Добірка наукової літератури з теми "Rashba spin-orbit couplings"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Rashba spin-orbit couplings".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Rashba spin-orbit couplings"

1

Prabhakar, Sanjay, and Roderick Melnik. "Tuning g-factor of electrons through spin–orbit coupling in GaAs/AlGaAs conical quantum dots." International Journal of Modern Physics B 30, no. 13 (May 19, 2016): 1642003. http://dx.doi.org/10.1142/s0217979216420030.

Повний текст джерела
Анотація:
We investigate band structures of [Formula: see text] three-dimensional conical quantum dots (QDs). In particular, we explore the influence of the Rashba and Dresselhaus spin–orbit couplings in the variation of effective [Formula: see text]-factor of electrons in such QDs. We demonstrate that the interplay between the Rashba and Dresselhaus spin–orbit couplings can provide further insight into underlying physical phenomena and assist in the design of quantum logic gates for the application in spintronic devices.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Eryzhenkov, Alexander V., Artem V. Tarasov, Alexander M. Shikin, and Artem G. Rybkin. "Non-Trivial Band Topology Criteria for Magneto-Spin–Orbit Graphene." Symmetry 15, no. 2 (February 15, 2023): 516. http://dx.doi.org/10.3390/sym15020516.

Повний текст джерела
Анотація:
Band structure and topology of magneto-spin–orbit graphene is investigated using the proposed tight-binding model that incorporates both Rashba and sublattice-resolved collinear exchange couplings in a generic ferrimagnetic (FIM) setting for in-plane and out-of-plane magnetization directions. The resulting band structures were analyzed for possibilities to extract the strengths of exchange and Rashba couplings from experimental spin-resolved ARPES measurements of the valley gaps and π-state spin-splittings. It was shown that the topologically trivial in-plane FIM situation admits simple expressions for these quantities, whereas the out-of-plane FIM, which admits a nontrivial band topology, is harder to analyze. The obtained topological phase diagrams for the out-of-plane FIM case show that the anomalous Hall conductance is quite stable with respect to the antiferromagnetic (AFM) interaction, which tends to interfere with the QAHE phase; moreover, the topological phase transition has a rather smooth character with respect to the AFM coupling strength.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Dell’Anna, Luca, and Stefano Grava. "Critical Temperature in the BCS-BEC Crossover with Spin-Orbit Coupling." Condensed Matter 6, no. 2 (April 30, 2021): 16. http://dx.doi.org/10.3390/condmat6020016.

Повний текст джерела
Анотація:
We review the study of the superfluid phase transition in a system of fermions whose interaction can be tuned continuously along the crossover from Bardeen–Cooper–Schrieffer (BCS) superconducting phase to a Bose–Einstein condensate (BEC), also in the presence of a spin–orbit coupling. Below a critical temperature the system is characterized by an order parameter. Generally a mean field approximation cannot reproduce the correct behavior of the critical temperature Tc over the whole crossover. We analyze the crucial role of quantum fluctuations beyond the mean-field approach useful to find Tc along the crossover in the presence of a spin–orbit coupling, within a path integral approach. A formal and detailed derivation for the set of equations useful to derive Tc is performed in the presence of Rashba, Dresselhaus and Zeeman couplings. In particular in the case of only Rashba coupling, for which the spin–orbit effects are more relevant, the two-body bound state exists for any value of the interaction, namely in the full crossover. As a result the effective masses of the emerging bosonic excitations are finite also in the BCS regime.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Guo, Xiaoyong, Xiaobin Ren, Guangjie Guo, and Jie Peng. "Quantum anomalous Hall effect on a square lattice with spin–orbit couplings and an exchange field." Canadian Journal of Physics 92, no. 5 (May 2014): 420–24. http://dx.doi.org/10.1139/cjp-2013-0241.

Повний текст джерела
Анотація:
We investigate a tight-binding model on a two-dimensional square lattice with three terms: the Rashba spin–orbit coupling, the real amplitude next-nearest spin–orbit coupling, and an exchange field. We calculate the first Chern number to identify band topology. It is found that the Chern number takes the quantized values of C1 = 1, 2 and the chiral edge modes can be obtained. Therefore our model realizes the quantum anomalous Hall (QAH) effect. The Rashba coupling is positive for the QAH phase while the next-nearest coupling is detrimental to it. By increasing the exchange field intensity, the Chern number changes from quantized value 2 to 0. The behavior of the edge states is also studied. Particularly for C1 = 2 case, there are two gapless spin-polarized edge states with the same spin polarization moving in the same spatial direction. This indicates that their appearance is topological rather than accidental.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Gong, S. J., and Z. Q. Yang. "Flying spin-qubit gates implemented through Dresselhaus and Rashba spin–orbit couplings." Physics Letters A 367, no. 4-5 (July 2007): 369–72. http://dx.doi.org/10.1016/j.physleta.2007.03.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Liu, Mengnan, Liping Xu, Yong Wan, and Xu Yan. "Effects of Rashba and Dresselhaus spin-orbit couplings on itinerant ferromagnetism." Solid State Communications 270 (February 2018): 50–53. http://dx.doi.org/10.1016/j.ssc.2017.11.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vartanian, Arshak, Albert Kirakosyan, and Karen Vardanyan. "Fröhlich polaron in nanowire with Rashba and Dresselhaus spin-orbit couplings." Superlattices and Microstructures 109 (September 2017): 655–61. http://dx.doi.org/10.1016/j.spmi.2017.05.057.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Imura, Ken-Ichiro, Yoshio Kuramoto, and Kentaro Nomura. "Weak localization properties of graphene with intrinsic and Rashba spin-orbit couplings." Physics Procedia 3, no. 2 (January 2010): 1249–54. http://dx.doi.org/10.1016/j.phpro.2010.01.171.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

You, Jia-Bin, Xiao-Qiang Shao, Qing-Jun Tong, A. H. Chan, C. H. Oh, and Vlatko Vedral. "Majorana transport in superconducting nanowire with Rashba and Dresselhaus spin–orbit couplings." Journal of Physics: Condensed Matter 27, no. 22 (May 18, 2015): 225302. http://dx.doi.org/10.1088/0953-8984/27/22/225302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Vartanian, A. L., A. L. Asatryan, A. G. Stepanyan, K. A. Vardanyan, and A. A. Kirakosyan. "Effect of spin–orbit coupling on the hot-electron energy relaxation in nanowires." International Journal of Modern Physics B 34, no. 32 (November 13, 2020): 2050322. http://dx.doi.org/10.1142/s0217979220503221.

Повний текст джерела
Анотація:
The energy relaxation of hot electrons is proposed based on the spin–orbit (SO) interaction of both Rashba and Dresselhaus types with the effect of hot phonons. A continuum theory of optical phonons in nanowires taking into account the influence of confinement is used to study the hot-electron energy relaxation. The energy relaxation due to both confined (CO) and interface (IO) optical phonon emission on nanowire radius, electrical field strength, parameters of SO couplings and electron temperature is calculated. For considered values of the nanowire radius as well as other system parameters, scattering by IO phonons prevails over scattering by CO phonons. The presence of an electric field leads to the decrease of power loss in transitions between states with the same spin quantum numbers. With the increase of the electric field strength, the influence of the Dresselhaus SO interaction on the energy relaxation rate decreases. The effect of SO interaction does not change the previously obtained increasing dependence of power loss on electron temperature. The sensitivity of energy relaxation to the electric field also through the Rashba parameter allows controlling the rate of energy by electric field.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Rashba spin-orbit couplings"

1

Guillet, Thomas. "Tuning the spin-orbit coupling in Ge for spin generation, detection and manipulation." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY033.

