Статті в журналах з теми "Rare earth element geochemistry"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Rare earth element geochemistry.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Rare earth element geochemistry".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Preston, R. M. F. "Rare earth element geochemistry." Earth-Science Reviews 22, no. 3 (November 1985): 242–43. http://dx.doi.org/10.1016/0012-8252(85)90064-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Middlemost, E. A. K. "Rare earth element geochemistry." Chemical Geology 48, no. 1-4 (March 1985): 362–63. http://dx.doi.org/10.1016/0009-2541(85)90062-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

McLennan, Scott M. "Rare earth element geochemistry and the “tetrad” effect." Geochimica et Cosmochimica Acta 58, no. 9 (May 1994): 2025–33. http://dx.doi.org/10.1016/0016-7037(94)90282-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lawrence, Michael G., Stacy D. Jupiter, and Balz S. Kamber. "Aquatic geochemistry of the rare earth elements and yttrium in the Pioneer River catchment, Australia." Marine and Freshwater Research 57, no. 7 (2006): 725. http://dx.doi.org/10.1071/mf05229.

Повний текст джерела
Анотація:
The rare earth elements are strong provenance indicators in geological materials, yet the potential for tracing provinciality in surface freshwater samples has not been adequately tested. Rare earth element and yttrium concentrations were measured at 33 locations in the Pioneer River catchment, Mackay, central Queensland, Australia. The rare earth element patterns were compared on the basis of geological, topographical and land-use features in order to investigate the provenancing potential of these elements in a small freshwater system. The rare earth element patterns of streams draining single lithological units with minor land modification show strongly coherent normalised behaviour, with a loss of coherence in agricultural locations. Evidence is reported for an anthropogenic Gd anomaly that may provide a useful hydrological tracer in this region since the introduction of magnetic resonance imaging in 2003. Several samples display a superchondritic Y/Ho mass ratio (up to 44), which is not explainable within the constraints imposed by local geology. Instead, it is suggested that the additional Y is derived from a marine source, specifically marine phosphorites, which are a typical source of fertiliser phosphorus. The data indicate that, under some circumstances, scaled and normalised freshwater rare earth patterns behave conservatively.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ireland, T. R., J. N. Ávila, M. Lugaro, S. Cristallo, P. Holden, P. Lanc, L. Nittler, C. M. O'D Alexander, F. Gyngard, and S. Amari. "Rare earth element abundances in presolar SiC." Geochimica et Cosmochimica Acta 221 (January 2018): 200–218. http://dx.doi.org/10.1016/j.gca.2017.05.027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

MAKISHIMA, Akio, and Eizo NAKAMURA. "Review in Zirconology. III. Rare-earth element geochemistry of zircon." JOURNAL OF MINERALOGY, PETROLOGY AND ECONOMIC GEOLOGY 89, no. 1 (1994): 1–14. http://dx.doi.org/10.2465/ganko.89.1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Trueman, Clive N. "Rare Earth Element Geochemistry and Taphonomy of Terrestrial Vertebrate Assemblages." PALAIOS 14, no. 6 (December 1999): 555. http://dx.doi.org/10.2307/3515313.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Kim, K. H., S. G. Lee, J. K. Kim, and D. Y. Yang. "Rare earth element geochemistry in fresh rock-weathered rock-soil." Geochimica et Cosmochimica Acta 70, no. 18 (August 2006): A318. http://dx.doi.org/10.1016/j.gca.2006.06.642.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hsu, Weibiao, Yunbin Guan, Henian Wang, Laurie A. Leshin, Rucheng Wang, Wenlan Zhang, Xiaoming Chen, Fusheng Zhang, and Chengyi Lin. "The lherzolitic shergottite Grove Mountains 99027: Rare earth element geochemistry." Meteoritics & Planetary Science 39, no. 5 (May 2004): 701–9. http://dx.doi.org/10.1111/j.1945-5100.2004.tb00113.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Bouch, J. E., M. J. Hole, and N. H. Trewin. "Rare earth and high field strength element partitioning behaviour in diagenetically precipitated titanites." Neues Jahrbuch für Mineralogie - Abhandlungen 172, no. 1 (September 10, 1997): 3–21. http://dx.doi.org/10.1127/njma/172/1997/3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Harsini, Azam Entezari, Seyed A. Mazaheri, Saeed Saadat, and José F. Santos. "U-Pb geochronology, Sr-Nd geochemistry, petrogenesis and tectonic setting of Gandab volcanic rocks, northeastern Iran." Geochronometria 44, no. 1 (November 16, 2017): 269–86. http://dx.doi.org/10.1515/geochr-2015-0061.

Повний текст джерела
Анотація:
Abstract This paper addresses U-Pb geochronology, Sr-Nd geochemistry, petrogenesis and tectonic setting in the Gandab volcanic rocks. The Gandab volcanic rocks belong to the Sabzevar zone magmatic arc (northeastern Iran). Petrographically, all the studied volcanic rocks indicate porphyritic textures with phenocrysts of plagioclase, K-feldespar, hornblende, pyroxene, and magnetite which are embedded in a fine to medium grained groundmass. As well, amygdaloidal, and poikilitic textures are seen in some rocks. The standard chemical classifications show that the studied rocks are basaltic trachy andesite, trachy andesite, trachyte, and trachy dacite. Major elements reveal that the studied samples are metaluminous and their alumina saturation index varies from 0.71 to 1.02. The chondrite-normalized rare earth element and mantle-normalized trace element patterns show enrichment in light rare earth elements (LREE) relative to heavy rare earth elements (HREE) and in large ion lithophile elements (LILE) relative to high field strength elements (HFSE). As well they show a slightly negative Eu anomaly (Eu/Eu* = 0.72 – 0.97). The whole-rock geochemistry of the studied rocks suggests that they are related to each other by fractional crystallization. LA-MC-ICP-MS U-Pb analyses in zircon grains from two volcanic rock samples (GCH-119 and GCH-171) gave ages ranging of 5.47 ± 0.22 Ma to 2.44 ± 0.79 Ma, which corresponds to the Pliocene period. In four samples analysed for Sr and Nd isotopes 87Sr/86Sr ratios range from 0.704082 to 0.705931 and εNd values vary between +3.34 and +5. These values could be regarded to as representing mantle derived magmas. Taking into account the comparing rare earth element (REE) patterns, an origin of the parental magmas in enriched lithospheric mantle is suggested. Finally, it is concluded that Pliocene Gandab volcanic rocks are related to the post-collision environment that followed the Neo-Tethys subduction.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Wood, Scott A., C. Drew Tait, David R. Janecky, and Term L. Constantopoulos. "The aqueous geochemistry of rare earth elements: V. Application of photoacoustic spectroscopy to speciation at low rare earth element concentrations." Geochimica et Cosmochimica Acta 59, no. 24 (December 1995): 5219–22. http://dx.doi.org/10.1016/0016-7037(95)00376-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Cherniak, D. J. "Pb and rare earth element diffusion in xenotime." Lithos 88, no. 1-4 (May 2006): 1–14. http://dx.doi.org/10.1016/j.lithos.2005.08.002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Taylor, S. Ross. "Geochemistry and mineralogy of rare earth elements." Geochimica et Cosmochimica Acta 54, no. 10 (October 1990): 2903. http://dx.doi.org/10.1016/0016-7037(90)90035-j.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Wenhui, HUANG, YANG Qi, TANG Dazhen, TANG Xiuyi, and ZHAO Zhigen. "Rare Earth Element Geochemistry of Late Palaeozoic Coals in North China." Acta Geologica Sinica - English Edition 74, no. 1 (September 7, 2010): 74–83. http://dx.doi.org/10.1111/j.1755-6724.2000.tb00433.x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

CHEN, Jiyan, Ruidong YANG, Huairui WEI, and Junbo GAO. "Rare earth element geochemistry of Cambrian phosphorites from the Yangtze Region." Journal of Rare Earths 31, no. 1 (January 2013): 101–12. http://dx.doi.org/10.1016/s1002-0721(12)60242-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Hsu, Weibiao. "Rare earth element geochemistry and petrogenesis of miles (IIE) silicate inclusions." Geochimica et Cosmochimica Acta 67, no. 24 (December 2003): 4807–21. http://dx.doi.org/10.1016/s0016-7037(03)00207-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Nagender Nath, B., V. Balaram, M. Sudhakar, and W. L. Plüger. "Rare earth element geochemistry of ferromanganese deposits from the Indian Ocean." Marine Chemistry 38, no. 3-4 (July 1992): 185–208. http://dx.doi.org/10.1016/0304-4203(92)90034-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Green, T. H., and N. J. Pearson. "High-pressure, synthetic loveringite-davidite and its rare earth element geochemistry." Mineralogical Magazine 51, no. 359 (March 1987): 145–49. http://dx.doi.org/10.1180/minmag.1987.051.359.16.

Повний текст джерела
Анотація:
AbstractLoveringite-davidite members of the crichtonite group were synthesized at high pressure and temperature (7.5 kbar, 1000–1050 °C) from a melt of TiO2 and rare earth element (REE) enriched basaltic andesite composition. Four sets of partition coefficients for La, Srn, Ho, Lu and Sr (analogue for Eu2+) were obtained. These show that light and heavy REE are readily accommodated, but the intermediate REE are discriminated against in the loveringite—davidite structure. This confirms the previously proposed two sites (A and M) for REE substitution in the crichtonite group. Additional experiments verified the stability of REE-rich crichtonite group minerals to 20 kbar, 1300 °C and 30 kbar, 1000 °C, and indicate that this phase may be an important accessory repository for the light and heavy REE in the upper mantle.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Tanaka, Tsuyoshi, and Shigeko Togashi. "Special Issue: Rare earth element geochemistry through the year 2000—Preface." GEOCHEMICAL JOURNAL 26, no. 6 (1992): 307–8. http://dx.doi.org/10.2343/geochemj.26.307.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Fowler, M. B., and J. A. Plant. "Rare earth element geochemistry of Lewisian grey gneisses from Gruinard Bay." Scottish Journal of Geology 23, no. 2 (September 1987): 193–202. http://dx.doi.org/10.1144/sjg23020193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Amireh, Belal S., Mazen N. Amaireh, Saja Abu Taha, and Abdulkader M. Abed. "Petrogenesis, provenance, and rare earth element geochemistry, southeast desert phosphorite, Jordan." Journal of African Earth Sciences 150 (February 2019): 701–21. http://dx.doi.org/10.1016/j.jafrearsci.2018.09.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Cao, Zhimin, Hong Cao, Chunhui Tao, Jun Li, Zenghui Yu, and Liping Shu. "Rare earth element geochemistry of hydrothermal deposits from Southwest Indian Ridge." Acta Oceanologica Sinica 31, no. 2 (March 2012): 62–69. http://dx.doi.org/10.1007/s13131-012-0192-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Elburg, M. A., and B. Cairncross. "Controls on the geochemistry of southern African prehnite." South African Journal of Geology 125, no. 1 (March 1, 2022): 113–22. http://dx.doi.org/10.25131/sajg.125.0007.

Повний текст джерела
Анотація:
Abstract Eight samples of prehnite from southern Africa were analysed for their major and trace element geochemistry to investigate the controls on their compositions. Variations in the major elements are limited (Fe3+-Al exchange, limited enrichment in Mn), and trace elements typically occur at levels <10 ppm, apart from Ga and sometimes Ti. The main control on the low trace element contents appears to be the small size of the crystallographic sites. Nevertheless, variations were observed in several elements, such as B, Ti, Sc, W, Mo, As and the rare earth elements. These variations imply a control by the host rock and its surrounds, as well as the identity of co-existing minerals.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Cruz, Armanda, Pedro A. Dinis, Alberto Gomes, and Paula Leite. "Influence of Sediment Cycling on the Rare-Earth Element Geochemistry of Fluvial Deposits (Caculuvar–Mucope, Cunene River Basin, Angola)." Geosciences 11, no. 9 (September 11, 2021): 384. http://dx.doi.org/10.3390/geosciences11090384.

Повний текст джерела
Анотація:
The rare-earth element (REE) geochemistry of sedimentary deposits has been used in provenance investigations despite the transformation that this group of elements may suffer during a depositional cycle. In the present investigation, we used the geochemistry and XRD mineralogy of a set of sand and mud fluvial deposits to evaluate the ability of REE parameters in provenance tracing, and the changes in REE geochemistry associated with weathering and sorting. The analyzed deposits were generated in a subtropical drainage basin where mafic and felsic units are evenly represented, and these crystalline rocks are covered by sedimentary successions in a wide portion of the basin. A few element ratios appear to hold robust information about primary sources (Eu/Y, Eu/Eu*, LaN/YbN, LaN/SmN, and GdN/YbN), and the provenance signal is best preserved in sand than in mud deposits. Sediment cycles, however, change the REE geochemistry, affecting mud and sand deposits differently. They are responsible for significant REE depletion through quartz dilution in sands and may promote discernible changes in REE patterns in muds (e.g., increase in Ce content and some light REE depletion relative to heavy REE).
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Frisby, Carl, Dionysis I. Foustoukos, and Michael Bizimis. "Rare earth element uptake during olivine/water hydrothermal interaction." Lithos 332-333 (May 2019): 147–61. http://dx.doi.org/10.1016/j.lithos.2019.03.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Cetiner, Ziya S., Scott A. Wood, and Christopher H. Gammons. "The aqueous geochemistry of the rare earth elements. Part XIV. The solubility of rare earth element phosphates from 23 to 150 °C." Chemical Geology 217, no. 1-2 (April 2005): 147–69. http://dx.doi.org/10.1016/j.chemgeo.2005.01.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Graupner, T., F. Melcher, H. E. Gäbler, M. Sitnikova, H. Brätz, and A. Bahr. "Rare earth element geochemistry of columbite-group minerals: LA-ICP-MS data." Mineralogical Magazine 74, no. 4 (August 2010): 691–713. http://dx.doi.org/10.1180/minmag.2010.074.4.691.

Повний текст джерела
Анотація:
AbstractNew data on rare earth element (REE) concentrations and distribution patterns of columbite-tantalite minerals from Ta-ore provinces worldwide are presented. The REE geochemistry was studied by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Five major types of chondrite-normalized REE distribution patterns are defined for columbite-group minerals (CGM) from lithium-caesium-tantalum (LCT) pegmatites and rare-metal granites. Features to discriminate between the types include (1) the shape of the pattern (e.g. flat or concave), (2) calculated ratios between groups of the REE (e.g. heavy REEN/middle REEN), and (3) the presence and intensity of anomalies (e.g. Ce*, Eu*). Four pegmatites in central and southern Africa are used as case studies to discuss application of the types of REE patterns in individual deposits. The REE fractionation during progressive evolution of the melt in a pegmatite body (either Nb → Ta or Fe → Mn fractionation lines, or both) results in smaller heavy REEN/middle REEN ratios whereas replacement of primary CGM by secondary CGM produces modifications in the light REEN patterns and the heavy REEN/middle REEN ratios also. Critical features of REE patterns such as highly variable heavy REEN/middle REEN ratios or striking differences in the appearance of Eu anomalies are discussed considering structural data of the host minerals and the differentiation behaviour of the pegmatitic melt. In general, CGM from each individual Ta-ore province are characterized by a predominance of one type of REE distribution pattern. Consequently, these patterns are suitable for tracing the origin of tantalum ore concentrates (e.g. as a forensic tool).
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Akinlua, A., F. S. Olise, A. O. Akomolafe, and R. I. McCrindle. "Rare earth element geochemistry of petroleum source rocks from northwestern Niger Delta." Marine and Petroleum Geology 77 (November 2016): 409–17. http://dx.doi.org/10.1016/j.marpetgeo.2016.06.023.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Harnois, Luc, Jacques Trottier, and Maurice Morency. "Rare earth element geochemistry of Thetford Mines ophiolite complex, Northern Appalachians, Canada." Contributions to Mineralogy and Petrology 105, no. 4 (September 1990): 433–45. http://dx.doi.org/10.1007/bf00286830.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Berger, Alfons, Emilie Janots, Edwin Gnos, Robert Frei, and Felix Bernier. "Rare earth element mineralogy and geochemistry in a laterite profile from Madagascar." Applied Geochemistry 41 (February 2014): 218–28. http://dx.doi.org/10.1016/j.apgeochem.2013.12.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ekambaram, Vanavan, Douglas G. Brookins, Philip E. Rosenberg, and Karl M. Emanuel. "Rare-earth element geochemistry of fluorite-carbonate deposits in western Montana, U.S.A." Chemical Geology 54, no. 3-4 (February 1986): 319–31. http://dx.doi.org/10.1016/0009-2541(86)90146-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Pazand, Kaveh, and Ali Reza Javanshir. "Rare earth element geochemistry of spring water, north western Bam, NE Iran." Applied Water Science 4, no. 1 (September 7, 2013): 1–9. http://dx.doi.org/10.1007/s13201-013-0125-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Johannesson, Kevin H., W. Berry Lyons, Mary A. Yelken, Henri E. Gaudette, and Klaus J. Stetzenbach. "Geochemistry of the rare-earth elements in hypersaline and dilute acidic natural terrestrial waters: Complexation behavior and middle rare-earth element enrichments." Chemical Geology 133, no. 1-4 (November 1996): 125–44. http://dx.doi.org/10.1016/s0009-2541(96)00072-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Wood, Scott A., David J. Wesolowski, and Donald A. Palmer. "The aqueous geochemistry of the rare earth elements." Chemical Geology 167, no. 1-2 (June 2000): 231–53. http://dx.doi.org/10.1016/s0009-2541(99)00210-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Dubinin, A. V. "Geochemistry of Rare Earth Elements in the Ocean." Lithology and Mineral Resources 39, no. 4 (July 2004): 289–307. http://dx.doi.org/10.1023/b:limi.0000033816.14825.a2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Dubinin, A. V. "Geochemistry of rare earth elements in oceanic phillipsites." Lithology and Mineral Resources 35, no. 2 (March 2000): 101–8. http://dx.doi.org/10.1007/bf02782672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Zhu, Ren Z., Pei Ni, Jun Y. Ding, Guo G. Wang, Ming S. Fan, and Su N. Li. "Metasomatic Processes in the Lithospheric Mantle Beneath the No. 30 Kimberlite (Wafangdian Region, North China Craton)." Canadian Mineralogist 57, no. 4 (July 15, 2019): 499–517. http://dx.doi.org/10.3749/canmin.1800066.

Повний текст джерела
Анотація:
AbstractThis paper presents the first major and trace element compositions of mantle-derived garnet xenocrysts from the diamondiferous No. 30 kimberlite pipe in the Wafangdian region, and these are used to constrain the nature and evolution of mantle metasomatism beneath the North China Craton (NCC). The major element data were acquired using an electron probe micro-analyzer and the trace element data were obtained using laser ablation inductively coupled plasma-mass spectrometry. Based on Ni-in-garnet thermometry, equilibrium temperatures of 1107–1365 °C were estimated for peridotitic garnets xenocrysts from the No. 30 kimberlite, with an average temperature of 1258 °C, and pressures calculated to be between 5.0 and 7.4 GPa. In a CaO versus Cr2O3 diagram, 52% of the garnets fall in the lherzolite field and 28% in the harzburgite field; a few of the garnets are eclogitic. Based on rare earth element patterns, the lherzolitic garnets are further divided into three groups. The compositional variations in garnet xenocrysts reflect two stages of metasomatism: early carbonatite melt/fluid metasomatism and late kimberlite metasomatism. The carbonatite melt/fluids are effective at introducing Sr and the light rare earth elements, but ineffective at transporting much Zr, Ti, Y, or heavy rare earth elements. The kimberlite metasomatic agent is highly effective at element transport, introducing, e.g., Ti, Zr, Y, and the rare earth elements. Combined with compositional data for garnet inclusions in diamonds and megacrysts from the Mengyin and Wafangdian kimberlites, we suggest that these signatures reflect a two-stage evolution of the sub-continental lithospheric mantle (SCLM) beneath the NCC: (1) early-stage carbonatite melt/fluid metasomatism resulting in metasomatic modification of the SCLM and likely associated with diamond crystallization; (2) late-stage kimberlite metasomatism related to the eruption of the 465 Ma kimberlite.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Vocke, Robert D., Gilbert N. Hanson, and Marc Grünenfelder. "Rare earth element mobility in the Roffna Gneiss, Switzerland." Contributions to Mineralogy and Petrology 95, no. 2 (February 1987): 145–54. http://dx.doi.org/10.1007/bf00381264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Scheibner, Birgit, Gerhard Wörner, Lucia Civetta, Heinz-Günter Stosch, Klaus Simon, and Andreas Kronz. "Rare earth element fractionation in magmatic Ca-rich garnets." Contributions to Mineralogy and Petrology 154, no. 1 (February 23, 2007): 55–74. http://dx.doi.org/10.1007/s00410-006-0179-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Armstrong, H. A., D. G. Pearson, and M. Griselin. "Thermal effects on rare earth element and strontium isotope chemistry in single conodont elements." Geochimica et Cosmochimica Acta 65, no. 3 (February 2001): 435–41. http://dx.doi.org/10.1016/s0016-7037(00)00548-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Schwandt, Craig S., and Gordon A. McKay. "Rare earth element partition coefficients from enstatite/melt synthesis experiments." Geochimica et Cosmochimica Acta 62, no. 16 (August 1998): 2845–48. http://dx.doi.org/10.1016/s0016-7037(98)00233-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Byrne, Robert H., Jong Hyeon Lee, and Linda S. Bingler. "Rare earth element complexation by PO43− ions in aqueous solution." Geochimica et Cosmochimica Acta 55, no. 10 (October 1991): 2729–35. http://dx.doi.org/10.1016/0016-7037(91)90439-c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Gibaga, Cris Reven L., Jessie O. Samaniego, Alexandria M. Tanciongco, Rico Neil M. Quierrez, Mariel O. Montano, John Henry C. Gervasio, Rachelle Clien G. Reyes, and Monica Joyce V. Peralta. "The rare earth element (REE) potential of the Philippines." Journal of Geochemical Exploration 242 (November 2022): 107082. http://dx.doi.org/10.1016/j.gexplo.2022.107082.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Bau, Michael. "Effects of syn- and post-depositional processes on the rare-earth element distribution in Precambrian iron-formations." European Journal of Mineralogy 5, no. 2 (April 27, 1993): 257–68. http://dx.doi.org/10.1127/ejm/5/2/0257.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Amijaya, Hendra, Beny Wiranata, and Ferian Anggara. "Occurrence of rare earth element and yttrium (REY) in Tanjung formation coking coal from Sekako area, Central Kalimantan." E3S Web of Conferences 200 (2020): 06008. http://dx.doi.org/10.1051/e3sconf/202020006008.

Повний текст джерела
Анотація:
Inorganic geochemistry of coal become a point of interest on coal study, especially relating with the occurrence of rare earth element. Tanjung Formation is one of coking coal bearing deposits in Barito Basin, Central Kalimantan. The aims of this study to determine the occurrence of Rare Earth Element and Yttrium (REY) especially in term of concentration and enrichment type in coal seam A and B of Tanjung Formation in Sekako Area, Central Kalimantan. A number of 10 coal samples were collected from both seams. Inductively Coupled Plasma-Atomic Spectroscopy (ICP-AES) analysis was conducted to determine the REY in coal. Based on this study, coal seam A and B generally have very low concentration of REY elements deposits. The REY elements of coal seam A and B in the study area are typically characterized with M and H-type enrichment, which might be caused by the mafic basalt rocks in the surroundings.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Sebola, M. J. T., G. R. Drennan, and N. J. Wagner. "Petrographic and geochemical characteristics of beneficiated metallurgical coal from the No. 6 Seam, Tshipise sub-basin, Soutpansberg coalfield, South Africa." Journal of the Southern African Institute of Mining and Metallurgy 122, no. 8 (September 20, 2022): 1–12. http://dx.doi.org/10.17159/2411-9717/2061/2022.

Повний текст джерела
Анотація:
The Soutpansberg Coalfield hosts South Africa's hard coking coal reserves. However, coals in this region are understudied compared to other coalfields in the country. This study characterizes the properties of fine-float fraction samples extracted from a wide diameter borehole core in the Makhado Project, Tshipise sub-basin, Soutpansberg coalfield. Conventional analyses were used to determine the coal quality, petrographic composition, mineralogy, geochemistry (including trace element and rare earth element composition), and free swelling index of samples from six coal horizons and three partings from the economic No.6 Seam. The coal samples are classified as medium rank bituminous C coals (0.88 %RoVmr, 0.92 %Rmax) and are highly vitrinitic in composition (97 vol% mineral matter free (mmf)). The samples show strong caking potential (FSI of 9). The total rare earth concentrations range between 570 and 3193 ppm in the ash samples. Preliminary analysis show all but two samples are promising sources of rare earth elements as the total concentrations exceeded the 1000 ppm cut-off grade. Further research is required to confirm these preliminary findings.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Su, Qiangwei, Jingwen Mao, Jia Sun, Linghao Zhao, and Shengfa Xu. "Geochemistry and Origin of Scheelites from the Xiaoyao Tungsten Skarn Deposit in the Jiangnan Tungsten Belt, SE China." Minerals 10, no. 3 (March 18, 2020): 271. http://dx.doi.org/10.3390/min10030271.

Повний текст джерела
Анотація:
The type, association, variations, and valence states of several metal elements of scheelite can trace the source and evolution of the ore-forming fluids. There are four types of scheelite from the Xiaoyao deposit: (1) scheelite intergrown with garnet in the proximal zone (Sch1a) and with pyroxene in the distal zone (Sch1b), (2) scheelite replaced Sch1a (Sch2a) and crystallized as rims around Sch1b (Sch2b), (3) quartz vein scheelite with oscillatory zoning (Sch3), and 4) scheelite (Sch4) within micro-fractures of Sch3. Substitutions involving Mo and Cd are of particular relevance, and both elements are redox-sensitive and oxidized Sch1a, Sch2b, Sch3 are Mo and Cd enriched, relatively reduced Sch1b, Sch2a, Sch4 are depleted Mo and Cd. Sch1a, Sch2a, Sch3, and Sch4 are characterized by a typical right-inclined rare earth element (REE) pattern, inherited from ore-related granodiorite and modified by the precipitation of skarn minerals. Sch1b and Sch2b are characterized by low light rare earth element/heavy rare earth element (LREE/HREE) ratios, influenced by a shift in fO2 during fluid-rock alteration. Sch1b, Sch2b and Sch3 have higher Sr contents than those of Sch1a and Sch2a, reveal that host-rock alteration and fluid–rock interaction have elevated Sr contents. The Y/Ho ratios of scheelite gradually increase from skarn to quartz vein stages, due to fluid fractionation caused by fluid–rock interaction. Thus, the variation in REE and trace elements in scheelite in time and space reflects a complex magmatic-hydrothermal process involving various fluid–rock interactions and fluid mixing.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Verplanck, P. L., R. C. Antweiler, D. K. Nordstrom, and H. E. Taylor. "Standard reference water samples for rare earth element determinations." Applied Geochemistry 16, no. 2 (February 2001): 231–44. http://dx.doi.org/10.1016/s0883-2927(00)00030-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Constantopoulos, James. "Fluid inclusions and rare earth element geochemistry of fluorite from south-central Idaho." Economic Geology 83, no. 3 (May 1, 1988): 626–36. http://dx.doi.org/10.2113/gsecongeo.83.3.626.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії