimizing the probability distribution of each constellation point of the signal. It can improve the transmission capacity of the same order M Quadrature Amplitude Modulation (QAM) signal under the condition of limited average transmission power, and further narrow the gap with the Shannon limit capacity. The distribution matcher is a key part of constellation probability shaping since it not only ensures the one-to-one mapping of input and output sequences but also realizes the function of probability shaping. The constant composition distribution matcher (CCDM) structure is a widely utilized distribution matcher in the current probability shaping technology. Based on CCDM, a parallel distribution matcher scheme is proposed in this paper. It has a lower rate loss than CCDM for short output lengths (n is less than 100). Block lengths can be reduced by up to 30% with the same rate loss. When the GMI is the same as for the probability shaping (PS) 64QAM signal using CCDM, the OSNR required by the PS-64QAM signal using this scheme can be enhanced by 0.12dB, the block length can be reduced by 40%, and the transmission distance in a standard single-mode fiber can be slightly extended.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Kuribayashi, Shin-ichi. "Dynamic Shaping Method using SDN And NFV Paradigms." International journal of Computer Networks & Communications 13, no. 2 (March 31, 2021): 1–14. http://dx.doi.org/10.5121/ijcnc.2021.13201.

Повний текст джерела
Анотація:
Traffic shaping controls communication traffic flow to prevent a specified communication rate from being exceeded. In conventional networks, the traffic shaping device is implemented at a predetermined location and only a communication flow passing through the device is targeted. If the traffic can be shaped dynamically on any selected communication flows at the optimal point only when necessary, it could use network bandwidths and packet relay processing capacity more efficiently and flexibly. This paper proposes a dynamic shaping method using Software-Defined Networking (SDN) and Network Functions Virtualization (NFV) paradigms, which selects the optimal communication flows to be shaped, and the optimal shaping points dynamically. This paper also presented system configuration and functions for the proposed dynamic shaping, and the method to simplify the process of collecting the traffic data of each communication flow by SDN controller.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Chiriyath, Alex R., Shankarachary Ragi, Hans D. Mittelmann, and Daniel W. Bliss. "Radar Waveform Optimization for Joint Radar Communications Performance." Electronics 8, no. 12 (December 7, 2019): 1498. http://dx.doi.org/10.3390/electronics8121498.

Повний текст джерела
Анотація:
We develop and present a radar waveform design method that optimizes the spectral shape of the radar waveform so that joint performance of a cooperative radar communications system is maximized. The continuous water-filling (WF) spectral-mask shaping method presented in this paper is based on the previously derived spectral-mask shaping technique. However, the method presented in this paper is modified to utilize the continuous spectral water-filling algorithm to improve communications performance. We also introduce additional practical system constraints on the autocorrelation peak side-lobe-to-main-lobe ratio and radar waveform spectral leakage. Finally, we perform a numerical study to compare the performance of the continuous WF spectral-mask-shaping method with the previously derived method. The global estimation rate, which also accounts for non-local estimation errors, and the data rate capture radar and communications performance respectively.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Lin, Meng Ju, and Rong Shun Chen. "Discussion of Scraping Depth and Feeding Rate Performance of Micro Shaping." Solid State Phenomena 311 (October 2020): 80–87. http://dx.doi.org/10.4028/www.scientific.net/ssp.311.80.

Повний текст джерела
Анотація:
A novel micromachining technology is investigated in this work. Precision machining of micrometer sizes can be achieved by a tool scraping on CNC machine. The knife for scraping with small knife nose with radius of fifty micrometer can scrape surfaces of designed function by path planning of CNC machine. To investigate performance, micro channels are scraped on workpieces by micro shaping. For tool path planning, feeding rate and scraping depth have significant effect on machining performance and depth-to-width ratio. Poly-methyl methacrylate (PMMA) and aluminum alloy are materials for scraping. From the results of experiments, aluminum alloy has better machining performance and smoother scraping surface than PMMA. Smaller scraping depth would induce better performance and size precision. For feeding rate, 800 mm/min is better for PMMA and 500 mm/min is better for aluminum alloy.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Bhat, K. P. M., Reena P. Nibandhe, and K. R. Arun. "Realisation of a Low Data Rate OK—QPSK Modem with Data Shaping Technique." IETE Journal of Education 43, no. 3 (July 2002): 113–20. http://dx.doi.org/10.1080/09747338.2002.11415770.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Fazzi, A., and V. Varoli. "Signal shaping optimization with /sup 3/He tubes in high rate neutron counting." IEEE Transactions on Nuclear Science 46, no. 3 (June 1999): 342–47. http://dx.doi.org/10.1109/23.775541.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Lipson, A., and M. Orenstein. "Repetition rate enhancement and mode shaping in dual-cavity stretched pulse fiber laser." IEEE Photonics Technology Letters 18, no. 8 (April 2006): 920–22. http://dx.doi.org/10.1109/lpt.2006.872272.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

De Cnodder, Stefaan, Omar Elloumi, and Kenny Pauwels. "Rate adaptive shaping for the efficient transport of data traffic in diffserv networks." Computer Networks 35, no. 2-3 (February 2001): 263–85. http://dx.doi.org/10.1016/s1389-1286(00)00171-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Winklhofer, E., B. Ahmadi-Befrui, B. Wiesler, and G. Cresnoverh. "The Influence of Injection Rate Shaping on Diesel Fuel Sprays—An Experimental Study." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 206, no. 3 (July 1992): 173–83. http://dx.doi.org/10.1243/pime_proc_1992_206_176_02.

Повний текст джерела
Анотація:
A current strategy in the development of direct injection (DI) diesel engine combustion systems is the control and limitation of the initial ‘premixed’ combustion heat release ensuing from the auto-ignition of the injected fuel. This requires control of the amount of fuel vaporization and mixing taking place during the ignition delay time. Since the latter is determined by the fuel composition and the in-cylinder gas temperature, development efforts have focused on the injection of well-controlled, portioned fuel quantities prior to the ignition as a means of achieving the desired goal. This practice is becoming known as ‘fuel rate shaping’. Consequently, the fuel spray penetration during this period, fuel evaporation and mixture preparation, as well as the influence of in-cylinder air motion on mixture distribution, are main subjects of interest in affording insight into fuel rate shaping attempts. These have been addressed through a combined experimental and theoretical investigation of the spray characteristics associated with different injection practices. The experimental investigations have been performed in an optically accessed spray research engine. Basic aspects of fuel spray tip penetration, time and location of auto-ignition and flame propagation have been recorded with a high-speed line-scan camera. The results provide the space and time-scale characteristics for the propagation, ignition and combustion of a selection of diesel fuel sprays. Investigations have been carried out for a conventional fuel injection system equipped with a set of different single-hole injector nozzles, as well as for a dual-spring injector and an injector with a split injection device. The experimental results provide an insight into the propagation of the fuel spray front, yield qualitative information about its spatial and temporal distribution, and, in the case of split injection, show the interaction of the initial pilot fuel portion with the main injection.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії