Дисертації з теми "RANS numerical simulation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-41 дисертацій для дослідження на тему "RANS numerical simulation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Kim, Su Jin. "3D numerical simulation of turbulent open-channel flow through vegetation." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42892.
Повний текст джерелаAfailal, Al Hassan. "Numerical simulation of non-reactive aerodynamics in Internal Combustion Engines using a hybrid RANS/LES approach." Thesis, Pau, 2020. http://www.theses.fr/2020PAUU3028.
Повний текст джерелаInternal aerodynamics is a key element for improving the combustion efficiency in Spark-Ignition (SI) engines. Within this context, CFD tools are increasingly used to investigate in-cylinder flows and to support the design of fuel-efficient engines. The present research aimed at extending and validating a non-zonal hybrid Reynolds-Averaged Navier-Stokes / Temporal Large-Eddy Simulation (HTLES) approach, initially formulated for stationary flows, to cyclic SI engine flows with moving walls. The aim was to model the near-wall regions and coarse mesh regions in RANS, while solving the turbulent scales in core regions with sufficient mesh resolution using temporal LES, in a seamless approach with no a priori user input. HTLES was retained as it proposed a consistent hybridization combining time-averaging in RANS regions with temporal filtering in TLES.A first development consisted in implementing a smooth shielding function that enforces the RANS mode in near-wall regions, regardless of the local temporal and spatial resolution. The extension of HTLES to cyclic flows was then achieved via the formulation of a method allowing approximating the phase averages of resolved flow quantities based on an Exponentially Weighted Average (EWA). A dynamic expression for the width of the weighted average was proposed, in order to ensure that the high frequency turbulent fluctuations be filtered out from the resolved quantities, while keeping the low frequency cyclic components of the flow variables. The resulting EWA-HTLES model was implemented in the commercial CONVERGE CFD code. The developed EWA-HTLES model was first applied to the simulation of two steady flow configurations: a minimal turbulent channel and a steady flow rig. Predictions were confronted with reference data, as well as with those from RANS and LES. All simulations relied on the use of standard wall laws and coarse grids at walls. Imposing the RANS mode at walls yielded EWA-HTLES predictions of pressure losses much closer to DNS and experimental findings than with LES. At the same time, it allowed yielding results in terms of mean and RMS velocities s in the core regions of the same quality than LES, and superior to RANS.Finally, EWA-HTLES was applied to the simulation of two cyclic flows representative of SI engines: the compressed tumble and the Darmstadt single-cylinder pentroof 4valve engine. For each configuration, a total number of 40 consecutive cycles were simulated. The results were confronted to PIV data, and to RANS and LES predictions obtained using the same numerical set-up. It was shown that EWA-HTLES successfully drives the RANS-to-LES transition in such complex configurations exhibiting unsteady flow features and important cyclic geometrical deformations. It switched from the RANS mode at the walls to LES in the core region of the cylinder, allowing a better prediction of unsteady phenomena including the evolution of the overall tumble characteristics and phenomena associated to cyclic variability. The EWA-HTLES results were shown to be comparable to those predicted by LES, and superior to RANS.The performed developments and obtained results open encouraging perspectives for the application of this hybrid RANS/LES method in industrial configurations involving non-stationary conditions and in particular moving boundaries
Gorgulu, Ilhan. "Numerical Simulation Of Turbine Internal Cooling And Conjugate Heat Transfer Problems With Rans-based Turbulance Models." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12615000/index.pdf.
Повний текст джерелаmodel, Shear Stress Transport k-&omega
model, Reynolds Stress Model and V2-f model, which became increasingly popular during the last few years, have been used at the numerical simulations. According to conducted analyses, despite a few unreasonable predictions, in the majority of the numerical simulations, V2-f model outperforms other first-order turbulence models (Realizable k-&epsilon
and Shear Stress Transport k-&omega
) in terms of accuracy and Reynolds Stress Model in terms of convergence.
Tristanto, Indi Himawan. "A mesh transparent numerical method for large-eddy simulation of compressible turbulent flows." Thesis, Loughborough University, 2004. https://dspace.lboro.ac.uk/2134/12128.
Повний текст джерелаManickam, Bhuvaneswaran [Verfasser]. "Numerical Modelling and Simulation of Hydrogen Enriched Premixed Turbulent Flames with RANS and LES Approaches / Bhuvaneswaran Manickam." München : Verlag Dr. Hut, 2012. http://d-nb.info/1022535161/34.
Повний текст джерелаNikolaou, Zacharias M. "Study of multi-component fuel premixed combustion using direct numerical simulation." Thesis, University of Cambridge, 2014. https://www.repository.cam.ac.uk/handle/1810/245278.
Повний текст джерелаSinha, Nityanand. "Towards RANS Parameterization of Vertical Mixing by Langmuir Turbulence in Shallow Coastal Shelves." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4945.
Повний текст джерелаKhosravi, Rahmani Ramin. "THREE-DIMENSIONAL NUMERICAL SIMULATION AND PERFORMANCE STUDY OF AN INDUSTRIAL HELICAL STATIC MIXER." See Full Text at OhioLINK ETD Center (Requires Adobe Acrobat Reader for viewing), 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=toledo1103149825.
Повний текст джерелаTypescript. "A dissertation [submitted] as partial fulfillment of the requirements of the Doctor of Philosophy degree in Engineering." Bibliography: leaves 323-340.
Kumar, Vivek Mohan. "3D Numerical Simulation to Determine Liner Wall Heat Transfer and Flow through a Radial Swirler of an Annular Turbine Combustor." Thesis, Virginia Tech, 2013. http://hdl.handle.net/10919/51949.
Повний текст джерелаMaster of Science
Zanette, Jerônimo. "Hydroliennes à flux transverse : contribution à l’analyse de l’interaction fluide-structure." Grenoble INPG, 2010. http://www.theses.fr/2010INPG0161.
Повний текст джерелаThe general context of the present study is the HARVEST Project, research program initiated at LEGI Laboratory in Grenoble devoted to the development of an original concept of cross-flow water turbine allowing to harness the kinetic energy of rivers and oceans streams. Within the HARVEST Project, this thesis is an important contribution to the analysis of fluid-structure interaction, based on available numerical simulation tools. A gradual approach was implemented. The study is primarily performed on two-dimensional configuration representing a cross section of the real geometry. Simplified three-dimensional geometries, including some components of the turbine, are analyzed after. Finally, in the last part of this manuscript, the hydrodynamic performance and mechanical characteristics of a complete geometry of cross-flow water turbine are presented. This thesis is concluded with methodological and technological considerations
Gougeon, Pierre. "Interactions aérodynamiques entre une turbine haute pression et le premier distributeur basse pression." Thesis, Ecully, Ecole centrale de Lyon, 2014. http://www.theses.fr/2014ECDL0026/document.
Повний текст джерелаImproving the performance of current aeronautical turbines is an important issue in a context of severe economical and environmental constraints. In a turbofan, the inter-turbine channel which is located between the High-Pressure (HP) turbine and the first Low Pressure (LP) vane is characterized by a complex flow. Therefore aerodynamic structures coming from the HP turbine (wakes, vortices and showkwaves) strongly interact between each other and affect the LP vane flow field. This generates efficiency losses of the overall configuration. This PhD thesis aims at studying the aerodynamic phenomena between a HP turbine and the first LP vane and at analyzing the mechanisms creating aerodynamic losses. A previous experimental campaign, which was carried out on a facility including a HP turbine coupled to a LP vane, enabled to gather flow field measurements in planes located in the inter-turbine channel and downstream of the LP vane. In comparison with these experimental data, the numerical simulations done with elsA software intend to reproduce accurately the 3D, unsteady and turbulent nature of the flow within this configuration. The work can be divided into three mains steps. As a first step, steady simulations with a sliding mesh treatment enable to understand the general aspects of the flow. An assessment of the effects of RANS (Reynolds-Averaged Navier-Stokes) turbulent predictions and of spatial numerical schemes on the aerodynamic structures present in the configuration is carried out. As a second step, the advanced turbulence approach ZDES (Zonal Detached-Eddy Simulation) is considered for the LP vane flow prediction. The unsteady aerodynamic structures coming from the upstream HP rotor are set as an inlet boundary condition of the computational domain. The ZDES approach is compared to a URANS (Unsteady RANS) approach on the same computational domain. The generation and dissipation of the wakes and vortices are significantly different on the two simulations, and thus impact the creation of aerodynamic losses. Finally, URANS simulations enable to better understand the interaction effects between the different blade rows. First, the unsteady phase-lagged approaches that take into account a single rotor and stator assess the important unsteady effects in the inter-turbine channel. They finally lead to the implementation of a multipassages phase-lagged computation that takes into account the two stators and the rotor in order to model all the existing determinist interactions. In order to quantify them accurately, a modal decomposition of the unsteady flow field is set up. The interaction levels linked to the different blade rows are therefore quantified and the impact of the aerodynamic losses is evaluated
Szubert, Damien. "Physics and modelling of unsteady turbulent flows around aerodynamic and hydrodynamic structures at high Reynold number by numerical simulation." Phd thesis, Toulouse, INPT, 2015. http://oatao.univ-toulouse.fr/15129/2/szubert_1.pdf.
Повний текст джерелаDominguez, Bermudez Favio Enrique. "Simulation numérique de parcs d'hydroliennes à axe vertical carénées par une approche de type cylindre actif." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI020.
Повний текст джерелаThe capture, thanks to hydrokinetic turbines, of the kinetic energy generated by sea and river currents provides a significant and predictable source of renewable energy. The detailed simulation, using an unsteady statistical description of URANS type, of the flow around an isolated water turbine of HARVEST type (cross flow vertical axis ducted water turbine) provides an accurate estimate of the power output. However, the cost of the URANS approach is much too expensive to be applied to a farm of several turbines. A review of the literature leads to select a low-fidelity model of Blade Element Momentum (BEM) type to describe at a reduced cost the rotor effect on the flow, in a 2D context (horizontal cross-section). The turbine performance is then predicted using a steady RANS simulation including source terms distributed within a virtual rotor ring and preserving the mesh of the turbine fixed parts (duct). These source terms are derived using an original procedure which exploits both the local flow conditions upstream of the virtual rotor cells and the flow rate through the turbine. The hydrodynamic coefficients used to compute the BEM-RANS source terms are built once for all from a series of preliminary URANS simulations; they include the effects of the duct on the flow and the rotor operating at optimal rotational speed (maximizing the power output) thanks to the turbine regulation system. The BEM-RANS model is validated against reference URANS simulations: it provides a reliable prediction for the power output (within a few % of the URANS results) at a computational cost which is lowered by several orders of magnitude. This model is applied to the analysis of the power produced by a row of Vertical Axis Water Turbines in a channel for various values of the blockage ratio and lateral spacing as well as to a 3-machine sea farm
Bénichou, Emmanuel. "Analyse numérique des instabilités aérodynamiques dans un compresseur centrifuge de nouvelle génération." Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0046.
Повний текст джерелаThe present study aims at characterizing the aerodynamic instabilities involved in a centrifugal compressor designed by Turbomeca, by means of numerical simulation. This compressor is composed of inlet guide vanes, a centrifugal impeller, a radial vaned diffuser and axial outlet guide vanes. The test module, named Turbocel, will be delivered to the LMFA in 2016. Thus, the results presented in this manuscript are only based on CFD, although some of them are compared to experimental results obtained by Turbomeca on a close configuration.RANS and URANS simulations are performed for several rotational speeds, using the elsA software.Two methodological key points are to be emphasized:- As the flow in both the impeller and the radial diffuser is transonic at high rotational speed, steady RANS simulations cannot provide a satisfactory description of the physical phenomena taking place. This can be explained by the use of the mixing plane approach which prevents shock waves to extend upstream the rotor-stator interfaces, and which impacts the flow field predicted as well as the prediction of the stable operating range.- Below a given massflow rate, URANS simulations covering the spatial period of the compressor prove that the stage behavior does not obey to the single passage spatio-temporal periodicity anymore. An unstable operating range then appears at all the simulated rotational speeds. At low rotational speed, another stable range is however obtained if the compressor is further throttled’ A new periodicity arises on this massflow range, provided that the stator domain is extended to two neighboring blade passages. Concerning the stability domains of Turbocel, different evolutions are obtained depending on the rotational speed:- At high rotational speed, a low frequency phenomenon starts to develop near the peak efficiency point and its intensity keeps increasing until surge happens.- At low rotational speed, a low frequency signature also appears near the peak efficiency point, but it then vanishes when the compressor is further throttled, so that only a restricted operating range exhibits this instability. It then gives rise to a second stable operating range which can be described numerically, ending with surge itself. The low frequency signature is attributed to the enhancement of a flow recirculation in the inducer which, once fully established, is quasi-steady. The numerical results underline that the source of severe instability in the compressor comes from the vaned diffuser. Depending on the operating point, this component can adopt different behaviors, between which a relative continuity exists, and its performances decrease when the massflow rate decresases. The overall stage performances prove that at high rotational speed, the global stability is driven by the semi-vaneless diffuser and depends on the flow developing in the radial diffuser. Finally, in order to extend the stable operating range of the compressor, a flow control strategy based on boundary layer suction has also been determined in the diffuser. Its impact on the performances of Turbocel will be deeply studied later on
Grossi, Fernando. "Physique et modélisation d’interactions instationnaires onde de choc/couche limite autour de profils d’aile transsoniques par simulation numérique." Thesis, Toulouse, INPT, 2014. http://www.theses.fr/2014INPT0015/document.
Повний текст джерелаShock wave/boundary layer interactions arising in the transonic flow over airfoils are studied numerically using different levels of turbulence modeling. The simulations employ standard URANS models suitable for aerodynamics and hybrid RANS-LES methods. The use of a compressibility correction for one-equation closures is also considered. First, the intermittent shock-induced separation occurring over a supercritical airfoil at an angle of attack close to the buffet onset boundary is investigated. After a set of URANS computations, a scale-resolving simulation is performed using the best statistical approach in the context of a Delayed Detached-Eddy Simulation (DDES). The analysis of the flow topology and of the statistical wall-pressure distributions and velocity fields show that the main features of the self-sustained shock-wave oscillation are predicted by the simulations. The DDES also captures secondary flow fluctuations which are not predicted by URANS. An examination of the unsteady RANS-LES interface shows that the DDES successfully prevents modeled-stress depletion whether the flow is attached or separated. The gray area issue and its impact on the results are also addressed. The conclusions from the supercritical airfoil simulations are then applied to the numerical study of a laminar transonic profile. Following a preliminary characterization of the airfoil aerodynamics, the effect of the boundary layer transition location on the properties of two selected shock wave/boundary layer interaction regimes is assessed. In transonic buffet conditions, the simulations indicate a strong dependence of the shock-wave motion amplitude and of the global flow unsteadiness on the tripping location
Uribe, Cédric. "Développement d'une approche ZDES à deux équations de transport et application turbomachines." Thesis, Sorbonne université, 2018. http://www.theses.fr/2018SORUS252.
Повний текст джерелаAccurate secondary and transitional flows predictions are essential to turbomachinery improvements. They cause additional losses and operating domain reduction. For example tip-leakage vortex flow or corner separation flow in H.P. compressor lead to total pressure losses and promote axial instabilities (surge). Various laminar-turbulent transition processes regulate turbine blade thermal load and thus turbine blades life. Usual CFD turbulence modellings (RANS method) fail to cope with such strongly fluctuating, separated and transitional flows. In response to these challenges, one solution relies in the hybrid RANS/LES method called ZDES (Zonal Detached Eddy Simulation (Deck 2012)) in its operating modes 0, 1 and 2 : boundary layers are modelled following a RANS method in their whole thickness for avoiding their expensive resolution following an LES method (resolution of the large turbulence scales) which is only used - if needed - far from the wall for high fidelity prediction of separated flows thanks to continuous RANS/LES interfaces. In view to allow ZDES method to be compatible with the majority of laminar-turbulent transition models applied for internal flows, this work proposes numerous ZDES’s variants no more based on Spalart et Allmaras turbulence model (ZDES SA method) but on Menter k − ω SST turbulence model (ZDES SST method). With regards to a deconstruction of their performances in major issues, this work demonstrates the behavioral similarity of those two methods on common flow test cases (mixing layer, backward-facing step, circular cylinder) undemanding for their underlying turbulence model in RANS regions. This work also demonstrates the advantage of ZDES SST over ZDES SA for an industrial relevant test case (high-pressure axial compressor rotor) much more demanding. It assesses various ways of improvement for ZDES method. Finally, it supplements this validation process with a new common test case (axisymetric hill) allowing to isolate the issue of turbulent boundary layer separation prediction in the absence of geometrical singularity
Renard, Nicolas. "Simulations numériques avancées et analyses physiques de couches limites turbulentes à grand nombre de Reynolds." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066041/document.
