Добірка наукової літератури з теми "Rate-Distortion optimisation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Rate-Distortion optimisation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Rate-Distortion optimisation"
Choi, Soonwoo, and Soo‐Ik Chae. "Comparison of CABAC rate estimation models for HEVC rate distortion optimisation." Electronics Letters 50, no. 6 (March 2014): 441–42. http://dx.doi.org/10.1049/el.2013.3334.
Повний текст джерелаYou, J., C. Choi, and J. Jeong. "Adaptive rate distortion optimisation for H.264 intra coding." Electronics Letters 44, no. 25 (2008): 1458. http://dx.doi.org/10.1049/el:20081715.
Повний текст джерелаJung, Cheolkon, and Yao Chen. "Perceptual rate distortion optimisation for video coding using free‐energy principle." Electronics Letters 51, no. 21 (October 2015): 1656–58. http://dx.doi.org/10.1049/el.2015.1456.
Повний текст джерелаLópez, S., G. M. Callicó, J. F. López, and R. Sarmiento. "Adaptive motion vector post-processing for low cost rate-distortion optimisation." Electronics Letters 39, no. 24 (2003): 1720. http://dx.doi.org/10.1049/el:20031107.
Повний текст джерелаZhang, Yuejin, Meng Yu, and Yong Hu. "Scalable video coding algorithm and rate-distortion optimisation based on cloud computing." International Journal of Innovative Computing and Applications 9, no. 3 (2018): 165. http://dx.doi.org/10.1504/ijica.2018.093734.
Повний текст джерелаHu, Yong, Meng Yu, and Yuejin Zhang. "Scalable video coding algorithm and rate-distortion optimisation based on cloud computing." International Journal of Innovative Computing and Applications 9, no. 3 (2018): 165. http://dx.doi.org/10.1504/ijica.2018.10014861.
Повний текст джерелаShen, Jiandong, and Wai-Yip Chan. "Fast rate-distortion optimisation algorithm for motion-compensated transform coding of video." Electronics Letters 36, no. 4 (2000): 305. http://dx.doi.org/10.1049/el:20000302.
Повний текст джерелаRingis, Daniel J., François Pitié, and Anil Kokaram. "Per Clip Lagrangian Multiplier Optimisation for HEVC." Electronic Imaging 2020, no. 10 (January 26, 2020): 136–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.10.ipas-136.
Повний текст джерелаXu, Weiwei, and Yaowu Chen. "End‐to‐end rate‐distortion optimisation of multiple description coding utilising multiple redundant pictures." Electronics Letters 50, no. 21 (October 2014): 1520–22. http://dx.doi.org/10.1049/el.2014.0766.
Повний текст джерелаKai, Guo, and Po Lai Man. "A Partial Codevector Updating Scheme Based on Rate-distortion Optimisation for Adaptive Vector Quantisation." HKIE Transactions 14, no. 4 (January 2007): 28–36. http://dx.doi.org/10.1080/1023697x.2007.10668094.
Повний текст джерелаДисертації з теми "Rate-Distortion optimisation"
Handcock, Jason Anthony. "Video compression techniques and rate-distortion optimisation." Thesis, University of Bristol, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326726.
Повний текст джерелаPresvôts, Corentin. "Multiple-Model Coding Scheme for Electrical Signal Compression." Electronic Thesis or Diss., université Paris-Saclay, 2025. http://www.theses.fr/2025UPASG007.
Повний текст джерелаThe integration of renewable energy sources into the electrical grid introduces more complex dynamics, requiring more efficient and low-latency control. This control demands the transmission of large volumes of data from substations to higher-level control centers. To address network bandwidth constraints, it is essential to develop efficient compression techniques tailored to the specific characteristics of electrical signals. Currently, Phasor Measurement Units (PMUs) are the most commonly used devices for acquiring and compressing these signals. However, PMU cannot accurately represent fast transients. In the first part of this thesis, a compression method using neural networks, based on Variational Autoencoders (VAEs), is described. Initially developed for image compression, this method is adapted in this work to the compression of sampled electrical signals. The principle relies on optimizing the transformation step by minimizing a Rate-Distortion (RD) trade-off over a training set of electrical signals. This method enables the optimization of the entire compression pipeline by accounting for quantization and entropy coding, thus providing better average performance compared to classical non-trainable methods, such as the Discrete Cosine Transform (DCT) or the discrete wavelet transform Discrete Wavelet Transform (DWT). The second part describes a proposed multi-model coding scheme for the compression of sampled electrical signals. To reduce latency, the Multiple Model Compression (MMC) approach operates on windows of approximately one electrical period (on the order of glspl{pmu} latency), thus containing a limited number of samples. In the first compression stage, several parametric signal models (sinusoidal, polynomial, and predictive models) are compared to obtain a coarse representation of the electrical signal. In the second stage, several transform coding techniques are used to compress the reconstruction residual from the first stage. The transformations used include the DCT, DWT, and the previously mentioned VAEs. The model parameters are quantized, and the bit budget allocation between the two stages is optimized based on a target rate. However, imposing a rate constraint introduces variations in the reconstruction quality of the sampled signals, which may not meet the strict quality requirements imposed by end users. The third part of this thesis aims to determine the minimum bit budget required to satisfy a maximum distortion constraint. The additional degree of freedom provided by the choice of the total bit budget increases the complexity of the MMC approach compared to its fixed-rate variant and may be incompatible with real-time constraints. Two distinct methods are proposed for model selection and bit allocation between the two stages. The first method relies on an exhaustive search to determine the number of bits to allocate to both compression stages. The second method uses a golden-section search. The computational cost of these two approaches is further reduced by a preliminary estimation of the best model and the optimal bit allocation between the two stages to meet the distortion constraint. This estimation is based on RD models
Lee, Ho. "Compression progressive et tatouage conjoint de maillages surfaciques avec attributs de couleur." Phd thesis, Université Claude Bernard - Lyon I, 2011. http://tel.archives-ouvertes.fr/tel-00863744.
Повний текст джерелаЧастини книг з теми "Rate-Distortion optimisation"
HADDAD, P., M. BARLAUD, and P. MATHIEU. "OPTIMISATION OF DISTORTION-RATE IN IMAGE CODING: AN APPLICATION OF WAVELET PACKETS." In Signal Processing, 1493–96. Elsevier, 1992. http://dx.doi.org/10.1016/b978-0-444-89587-5.50076-1.
Повний текст джерелаТези доповідей конференцій з теми "Rate-Distortion optimisation"
Sunil Kumar B S, A. S. Manjunath, and S. Christopher. "Inter Frame-Rate Distortion optimisation on scalable video for HEVC." In 2016 International Conference on Computation System and Information Technology for Sustainable Solutions (CSITSS). IEEE, 2016. http://dx.doi.org/10.1109/csitss.2016.7779449.
Повний текст джерелаZhang, Fan, and David R. Bull. "An adaptive Lagrange multiplier determination method for rate-distortion optimisation in hybrid video codecs." In 2015 IEEE International Conference on Image Processing (ICIP). IEEE, 2015. http://dx.doi.org/10.1109/icip.2015.7350883.
Повний текст джерела