Повний текст джерела
Анотація:
L'un des principaux objectifs de la spintronique est de réaliser le transistor à spin et pour y parvenir, il faut mettre en œuvre avec succès une plateforme où les courants de spin peuvent être facilement injectés, détectés et manipulés à température ambiante. Dans cette optique, ce travail de thèse montre que le germanium est un très bon candidat grâce à ses propriétés optiques et de spin ainsi qu'à sa compatibilité avec les nanotechnologies à base de silicium.Au fil des années, plusieurs schémas d'injection et de détection de spin ont été réalisés dans Ge, mais la manipulation électrique de l'orientation du spin est toujours une pièce manquante. Dans cette thèse, nous nous sommes concentrés sur deux approches afin de manipuler l'interaction spin-orbite (SOI) dans le germanium. Les deux s'appuient sur l'absence de symétrie d'inversion structurale et le couplage spin-orbite aux surfaces et aux interfaces avec le germanium (111). Tout d'abord, nous avons effectué la croissance épitaxiale de l'isolant topologique Bi2Se3 sur Ge (111). Après avoir caractérisé les propriétés structurales et électriques de l'hétérostructure Bi2Se3/ Ge, nous avons développé une méthode originale pour sonder la conversion courant de spin-courant de charge à l'interface entre Bi2Se3 et Ge en tirant profit des propriétés optiques du Ge. Les résultats ont montré que l'hybridation entre les états de surface de Bi2Se3 et du Ge pourrait permettre la manipulation électrique de l'orientation du spin dans un transistor.La seconde approche consiste à exploiter le SOI intrinsèque de Ge (111). J'ai étudié les propriétés électriques d'un film mince de Ge (111) et découvert que le passage du courant dans des états de sous-surface où l'interaction Rashba est forte, induit un effet de magnétorésistance très particulier que nous avons appelé la magnétorésistance Rashba unidirectionnelle. Elle est due à l'interaction entre le champ magnétique appliqué extérieur et le pseudo champ magnétique induit par le courant appliquée dans les états polarisés en spin du Ge (111). La forte intensité et modularité de cet effet nous mène à penser que ces états pourraient être également mis à profit dans la réalisation d'un transistor à spin tout semi-conducteur.Parallèlement, j'ai intégré des jonctions tunnel magnétiques à anisotropie perpendiculaire à base de multicouches (Co/Pt) sur la plateforme de Ge (111). J'ai développé une technique hybride électro-optique originale basée sur une détection électrique du dichroïsme magnétique circulaire du (Co/Pt) pour faire de l’imagerie magnétique. Ces jonctions tunnel magnétiques ont ensuite été utilisées pour effectuer la génération et la détection de spin dans un dispositif de type vanne de spin latérale. L'anisotropie magnétique perpendiculaire permet de générer un courant de spin avec une orientation de spin perpendiculaire au plan de l'échantillon.Enfin, j'ai rassemblé tous ces éléments développés pendant ma thèse dans un dispositif ultime: un prototype de transistor à spin où une accumulation de spin peut être générée et détectée optiquement et/ou électriquement, en utilisant l'orientation optique de spin dans le germanium ou les jonctions tunnel magnétiques
One of the main goals of spintronics is to achieve the spin transistor operation and for this purpose, one has to successfully implement a platform where spin currents can be easily injected, detected and manipulated at room temperature. In this sense, this thesis work shows that Germanium is a very good candidate thanks to its unique spin and optical properties as well as its compatibility with Silicon-based nanotechnology.Throughout the years, several spin injection and detection schemes were achieved in Ge but the electrical manipulation of the spin orientation is still a missing part. Recently we focused on two approaches in order to tune the spin-orbit interaction (SOI) in a Ge-based platform. Both rely on the structural inversion asymmetry and the spin-orbit coupling at surfaces and interfaces with germanium (111). First, we performed the epitaxial growth of the topological insulator (TI) Bi2Se3 on Ge (111). After characterizing the structural and electrical properties of the Bi2Se3/Ge heterostructure, we developed an original method to probe the spin-to-charge conversion at the interface between Bi2Se3and Ge by taking advantage of the Ge optical properties. The results showed that the hybridization between the Ge and TI surface states could pave the way for implementing an efficient spin manipulation architecture.The latter approach is to exploit the intrinsic SOI of Ge (111). By investigating the electrical properties of a thin Ge(111) film epitaxially grown on Si(111), we found a large unidirectional Rashba magnetoresistance, which we ascribe to the interplay between the externally applied magnetic field and the current-induced pseudo-magnetic field in the spin-splitted subsurface states of Ge (111). The unusual strength and tunability of this UMR effect open the door towards spin manipulation with electric fields in an all-semiconductor technology platform.In a last step, I integrated perpendicularly magnetized (Co/Pt) multilayers-based magnetic tunnel junctions on the Ge (111) platform. I developed an original electro-optical hybrid technique to detect electrically the magnetic circular dichroism in (Co/Pt) and perform magnetic imagingThese MTJs were then used to perform spin injection and detection in a lateral spin valve device. The perpendicular magnetic anisotropy (PMA) allowed to generate spin currents with the spin oriented perpendicular to the sample plane.Finally, I assembled all these building blocks that were studied during my PhD work to build a prototypical spin transistor. The spin accumulation was generated either optically or electrically, using optical spin orientation in germanium or the injection from the magnetic tunnel junction
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Avetisyan, Siranush Jr. "Fock-Darwin states of anisotropic quantum dots with Rashba spin-orbit coupling." American Physical Society, 2012. http://hdl.handle.net/1993/23604.

Повний текст джерела
Анотація:
Here I report on our studies of the electronic properties of elliptical quantum dots in a perpendicular external magnetic field, and in the presence of the Rashba spin-orbit interaction. Our work indicates that the Fock-Darwin spectra, corresponding to the non-interacting electrons in an elliptical quantum dot display a strong signature of the Rashba spin-orbit coupling even in a low magnetic field, as the anisotropy of the quantum dot is increased. An explanation of this pronounced effect with respect to the anisotropy is presented. The strong spin-orbit coupling effect manifests itself prominently in the corresponding dipole-allowed optical transitions and hence is susceptible to direct experimental observation.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Naseri, Jorshari Amin [Verfasser]. "Interacting Electrons in Quantum Dots with Strong Rashba Spin-Orbit Coupling / Amin Naseri Jorshari." Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2016. http://d-nb.info/1105645363/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Hernangomez, Perez Daniel. "Spin-orbit Coupling and Strong Interactions in the Quantum Hall Regime." Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENY087.

Повний текст джерела
Анотація:
L'effet Hall quantique, qui apparaît dans les gaz d'électrons bidimensionnels soumis à un champ magnétique perpendiculaire et à basses températures, a été un sujet de recherche intense pendant les derniers trente ans, en particulier, à cause des manifestations spectaculaires de la mécanique quantique dans les propriétés de transport à l'échelle macroscopique. Dans cette thèse, on étend l'horizon de la recherche au niveau théorique sur ce sujet en considérant les effets du couplage spin-orbite et l'interaction électron-électron de façon analytique dans ce régime.Dans la première partie de ce manuscrit, on considère l'effet simultané du couplage spin-orbite de type Rashba et l'interaction Zeeman dans le régime de l'effet Hall quantique entier. Pour cela, on étend un formalisme de fonctions de Green basé sur des états de vortex cohérents avec l'objectif d'inclure le couplage entre les degrés de liberté orbitaux et de spin dans les états de dérive électroniques. Puis, comme première application, on montre comment obtenir analytiquement, nonperturbativement et de manière contrôlée des fonctionnelles quantiques (spectre et densité d'états locale) pour des potentiels électrostatiques arbitraires et localement plats. Les fonctionnelles sont ensuite analysées dans différents régimes de températures et comparées aux données expérimentales obtenues à partir des sondes de spectroscopie locales. Comme seconde mise en pratique du formalisme, on étudie en profondeur les propriétés de transport de charge et de spin dans un régime hydrodynamique d'équilibre local (ou quasi-équilibre) et dérive des expressions analytiques qui incorporent les caractères non-relativiste et relativiste des gaz d'électrons avec couplage spin-orbite de type Rashba.Dans la deuxième partie de cette thèse, on s'occupe du problème de traiter analytiquement les fortes interactions électron-électron dans le régime de l'effet Hall quantique fractionnaire. A cette fin, on étudie un problème à deux corps généralisé avec du désordre et des corrélations électroniques, en utilisant une nouvelle représentation d'états de vortex cohérents. Des corrélations à longue portée entre les particules sont incorporées de manière topologique à travers la présence d'une métrique non-Euclidienne. Subséquemment, on montre que ces états de vortex forment bien une base d'un espace de Hilbert élargi, puis on dérive l'équation du mouvement pour la fonction de Green. Enfin, on vérifie la consistance de notre théorie pour tout niveau de Landau de paire et on discute la nécessité d'aller au-delà de la limite semiclassique (à champ magnétique infinie) pour obtenir des gaps dans chaque niveau de énergie
The quantum Hall effect, appearing in disordered two-dimensional electron gases under strong perpendicular magnetic fields and low temperatures, has been a subject of intense research during the last thirty years due to its very spectacular macroscopic quantum transport properties. In this thesis, we expand the theoretical horizon by analytically considering the effects of spin-orbit coupling and strong electron-electron interaction in these systems.In the first part of the manuscript, we examine the simultaneous effect of Rashba spin-orbit and Zeeman interaction in the integer quantum Hall regime. Under these conditions, we extend a coherent-state vortex Green's function formalism to take into account the coupling between orbital and spin degrees of freedom within the electronic drift states. As a first application of this framework, we analytically compute controlled microscopic nonperturbative quantum functionals, such as the energy spectrum and the local density of states, in arbitrary locally flat electrostatic potential landscapes, which are then analyzed in detail in different temperature regimes and compared to scanning tunnelling experimental data. As a second application, we thoroughly study local equilibrium charge and spin transport properties and derive analytical useful formulas which incorporate the mixed non-relativistic and relativistic character of Rashba-coupled electron gases.In the second part of this thesis, we deal with the problem of analytically incorporating strong electron-electron interactions in the fractional quantum Hall regime. To this purpose, we consider a generalized two-body problem where both disorder and correlations are combined and introduce a new vortex coherent-state representation of the two-body states that naturally include long-range correlations between the electrons. The novelty of this theory is that correlations are topologically built in through the non-Euclidean metric of the Hilbert space. Next, we show that this kind of vortex states form a basis of an enlarged Hilbert space and derive the equation of motion for the Green's function in this representation. Finally, we check the consistency of our approach for any Landau level of the pair and discuss the necessity of going beyond the semiclassical (infinite magnetic field) approximation to obtain energy gaps within each energy level
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mirhosseini, Hossein Verfasser], Jürgen [Akademischer Betreuer] Henk, Wolfram [Akademischer Betreuer] [Hergert, and Evgueni [Akademischer Betreuer] Chulkov. "Ab initio investigations of the Rashba spin-orbit coupling in the electronic structure of surfaces / S. Hossein Mirhosseini. Betreuer: Jürgen Henk ; Wolfram Hergert ; Evgueni Chulkov." Halle, Saale : Universitäts- und Landesbibliothek Sachsen-Anhalt, 2010. http://d-nb.info/1025135679/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Possanner, Stefan. "Modeling and simulation of spin-polarized transport at the kinetic and diffusive level." Toulouse 3, 2012. http://thesesups.ups-tlse.fr/1735/.