Повний текст джерелаBetter understanding the specificities of the dynamics of high-Reynolds number boundary layers despite metrological constraints and its numerical simulation cost is crucial. For instance, this dynamics can determine more than half of the drag of a cruising aircraft. Describing wall turbulence can guide the numerical resolution of some of the fluctuations at a limited cost by WMLES strategies (wall-modelled large eddy simulation). The present physical analyses of zero-pressure gradient incompressible turbulent boundary layers at high Reynolds number rely on advanced numerical simulations. After validating a database, mean skin friction is decomposed by means of the FIK identity (Fukagata et al. (2002)), whose application despite the spatial growth is discussed. A spectral analysis shows that the large scales (\lambda_x > \delta) contribute approximately half of the friction near Re_\theta = 10^4. The limitations of the FIK identity motivate the derivation of a physical decomposition of the generation of friction whose asymptotic behaviour is then related to turbulent kinetic energy production in the logarithmic layer. In order to better reconstruct spatial spectra, a new method to estimate the turbulent convection velocity as a function of the wavelength of the fluctuations, adapted to spatial growth and to temporal signals of finite duration, is derived, interpreted, and assessed at Re_\theta = 13000. Some of the conclusions enlighten modifications to a WMLES strategy, mode III of the ZDES method
Keshmiri, Amir. "Thermal-hydraulic analysis of gas-cooled reactor core flows." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/thermalhydraulic-analysis-of-gascooled-reactor-core-flows(29335acf-a397-4b8c-8217-fd2ee0d26967).html.
Повний текст джерелаRiera, William. "Evaluation of the ZDES method on an axial compressor : analysis of the effects of upstream wake and throttle on the tip-leakage flow." Thesis, Ecully, Ecole centrale de Lyon, 2014. http://www.theses.fr/2014ECDL0030/document.
Повний текст джерелаThe tip-leakage flow in axial compressors is studied with the Zonal Detached Eddy Simulation (ZDES). This study aims at evaluating the capability of hybrid URANS/LES methods to simulate the tip-leakage flow within a realistic axial compressor in order to better understand the involved physics, especially the behaviour of the flow near surge and the effects of stator wakes on the downstream rotor. Once the ZDES method is chosen, a numerical test bench is defined to simulate the first rotor of the research compressor CREATE. This bench takes into account the unsteady effects of the Inlet Guide Vane (IGV), such as its wake as well as vortices generated at the IGV hub and tip. It is based upon ZDES meshing criteria and is used to evaluate this method compared to classic RANS and URANS approaches. A method validation is carried out up to a spectral analysis compared to experimental data. The ZDES is capable to capture more accurately the intensity and position of the unsteady phenomena encountered in the tip region, especially the tip-leakage vortex. The power spectral densities highlight that this partly originates from a better capture of the energy transfer from large to small structures until their dissipation. The discrepancy between the methods is accentuated as the tip-leakage vortex crosses the shock. Near the surge line, the interactions between the shock, the tip-leakage vortex, the boundary layer developing on the shroud and the vortex generated by the IGV tip are amplified. The boundary layer on the shroud separates earlier and a local flow inversion occurs. Besides, the tip-leakage vortex widens and is deflected toward the adjacent blade. This strengthens the double leakage. At the design operating point, the interaction of the IGV tip vortex with the shock and the rotor tip vortex is studied. A vortex flutter is observed as the IGV tip vortex arrives on the rotor blade and stretches the rotor tip vortex. This phenomenon decreases the double leakage
Sanchez, Marc. "Etude des extracteurs d'air hybrides éoliens : conception de géométries et analyse des écoulements." Thesis, Perpignan, 2015. http://www.theses.fr/2015PERP0040/document.
Повний текст джерелаThis PhD work concerns the study of hybrid air extractors. It is composed of upstream and applied investigations. In the upstream part, fine simulations are realized in square duct flow with and without rotation to analyse the impact of rotation on turbulence. It is found that rotation removes symmetry property of the flow with turbulent Reynolds number of 600. The applied part is dedicated to the conception of a new air extractor geometry. This geometry is proposed from the analyse of RANS simulations. Its performances are confirmed by experimental measurements on test rig. Wind tunnel tests of a wind power capturing system, designed for the extractor, show a good adequation to the operating regime of the extractor. Experimental investigations on the complete air extractor, show the wind power capturing system brings a significant part of the energy. Wind tunnel tests allow to observe the complete air extractor behaviour
Longo, Riccardo. "Advanced turbulence models for the simulation of air pollutants dispersion in urban area." Doctoral thesis, Universite Libre de Bruxelles, 2020. https://dipot.ulb.ac.be/dspace/bitstream/2013/312254/3/thesis.pdf.
Повний текст джерелаDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Benyoucef, Farid. "Amélioration de la prévision des écoulements turbulents par une approche URANS avancée." Thesis, Toulouse, ISAE, 2013. http://www.theses.fr/2013ESAE0014/document.
Повний текст джерелаThis research work is meant to assess an upgraded URANS approach, namely the Scale-Adaptive Simulation (SAS). This method is similar to a conventional RANS approach (namelythe SSTmodel) in attached areas and is able to adapt the eddy-viscosity level in detached areas toensure the resolution, at least partially, of the turbulent structures. In a first part of this researchwork, an improvement of the SAS approach is suggestedto allowa better sensitivity of themodelto instabilities such as Kelvin-Helmholtz ones. This "improved" model is referred to as SAS-αLmodel. Both SAS and SAS-αL models were implemented in the ONERA Navier-Stokes solverelsA and both of themaswell as the SSTmodelwere tested on academic test cases : a cylinder in acrossflowat a high Reynolds number, a backward-facing step flowcorresponding to theDriver&Seegmiller experiment and the transonic flow over the M219 cavity experimentally investigatedby de Henshaw. The influence of the numerical parameters was deeply investigated and particularattention was paid to the high-order space-discretization schemes effects. The reliabilityof the SAS approach in an industrial framework was assessed on an aeronautic configurationnamely a nacelle de-icing device. Comparisons between the threemodels (SST, SAS and SAS-αL)and an experimental database available at ONERA - The French Aerospace Lab have shown thebetter accuracy of the SAS approach as well as the high potential of the SAS-αL model
Menier, Victorien. "Numerical methods and mesh adaptation for reliable rans simulations." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066481/document.
Повний текст джерелаThis thesis deals with the high-fidelity prediction of viscous turbulent flows modelized by the Reynolds-Averaged Navier-Stokes (RANS) equations. If mesh adaptation has been successfully applied to inviscid simulations like the sonic boom prediction or the blast propagation, demonstrating that these methods are also well-suited for 3D RANS simulations remains a challenge. This thesis addresses research issues that arise in this context, which are related to both numerical methods (flow solver) and mesh adaptation strategies. For the numerical methods, we have implemented a turbulence model in our in-house flow solver and carried out its verification & validation study. Accurate results were obtained for a representative set of test cases, including the drag prediction workshop. Additional developments have been done to improve the robustness and the convergence speed of the flow solver. They include the implementation of an implicit time integration and of a multigrid acceleration procedure. As regards mesh adaptation, we have coupled the adaptive process to multigrid in order to benefit from its convergence properties and thus improve the robustness while preventing losses of computational effort. We also have devised a parallel mesh generation algorithm. We are able to generate anisotropic adapted meshes containing around one billion elements in less than 20min on 120 cores. Finally, we introduced a procedure to automatically generate anisotropic adapted quasi-structured meshes in boundary layer regions
Davis, Mallory. "Numerical Simulation of Unsteady Hydrodynamics in the Lower Mississippi River." ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1126.
Повний текст джерелаAhmed, Dhafar Ibrahim. "Experimental and numerical study of model gravity currents in coastal environment : bottom gravity currents." Thesis, Brest, 2017. http://www.theses.fr/2017BRES0060/document.
Повний текст джерелаThe aim of this investigation is to contribute to a better understanding of the propagation dynamics and the mixing process of dense gravity currents. The Laboratory experiments proceeded with a fixed initial gravity current concentration in one experimental set-up. The gravity currents are injected using a rectangular injection channel into a rectangular basin containing the ambient lighter liquid. The injection studied is said in unsteady state volume, as the Reynolds number lies in the range 1111 - 3889. The experiments provided the evolution of the boundary interface of the jet, and it is used to validate the numerical model. The numerical model depends on the Reynolds-Averaged Navier Stokes equations (RANS). The k-ε (K-epsilon) and the Diffusion-Convective Equation (DCE) of the saline water volume fraction were used to model the mixing and the propagation of the gravity current jet. On the other hand, comparison of the mean flow (z⁄z0.5 =U/Umax) with previous two-dimensional numerical simulations and experimental measurements have shown similarities. The numerical simulations of the hydrodynamic fields indicate that the velocity maximum at 0.18 z0.5, where z0.5 is the height at which the mean velocity u is the half of the maximum velocity Umax
Menchaca, Roa Ane. "Analyse numérique des hydroliennes à axe vertical munies d'un carénage." Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENI050/document.
Повний текст джерелаThe general context of the present thesis is renewable energies within the HARVEST program initialized at LEGI laboratory, which consists in developing a Darrieus-type water current turbine (WCT). The WTC can be equipped with a channelling device which allows transforming a bigger amount of the kinetic energy contained in the flowstream into electricity. The present work is focused on the channelling devices. Studies concern three main topics: the explanation of the channelling device hydrodynamic functioning, the evaluation of the performance of the shrouded WCT and the revealing of the system geometrical parameters which allow its improvement or optimisation. All studies have been carried out by 2D RANS calculations and available experimental data, and have been compared to bare WTC results
Enayati, Hooman. "NUMERICAL FLOW AND THERMAL SIMULATIONS OF NATURAL CONVECTION FLOW IN LATERALLY-HEATED CYLINDRICAL ENCLOSURES FOR CRYSTAL GROWTH." University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron1561542061969173.
Повний текст джерелаSchreiber, Johannes. "Investigation of experimental and numerical methods, and analysis of stator clocking and instabilities in a high-speed multistage compressor." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEC063/document.
Повний текст джерелаThe following experimental and numerical investigations aim at the deep understanding of the flow field in the 3.5 stages high-speed axial compressor CREATE, studied on a 2 MW test rig at the Laboratory of Fluid Mechanics and Acoustics (LMFA) in Lyon, France. This work focuses on three major objectives: Firstly, a global description of the flow field with an identification of limitations to the used exploration methods; Secondly, the characterization of the effect of stator-stator clocking in a high-speed compressor; Thirdly, the identification of instabilities arising at low mass flow rates for confirming studies on low-speed compressors and giving new insights.This work demonstrates that a mis-interpretation of steady performance data occurs easily due to measurement constraints and correction coefficients are proposed. At certain locations in the compressor, the flow field exploration (experimental and numerical) methods are identified to be challenged. This identification will initiate further development of the methods. The main mis-predictions of the simulations concern the over-prediction of the blockage induced by the tip leakage flow and eventually an over-predicted pressure rise. Furthermore, the measurements provided by the pneumatic pressure probes over-estimate the static pressure upstream of the stators. This error is induced by the interaction between the stator potential field and the probe it-self. In addition, the laser Doppler anemometry method over-estimates the velocity downstream the stators. The transport of the rotor wakes through the stators might not be correctly captured with the seeding particles in this high-speed compressor.The investigation of the stator clocking reveals only a small global effect within the measurement uncertainty band. Several contributions to the weak effect of clocking are identified by analysis of the flow structure transport, namely the time-mean mixing out of the stator wakes and the deformation of wakes along their flow path. The local effect of clocking depends on the span-height because of the variation of the circumferential position of the stator wakes and the stator blade shape over the span-height. Local possible positive and negative effects of clocking are identified and are shown to be almost in balance in this compressor. Furthermore, this work demonstrates that the unsteadiness in the flow field is not linked conclusively to the stator clocking.In this compressor, the arising instabilities depend on the operating point and flow field exploration methods. At stable operating points and nominal compressor speed, the numerical results reveal a rotating disturbance in the rotors 2 and 3, whereas the measurements show a rotating disturbance only in the first rotor and only at part speed. In both cases the disturbance exhibits rotating instability like characteristics. An exhaustive numerical study allows to exclude the commonly assumed influence of rotor-stator interactions on the rotating disturbance and pinpoints its source. New insights into the stable behavior and periodicity of the measured rotating instability are derived contrary to the unstable behavior suggested by the naming and literature. This disturbance is shown to evolve into rotating stall cells when approaching the stability limit. At nominal compressor speed, a spike type surge inception is identified I n the measured field. A precise description of the abrupt onset of the spike cell and its difference to a rotating stall cell are presented
Finke, Justin David. "Monte Carlo/Fokker-Planck simulations of Accretion Phenomena and Optical Spectra of BL Lacertae Objects." Ohio University / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1181833339.
Повний текст джерелаDrbušková, Magdaléna. "Numerická analýza smršťování vybraných silikátových kompozitů." Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2014. http://www.nusl.cz/ntk/nusl-226798.
Повний текст джерелаLundberg, Johan. "On the Search for High-Energy Neutrinos : Analysis of data from AMANDA-II." Doctoral thesis, Uppsala University, Department of Physics and Astronomy, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8906.
Повний текст джерелаA search for a diffuse flux of cosmic neutrinos with energies in excess of 1014 eV was performed using two years of AMANDA-II data, collected in 2003 and 2004. A 20% evenly distributed sub-sample of experimental data was used to verify the detector description and the analysis cuts. A very good agreement between this 20% sample and the background simulations was observed. The analysis was optimised for discovery, to a relatively low price in limit setting power. The background estimate for the livetime of the examined 80% sample is 0.035 ± 68% events with an additional 41% systematical uncertainty.
The total neutrino flux needed for a 5σ discovery to be made with 50% probability was estimated to 3.4 ∙ 10-7 E-2 GeV s-1 sr-1 cm-2 equally distributed over the three flavours, taking statistical and systematic uncertainties in the background expectation and the signal efficiency into account. No experimental events survived the final discriminator cut. Hence, no ultra-high energy neutrino candidates were found in the examined sample. A 90% upper limit is placed on the total ultra-high energy neutrino flux at 2.8 ∙ 10-7 E-2 GeV s-1 sr-1 cm-2, taking both systematical and statistical uncertainties into account. The energy range in which 90% of the simulated E-2 signal is contained is 2.94 ∙ 1014 eV to 1.54 ∙ 1018 eV (central interval), assuming an equal distribution over the neutrino flavours at the Earth. The final acceptance is distributed as 48% electron neutrinos, 27% muon neutrinos, and 25% tau neutrinos.
A set of models for the production of neutrinos in active galactic nuclei that predict spectra deviating from E-2 was excluded.
Maschio, Célio. "Desenvolvimento de metodos para avaliação de processos de filtração por meio de simulação por meio de simulação numerica e tomografia de raios-x." [s.n.], 2001. http://repositorio.unicamp.br/jspui/handle/REPOSIP/262896.
Повний текст джерелаTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-07-31T14:51:24Z (GMT). No. of bitstreams: 1 Maschio_Celio_D.pdf: 13410400 bytes, checksum: bcad1a44963fabb3c498533b4663302a (MD5) Previous issue date: 2001
Resumo: O objetivo deste trabalho foi o desenvolvimento de metodologias para o estudo de filtros e processos de filtração, utilizando a tomografia de raios-X, técnicas de processamento digital de imagens e simulação numérica. Os ensaios convencionais utilizados pelos fabricantes são realizados através da medida de parâmetros, tais como pressão e vazão, em pontos localizados a montante e a jusante do filtro. Estes ensaios não são eficientes na caracterização de defeitos e não revelam como ocorre o processo de saturação no interior do filtro. Neste trabalho, a tomografia de raios-X foi utilizada para duas finalidades básicas: estudar a distribuição de contaminantes e analisar defeitos no interior de elementos filtrantes. Os modelos de filtração encontrados na literatura não levam em conta o efeito do acúmulo de contaminantes no desempenho do filtro ao longo do processo de filtração. Neste trabalho, foi desenvolvido um modelo acoplando-se as equações de filtração com as equações fenomenológicas (lei de Darcy e equação da continuidade), de tal forma que o acúmulo de partículas no meio poroso (filtro) fosse considerado na simulação do processo de filtração. Os resultados demonstraram que o processo de saturação no interior dos elementos analisados não ocorre de forma homogênea, ou seja, o acúmulo de partículas é predominante em determinadas regiões. Em geral, há formação de canais preferenciais e o espaço interno do filtro não é totalmente utilizado na captura de partículas. Demonstrou-se também que, em alguns casos, o comportamento do filtro não é coerente com a especificação do fabricante. Foi possível, por fim, a utilização dos dados experimentais, obtidos via tomografia, para a validação do modelo teórico desenvolvido
Abstract: The development of methods for analysis of filters and filtration process, using X-ray computerized tomography, digital image processing and numerical simulation, was the objective of this work. Tests conventionally used by filter manufacturers are made through the measurement ofparameters, such as flow and pressure, at upstream and downstream ofthe filter. These tests are not efficient in the characterization of defects and do not reveal how the saturation process occurs within the filter. In this work, X-ray computerized tomography was used for two basic purposes: to evaluate contaminant distribution and to detect defects within the interior of the filter elements. The filtration models found in the literature do not consider the effect of contaminant concentration on the filter efficiency during the filtration processo In this work, filtration equations and phenomenological equations (Darcy's law and continuity equation) were coupled and a model that takes into account the contaminant accumulation on the filter performance was developed. The results demonstrated that the saturation process within the analyzed filters is not homogeneous, that is, the accumulation of partic1es is predominant in some regions. Generally, there are preferential channels and the interior of the filter elements is not totally utilized. In some cases, it was also demonstrated that the filter behavior does not agree with the manufacturer specifications. Finally, it was possible to use the experimental data obtained with X-ray computerized tomography, in order to validate the theoretical developed model
Doutorado
Materiais e Processos de Fabricação
Doutor em Engenharia Mecânica
Ferrand, Gilles. "Etude de l'accélération des rayons cosmiques par les ondes de choc des restes de supernovae dans les superbulles galactiques." Toulouse 3, 2007. http://thesesups.ups-tlse.fr/165/.
Повний текст джерелаIn this thesis we study the acceleration of cosmic-rays, high-energy particles pervading the Universe. Galactic cosmic-rays are believed to be produced by diffusive shock acceleration in supernovae remnants. The linear theory explains the formation of power-law spectra, but it has to be amended because of the back-reaction of cosmic-rays. We focus our attention on repeated acceleration by successive shocks, which hardens the spectra, and relies on the transport of cosmic-rays between the shocks. For this study we have developped a numerical tool which couples the hydrodynamical evolution of the plasma with the kinetic transport of the cosmic-rays. We have validated it against previous results. To resolve all the space- and time-scales induced by the energy-dependent diffusion of cosmic-rays we have implemented an adaptive mesh refinement technique. To save more computational power we have also parallelized our code, in the energy dimension. This enables us to present the first numerical simulations of non-linear acceleration by multiple shocks. We apply our tool to superbubbles, the big hot tenuous structures surrounding OB associations, as this is probably the place where most supernovae explode -- leading to substantial modifications of the standard model of the production of Galactic cosmic-rays. More precisely we have begun to investigate the effects of multiple shocks, through studying the role of pre-existing cosmic-rays upstream of a blast wave. Finally we review the radiation from superbubbles with a view to efficient cosmic-ray production
Zhang, J., J. Zheng, D.-S. Jeng, and Yakun Guo. "Numerical simulation of solitary wave propagation over a steady current." 2014. http://hdl.handle.net/10454/10205.
Повний текст джерелаA two-dimensional numerical model is developed to study the propagation of a solitary wave in the presence of a steady current flow. The numerical model is based on the Reynolds-averaged Navier-Stokes (RANS) equations with a k-ε turbulence closure scheme and an internal wave-maker method. To capture the air-water interface, the volume of fluid (VOF) method is used in the numerical simulation. The current flow is initialized by imposing a steady inlet velocity on one computational domain end and a constant pressure outlet on the other end. The desired wave is generated by an internal wave-maker. The propagation of a solitary wave travelling with a following/opposing current is simulated. The effects of the current velocity on the solitary wave motion are investigated. The results show that the solitary wave has a smaller wave height, larger wave width and higher travelling speed after interacting with a following current. Contrariwise, the solitary wave becomes higher with a smaller wave width and lower travelling speed with an opposing current. The regression equations for predicting the wave height, wave width and travelling speed of the resulting solitary wave are for practical engineering applications. The impacts of current flow on the induced velocity and the turbulent kinetic energy (TKE) of a solitary wave are also investigated.
National Natural Science Foundation of China Grant #51209083, #51137002 and #41176073, the Natural Science Foundation of Jiangsu Province (China) Grant #BK2011026, the 111 Project under Grant No. B12032, the Fundamental Research Funds for the Central University, China (2013B31614), and the Carnegie Trust for Scottish Universities
Hsieh, Kun-Jung. "A Hybrid Numerical Simulation Approach for Turbulent Flows over Building-Like Obstacles." Thesis, 2008. http://hdl.handle.net/10012/4125.
Повний текст джерелаChang, Shu-Hao. "Numerical simulation of steady and unsteady cavitating flows inside water-jets." Thesis, 2012. http://hdl.handle.net/2152/ETD-UT-2012-08-6310.
Повний текст джерелаtext
Soares, António José Espadinha Vieira. "Numerical simulation of vegetated flows using RANS equations coupled with a porous media approach in OpenFOAM." Master's thesis, 2017. http://hdl.handle.net/10362/39373.
Повний текст джерела(8674956), Sai Lakshminarayanan Balakrishnan. "Numerical Simulations of Spatially Developing Mixing Layers." Thesis, 2020.
Знайти повний текст джерелаTurbulent mixing layers have been researched for many years. Currently, research is focused on studying compressible mixing layers because of their widespread applications in high-speed flight systems. While the effect of compressibility on the shear layer growth rate is well established, there is a lack of consensus over its effect on the turbulent stresses and hence warrants additional research in this area. Computational studies on compressible shear layers could provide a deep cognizance of the dynamics of fluid structures present in these flow fields which in turn would be viable for understanding the effects of compressibility on such flows. However, performing a Direct Numerical Simulation (DNS) of a highly compressible shear layer with experimental flow conditions is extremely expensive, especially when resolving the boundary layers that lead into the mixing section. The attractive alternative is to use Large Eddy Simulation (LES), as it possesses the potential to resolve the flow physics at a reasonable computational cost. Therefore the current work deals with developing a methodology to perform LES of a compressible mixing layer with experimental flow conditions, with resolving the boundary layers that lead into the mixing section through a wall model. The wall model approach, as opposed to a wall resolved simulation, greatly reduces the computational cost associated with the boundary layer regions, especially when using an explicit time-stepping scheme. An in house LES solver which has been used previously for performing simulations of jets, has been chosen for this purpose. The solver is first verified and validated for mixing layer flows by performing simulations of laminar and incompressible turbulent mixing layer flows and comparing the results with the literature. Following this, LES of a compressible mixing layer at a convective Mach number of 0.53 is performed. The inflow profiles for the LES are taken from a precursor RANS solution based on the k-ε and RSM turbulence models. The results of the LES present good agreement with the reference experiment for the upstream boundary layer properties, the mean velocity profile of the shear layer and the shear layer growth rate. The turbulent stresses, however, have been found to be underpredicted. The anisotropy of the normal Reynolds stresses have been found to be in good agreement with the literature. Based on the present results, suggestions for future work are also discussed.
Reuß, Silvia. "A Grid-Adaptive Algebraic Hybrid RANS/LES Method." Doctoral thesis, 2015. http://hdl.handle.net/11858/00-1735-0000-0028-8717-2.
Повний текст джерелаAllamaprabhu, Yaravintelimath. "Turbulence Modeling for Predicting Flow Separation in Rocket Nozzles." Thesis, 2014. http://hdl.handle.net/2005/3046.
Повний текст джерелаCrimp, Steven Jeffrey. "Simulating sea-surface temperature effects on Southern African rainfall using a mesoscale numerical model." Thesis, 1996. https://hdl.handle.net/10539/24293.
Повний текст джерелаThe atmospheric response of the Colorado State University Regional Atmospheric Modelling System (RAMS) to sea-surface temperature anomaliesis investigated. A period of four days was chosen from 21 to 24 January 1981, where focus was placed on the development and dissipation of a tropical-temperate trough across Southern Africa. Previous experimenting this mesoscalenumerical model have detemined the kinematic, moisture, and thermodynamic nature of these synoptic features. The research in this dissertation focuses specifically on the sensitivity of the numerical model's simulated responses to positive sea-surface temperature anomalies. Three separate experiments were devised, in which positive anomalous temperatures were added to the ocean surface north of Madagascar (in the tropical Indian Ocean), at the region of the Agulhas Current retroflection, and along the tropical African west coast (in the Northern Benguela and Angola currents). The circulation aspects of each sensitivity test were investigated through the comparison of simulated variables such as vapour and cloud mixing ratios, temperature, streamlines and vertical velocity, with the same variables created by a control simulation. The results indicate that for the first sensitivity test, (the Madagascar anomaly), cyclogenesis was initiated over the area of modified sea temperatures which resulted in a marginal decrease in continental precipitation. The second sensitivity test (over the Agulhas retroflection) produced a much smaller simulated response to the addition of anomalously warm sea temperatures than the tropical Indian Ocean anomaly. Instability and precipitation values increased over the anomalously warm retroflection region, and were slowly transferred along the westerly wave perturbation and the South African east coast. The third sensitivity experiment showed a predominantly localised simulated increase in precipitation over Gabon and the Congo, with the slow southward progression of other simulated circulation differences taking place. The small perturbations in each of the simulated meteorological responses are consistent with the expected climate response to anomalously warm sea-surface temperatures in those areas.
AC 2018