Повний текст джерела
Анотація:
L'objectif de cette thèse est de contribuer à la compréhension des phénomènes de mouvement de l'électron induits par le spin. Ces phénomènes aparaissent lorsqu'un électron se déplace à travers un environnement (partiellement) magnétique, de telle sorte que son moment magnétique (spin) peut interagir avec l'environnement. La nature quantique pure du spin nécessite des modèles de transport qui traitent des effets comme la cohérence quantique, l'intrication (corrélation) et la dissipation quantique. Sur le niveau méso- et macroscopique, il n'est pas encore clair dans quelles circonstances ces effets quantiques du spin peut transparaitre. Le but de ce travail est, d'une part, de dériver des nouveaux modèles de transport de spin à partir des principes de base et, d'autre part, de développer des algorithmes numériques qui permettent de trouver une solution de ces modèles. Cette thèse se compose de quatre parties. La première partie introductive contient un aperçu des concepts fondamentaux liés au transport polarisé en spin, tels que la magnéto-résistance géante (GMR), le couple de transfert de spin dans les multi-couches magnétiques et le caractère matriciel des équations de transport qui prennent en compte la cohérence de spin. L'accent est mis sur la modélisation du couple de transfert de spin, qui représente l'intersection de ces concepts. En particulier, nous considérons pour sa description le modèle diffusif de Zhang-Levy-Fert (ZLF) qui se compose de l'équation de Landau-Lifshitz et d'une équation de diffusion matricielle pour le spin. Un schéma de différences finies est développé pour résoudre numériquement ce système non-linéaire dans des structures multi-couches. Le modèle est testé par comparaison des résultats obtenus aux données expérimentales récentes. Les parties deux et trois forment le noyau thématique de cette thèse. Dans la deuxième partie nous proposons une équation de Boltzmann matricielle qui permet la description de la cohérence de spin sur le niveau cinétique. La nouveauté est un opérateur de collision dans lequel les taux de transition de la quantité de mouvement sont modélisés par une matrice 2x2 hermitienne; par conséquent, les libre parcours moyens des électrons spin-up et spin-down sont représentés par les valeurs propres de cette matrice de scattering. Après une dérivation formelle de l'équation de Vlasov matricielle à partir de l'équation de Wigner, l'équation cinétique qui suit est étudiée en ce qui concerne l'existence, l'unicité et la positivé d'une solution. En outre, le nouveau opérateur de collision est étudié rigoureusement et la limite de diffusion tc -> 0, correspondant à l'annulation de la moyenne de temps de scattering, est effectué. Les équations de drift-diffusion matricielle qui sont obtenues représentent une amélioration par rapport au modèle traité dans la première partie. Ce dernier est obtenu dans la limite ou la différence entre les deux valeurs propres de la matrice de scattering va disparaître. La troisième partie est consacrée à l'obtention de l'opérateur de collision matricielle introduit auparavant, à partir des principes quantiques. Pour cela, nous augmentons l'équation de von Neumann d'un système composite par un terme dissipatif qui fait tendre l'opérateur de densité totale vers l'approximation de Born. En vertu de la prémisse que la relaxation est le processus dominant, on obtient une hiérarchie d'équations non-Markoviennes. Celles-ci découlent d'une expansion de l'opérateur de densité en termes de tr, le temps de relaxation. Dans la limite de Born-Markov, tr -> 0, l'équation de Lindblad est récupérée. Elle a la même structure que l'opérateur de collision proposé dans la deuxième partie. Cependant, l'équation de Lindblad est encore une équation microscopique; donc la prochaine étape serait de procéder à la limite semi-classique du résultat obtenu. Dans la quatrième partie nous procédons à une étude numérique d'un modèle quantique-diffusif de spin qui décrit le transport dans un gaz d'électrons bidimensionnel avec un couplage spin-orbite de Rashba. Ce modèle suppose que les électrons sont dans un état d'équilibre quantique sous la forme d'un opérateur de Maxwell. Nous présentons deux discrétisations espace-temps du modèle couplé par l'équation de Poisson. Dans une première étape on applique une discrétisation en temps et on montre que les systèmes sont bien définis. Ceux-ci sont basés sur un formalisme fonctionnel pour traiter les relations non-locales entre les densités de spin. Nous utilisons ensuite des discrétisations espace-temps pour simuler la dynamique dans une géométrie typique d'un transistor. Les approximations différences finies sont du premier ordre en temps et du second ordre en espace. Les fonctionnelles discrètes sont minimisée à l'aide d'un algorithme du gradient conjugué et la méthode de Newton est appliquée afin de trouver les minima dans la direction désirée
The aim of this thesis is to contribute to the understanding of spin-induced phenomena in electron motion. These phenomena arise when electrons move through a (partially) magnetic environment, in such a way that its magnetic moment (spin) may interact with the surroundings. The pure quantum nature of the spin requires transport models that deal with effects like quantum coherence, entanglement (correlation) and quantum dissipation. On the meso- and macroscopic level it is not yet clear under which circumstances these quantum effects may transpire. The purpose of this work is, on the one hand, to derive novel spin transport models from basic principles and, on the other hand, to develop numerical algorithms that allow for a solution of these new and other existing model equations. The thesis consists of four parts. The first part has introductory character; it comprises an overview of fundamental spin-related concepts in electronic transport such as the giant-magneto-resistance (GMR) effect, the spin-transfer torque in metallic magnetic multilayers and the matrix-character of transport equations that take spin-coherent electron states into account. Special emphasis is placed on the modeling of the spin-transfer torque which represents the intersection of these concepts. In particular, we consider the diffusive Zhang-Levy-Fert (ZLF) model, an exchange-torque model that consists of the Landau-Lifshitz equation and a heuristic matrix spin-diffusion equation. A finite difference scheme based on Strang operator splitting is developed that enables a numerical, self-consistent solution of this non-linear system within multilayer structures. Finally, the model is tested by comparison of numerical results to recent experimental data. Parts two and three are the thematic core of this thesis. In part two we propose a matrix-Boltzmann equation that allows for the description of spin-coherent electron transport on a kinetic level. The novelty here is a linear collision operator in which the transition rates from momentum k to momentum k' are modeled by a 2x2 Hermitian matrix; hence the mean-free paths of spin-up and spin-down electrons are represented by the eigenvalues of this scattering matrix. After a formal derivation of the matrix-Vlasov equation as the semi-classical limit of the one-electron Wigner equation, the ensuing kinetic equation is studied with regard to existence, uniqueness and positive semi-definiteness of a solution. Furthermore, the new collision operator is investigated rigorously and the diffusion limit tc -> 0 of the mean scattering time is performed. The obtained matrix drift-diffusion equations are an improvement over the heuristic spin-diffusive model treated in part one. The latter is obtained in the limit of identical eigenvalues of the scattering matrix. Part three is dedicated to a first step towards the derivation of the matrix collision operator, introduced in part two, from first principles. For this, we augment the von Neumann equation of a composite quantum system by a dissipative term that relaxes the total state operator towards the Born approximation. Under the premise that the relaxation is the dominant process we obtain a hierarchy of non-Markovian master equations. The latter arises from an expansion of the total state operator in powers of the relaxation time tr. In the Born-Markov limit tr -> 0 the Lindblad master equation is recovered. It has the same structure as the collision operator proposed in part two heuristically. However, the Lindblad equation is still a microscopic equation; thus the next step would be to carry out the semi-classical limit of the result obtained. In part four we perform a numerical study of a quantum-diffusive, two-component spin model of the transport in a two-dimensional electron gas with Rashba spin-orbit coupling. This model assumes the electrons to be in a quantum equilibrium state in the form of a Maxwellian operator. We present two space-time discretizations of the model which also comprise the Poisson equation. In a first step pure time discretization is applied in order to prove the well-posedness of the two schemes, both of which are based on a functional formalism to treat the non-local relations between spin densities via the chemical potentials. We then use fully space-time discrete schemes to simulate the dynamics in a typical transistor geometry. Finite difference approximations applied in these schemes are first order in time and second order in space. The discrete functionals introduced are minimized with the help of a conjugate gradient-based algorithm in which the Newton method is applied to find the desired line minima
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Haspot, Victor. "Exploitation d’hétérostructures d’oxydes intégrant La₂⁄₃Sr₁⁄₃MnO₃ pour des applications spin-orbitroniques et magnoniques." Thesis, université Paris-Saclay, 2020. http://www.theses.fr/2020UPASP079.

Повний текст джерела
Анотація:
Les dispositifs spintroniques classiques utilisent l'interaction d'échange entre les spins des électrons de conduction et les moments magnétiques locaux dans les matériaux magnétiques pour créer des courants polarisés en spin, ou pour manipuler l’aimantation par transfert de spin à partir de courants polarisés en spin. Une nouvelle direction de la spintronique - appelée aussi spin-orbitronique - exploite le couplage spin-orbite dans les matériaux non magnétiques au lieu de l'interaction d'échange dans les matériaux magnétiques dans le but de générer, détecter ou exploiter des courants polarisés en spin. Une autre voie - la magnonique - explore quant à elle le potentiel des ondes de spin pour transporter et traiter des informations dans des nanostructures magnétiques. Pour une large gamme d'applications dans ces deux domaines, des matériaux avec des très faibles valeurs d'amortissement magnétique sont nécessaires. Dans cette thèse, nous avons d'abord exploré le potentiel du matériau demi-métallique La₂⁄₃Sr₁⁄₃MnO₃ (LSMO) pour obtenir de très faible valeur d’amortissement magnétique. Nous avons étudié notamment l'effet de la contrainte et de la température sur les processus de relaxations magnétiques des couches minces LSMO. Par la suite, les films LSMO ont été utilisés comme injecteurs de spin dans des hétérostructures d’oxydes dans une perspective spin-orbitronique. Aussi, nous avons étudié l'opportunité de contrôler l'interconversion spin-charge en ajoutant un matériau ferroélectrique, BiFeO₃ (BFO) en exploitant les effets d'interfaces. Enfin, nous avons exploré le potentiel des bicouches LSMO / BFO dans le but de réaliser des cristaux magnoniques reprogrammables
Classical spintronic devices use the exchange interaction between conduction electron spins and local spins in magnetic materials to create spin-polarized currents, or to manipulate nanomagnets by spin transfer from spin-polarized currents. A novel direction of spintronics –called spin-orbitronics - exploits the spin-orbit coupling in nonmagnetic materials instead of the exchange interaction in magnetic materials to generate, detect or exploit spin-polarized currents. Another one –magnonics- explores the potential of spin waves to carry and process information in magnetic nanostructures. For a broad range of applications in both fields, materials with ultralow magnetic damping values are required. In this thesis we first explored the potential of the half metallic material La₂⁄₃Sr₁⁄₃MnO₃ (LSMO) to obtain very low damping. We studied the effect of strain and temperature on the damping of LSMO thin films. Subsequently, LSMO films were used as spin-current injectors in spin-orbitronic heterostructures. In those we also studied the opportunity to control the spin-charge interconversion by adding a ferroelectric material, BiFeO₃ (BFO) by exploiting the interface effects. Finally, we explored the potential of LSMO/BFO bilayers for reprogrammable magnonic crystals
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Nilwala, Gamaralalage Premasiri Kasun Viraj Madusanka. "Electron Transport in Chalcogenide Nanostructures." Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case1572259784431038.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Yamamoto, Masayuki [Verfasser]. "Spin-dependent electronic transport in nanowires in the presence of Rashba and Dresselhaus spin-orbit couplings / vorgelegt von Masayuki Yamamoto." 2007. http://d-nb.info/986274429/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Seshadri, Ranjani. "Living on the Edge A Study of Boundary Modes In Two-dimensional Topological Systems." Thesis, 2018. https://etd.iisc.ac.in/handle/2005/5384.

Повний текст джерела
Анотація:
In the last few decades an enormous amount of research has been carried out on some novel phases of matter called topological phases which are beyond the paradigm of Landau’s theory of symmetry breaking. One of the earliest breakthroughs in this field was the discovery of the quantum Hall effect. A topological system has some properties which are immune to slight perturbations which obey the symmetries of the unperturbed system. Topological systems can be characterised by means of a topological invariant, such as the Chern number in two-dimensional systems. Topological phases can be found in a variety of systems and have been studied both theoretically and experimentally over the last several years. Topological insulators (TIs) are materials which have gapped states in the bulk and gapless states on the boundaries which are protected by some symmetries. Materials such as bismuth selenide and bismuth telluride exhibit such properties and are examples of topological insulators in three dimensions. The surfaces of these materials host conducting states which are robust against impurities. An interesting property of these surface states is “spin-momentum locking”. This is responsible for preventing backscattering of these surface modes from scalar (non-magnetic) impurities. In two dimensions, topologically protected one-dimensional edge states are found to exist in graphene nanoribbons with a spin-orbit coupling (SOC). This was one of the earliest theoretically proposed examples of the quantum spin Hall effect. Though the intrinsic SOC in graphene is weak, placing it in proximity to a TI is known to induce a stronger SOC giving rise to some very interesting phenomena, some of which are discussed in this thesis. Topological phases can also be seen in some models involving interacting spins such as the kagome lattice spin model which is presented in this thesis. In this case, it is the magnons or spin waves which are topological in nature To summarise, this thesis deals with topological phases and edge modes in three different systems 1. Surface states of three-dimensional topological insulators, 2. Graphene in the presence of Kane-Mele and Rashba spin-orbit couplings, 3. Spin waves (magnons) on a kagome lattice. In all these cases localised states are found to reside on the boundaries of the system or along potential barriers.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Rashba spin-orbit couplings"

1

Gariglio, S., M. S. Scheurer, J. Schmalian, A. M. R. V. L. Monteiro, S. Goswami, and A. D. Caviglia. Surface and Interface Superconductivity. Edited by A. V. Narlikar. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780198738169.013.7.

Повний текст джерела
Анотація:
This article focuses on surface and interface superconductivity, a pivotal area of mesoscopic superconductivity. It discusses theoretical ideas regarding superconductivity in the 2D limit; pairing symmetry in systems with broken inversion symmetry and in the presence of Rashba spin–orbit interaction; and coupling of substrate phonon modes to layer electronic states to induce or enhance the superconducting condensate. It also reviews the experimental ongoing efforts to fabricate, characterize, and measure these systems, with particular emphasis on oxide materials. Superconductivity in two dimensions, in ultra-thin metals on Si(111), and at the LaAlO3/SrTiO3 interface is examined. The article concludes with an analysis of theoretical propositions aimed at realizing and testing novel superconducting states occurring at the surfaces and interfaces.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Rashba spin-orbit couplings"

1

Fu, Xi. "Spin Current in a GaAs 2DEG with the Coexistence of Rashba Spin-Orbit Coupling and Magnetic Field." In Future Control and Automation, 489–97. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-31003-4_63.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Mughnetsyan, Vram, Aram Manaselyan, Manuk Barseghyan, Albert Kirakosyan, Laura M. Pérez, and David Laroze. "Electronic and Magnetic Properties of Laser Dressed Quantum Dot and Ring with Rashba Spin-Orbit Coupling." In Springer Proceedings in Physics, 145–54. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11287-4_12.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Simion, George E., and Gabriele F. Giuliani. "Chirality, charge and spin-density wave instabilities of a two-dimensional electron gas in the presence of Rashba spin-orbit coupling." In No-nonsense Physicist, 125–46. Pisa: Scuola Normale Superiore, 2016. http://dx.doi.org/10.1007/978-88-7642-536-3_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Moskalenko, S. A., I. V. Podlesny, E. V. Dumanov, M. A. Liberman, and I. Lelyakov. "Two-Dimensional Cavity Polaritons under the Influence of the Landau Quantization, Rashba Spin-Orbit Coupling and Zeeman Splitting." In 3rd International Conference on Nanotechnologies and Biomedical Engineering, 35–39. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-736-9_8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Chesi, Stefano, and Gabriele F. Giuliani. "In-plane ferromagnetic instability in a two-dimensional electron liquid in the presence of Rashba spin-orbit coupling." In No-nonsense Physicist, 61–71. Pisa: Scuola Normale Superiore, 2016. http://dx.doi.org/10.1007/978-88-7642-536-3_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vyasanakere, Jayantha P. "Rashba-spin-orbit Coupling in Interacting Fermi Gases." In Synthetic Spin-Orbit Coupling in Cold Atoms, 125–75. WORLD SCIENTIFIC, 2018. http://dx.doi.org/10.1142/9789813272538_0003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Manchon, Aurelien. "Rashba spin–orbit coupling in two-dimensional systems." In Spintronic 2D Materials, 25–64. Elsevier, 2020. http://dx.doi.org/10.1016/b978-0-08-102154-5.00002-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Rashba spin-orbit couplings"

1

Li, You-Quan. "Spin current and spin Hall effects." In Workshop on Entanglement and Quantum Decoherence. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.asi1.

Повний текст джерела
Анотація:
In terms of SU(2) Yang-Mills field formulism, we give a nature definition of spin current for the systems with Rashba or Dresselhaus spin-orbit couplings etc., and we obtain a covariant form of continuity equations for the corresponding spin current [1]. The traditional Kubo formula is generalized to describe the linear response with respect to non-Abelian fields. We find that the covariant form we proposed plays an essential role in guaranteeing the consistency of SU(2) Kubo formula [2]. We also derive the classical counterpart of quantum mechanical covariant “continuity-like” equation for the spin current, and present an intuitive picture for elucidating the non-conservation of the spin current [3]. We discuss the spin-relaxation time for two-dimensional systems with a hierarchy of spin-orbit couplings, and found that the spin-relaxation time can be infinite if the coupling strengths certain condition which correspond to the vanishing Yang-Mills “magnetic” field [4].
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Plotnik, Y., M. C. Rechtsman, S. Stützer, Y. Lumer, S. Nolte, A. Szameit, and M. Segev. "Rashba Effective Spin-Orbit Coupling In Photonic Lattices." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cleo_qels.2014.ff2d.2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Moayed, Mohammad Mehdi Ramin, Thomas Bielewicz, Martin Sebastian Zoellner, Carmen Herrmann, and Christian Klinke. "Rashba Spin-Orbit Coupling in Colloidal Lead Sulfide Nanosheets." In Novel Optical Materials and Applications. Washington, D.C.: OSA, 2017. http://dx.doi.org/10.1364/noma.2017.notu1c.3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Prabhakar, S., R. Melnik, and A. Sebetci. "Rashba spin-orbit coupling effects in armchair graphene nanoribbons." In 4TH INTERNATIONAL CONGRESS IN ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE (APMAS 2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4914279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Schmidt, Thomas. "Correlated electrons in nanowires with Rashba spin-orbit coupling (Conference Presentation)." In Spintronics XII, edited by Henri-Jean M. Drouhin, Jean-Eric Wegrowe, and Manijeh Razeghi. SPIE, 2019. http://dx.doi.org/10.1117/12.2528425.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ramin Moayed, M. M., T. Bielewicz, M. S. Zoellner, C. Herrmann, and C. Klinke. "Tailoring the Rashba Spin-Orbit Coupling in Colloidal Lead Sulfide Nanosheets." In 2017 International Conference on Solid State Devices and Materials. The Japan Society of Applied Physics, 2017. http://dx.doi.org/10.7567/ssdm.2017.j-2-05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wu, B. H., and J. C. Cao. "Spin transport through a multimode quantum wire with Rashba spin orbit coupling under terahertz radiation." In >2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics. IEEE, 2006. http://dx.doi.org/10.1109/icimw.2006.368442.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

imamura, Hiroshi. "Twisted exchange interaction between localized spins in presence of Rashba spin-orbit coupling." In PHYSICS OF SEMICONDUCTORS: 27th International Conference on the Physics of Semiconductors - ICPS-27. AIP, 2005. http://dx.doi.org/10.1063/1.1994642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

YOKOYAMA, T., Y. TANAKA, and J. INOUE. "TUNNELING CONDUCTANCE IN 2DEG/S JUNCTIONS IN THE PRESENCE OF RASHBA SPIN-ORBIT COUPLING." In Proceedings of the International Symposium. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812814623_0019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Ho, C., and M. B. Jalil. "Spin motive force and generation of pure spin current in ferromagnetic ring under time modulation and Rashba spin orbit coupling." In 2015 IEEE International Magnetics Conference (INTERMAG). IEEE, 2015. http://dx.doi.org/10.1109/intmag.2015.7157180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії