Добірка наукової літератури з теми "Ranking learning"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Ranking learning".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Ranking learning"
Dzyuba, Vladimir, Matthijs van Leeuwen, Siegfried Nijssen, and Luc De Raedt. "Interactive Learning of Pattern Rankings." International Journal on Artificial Intelligence Tools 23, no. 06 (December 2014): 1460026. http://dx.doi.org/10.1142/s0218213014600264.
Повний текст джерелаYu, Hai-Tao, Degen Huang, Fuji Ren, and Lishuang Li. "Diagnostic Evaluation of Policy-Gradient-Based Ranking." Electronics 11, no. 1 (December 23, 2021): 37. http://dx.doi.org/10.3390/electronics11010037.
Повний текст джерелаHüllermeier, Eyke, and Johannes Fürnkranz. "Editorial: Preference learning and ranking." Machine Learning 93, no. 2-3 (August 31, 2013): 185–89. http://dx.doi.org/10.1007/s10994-013-5414-z.
Повний текст джерелаPan, Weike, Qiang Yang, Yuchao Duan, Ben Tan, and Zhong Ming. "Transfer Learning for Behavior Ranking." ACM Transactions on Intelligent Systems and Technology 8, no. 5 (September 27, 2017): 1–23. http://dx.doi.org/10.1145/3057732.
Повний текст джерелаJiang, Liangxiao. "Learning random forests for ranking." Frontiers of Computer Science in China 5, no. 1 (December 4, 2010): 79–86. http://dx.doi.org/10.1007/s11704-010-0388-5.
Повний текст джерелаGeng, Xiubo, and Xue-Qi Cheng. "Learning multiple metrics for ranking." Frontiers of Computer Science in China 5, no. 3 (May 6, 2011): 259–67. http://dx.doi.org/10.1007/s11704-011-0152-5.
Повний текст джерелаJiang, Liangxiao, Chaoqun Li, and Zhihua Cai. "Learning decision tree for ranking." Knowledge and Information Systems 20, no. 1 (October 17, 2008): 123–35. http://dx.doi.org/10.1007/s10115-008-0173-z.
Повний текст джерелаRahangdale, Ashwini, and Shital Raut. "Machine Learning Methods for Ranking." International Journal of Software Engineering and Knowledge Engineering 29, no. 06 (June 2019): 729–61. http://dx.doi.org/10.1142/s021819401930001x.
Повний текст джерелаFerreira, Kris J., Sunanda Parthasarathy, and Shreyas Sekar. "Learning to Rank an Assortment of Products." Management Science 68, no. 3 (March 2022): 1828–48. http://dx.doi.org/10.1287/mnsc.2021.4130.
Повний текст джерелаOchoa, X., and E. Duval. "Relevance Ranking Metrics for Learning Objects." IEEE Transactions on Learning Technologies 1, no. 1 (January 2008): 34–48. http://dx.doi.org/10.1109/tlt.2008.1.
Повний текст джерелаДисертації з теми "Ranking learning"
Latham, Andrew C. "Multiple-Instance Feature Ranking." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1440642294.
Повний текст джерелаSinsel, Erik W. "Ensemble learning for ranking interesting attributes." Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4400.
Повний текст джерелаTitle from document title page. Document formatted into pages; contains viii, 81 p. : ill. Includes abstract. Includes bibliographical references (p. 72-74).
Mattsson, Fredrik, and Anton Gustafsson. "Optimize Ranking System With Machine Learning." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-37431.
Повний текст джерелаAchab, Mastane. "Ranking and risk-aware reinforcement learning." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT020.
Повний текст джерелаThis thesis divides into two parts: the first part is on ranking and the second on risk-aware reinforcement learning. While binary classification is the flagship application of empirical risk minimization (ERM), the main paradigm of machine learning, more challenging problems such as bipartite ranking can also be expressed through that setup. In bipartite ranking, the goal is to order, by means of scoring methods, all the elements of some feature space based on a training dataset composed of feature vectors with their binary labels. This thesis extends this setting to the continuous ranking problem, a variant where the labels are taking continuous values instead of being simply binary. The analysis of ranking data, initiated in the 18th century in the context of elections, has led to another ranking problem using ERM, namely ranking aggregation and more precisely the Kemeny's consensus approach. From a training dataset made of ranking data, such as permutations or pairwise comparisons, the goal is to find the single "median permutation" that best corresponds to a consensus order. We present a less drastic dimensionality reduction approach where a distribution on rankings is approximated by a simpler distribution, which is not necessarily reduced to a Dirac mass as in ranking aggregation.For that purpose, we rely on mathematical tools from the theory of optimal transport such as Wasserstein metrics. The second part of this thesis focuses on risk-aware versions of the stochastic multi-armed bandit problem and of reinforcement learning (RL), where an agent is interacting with a dynamic environment by taking actions and receiving rewards, the objective being to maximize the total payoff. In particular, a novel atomic distributional RL approach is provided: the distribution of the total payoff is approximated by particles that correspond to trimmed means
Korba, Anna. "Learning from ranking data : theory and methods." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLT009/document.
Повний текст джерелаRanking data, i.e., ordered list of items, naturally appears in a wide variety of situations, especially when the data comes from human activities (ballots in political elections, survey answers, competition results) or in modern applications of data processing (search engines, recommendation systems). The design of machine-learning algorithms, tailored for these data, is thus crucial. However, due to the absence of any vectorial structure of the space of rankings, and its explosive cardinality when the number of items increases, most of the classical methods from statistics and multivariate analysis cannot be applied in a direct manner. Hence, a vast majority of the literature rely on parametric models. In this thesis, we propose a non-parametric theory and methods for ranking data. Our analysis heavily relies on two main tricks. The first one is the extensive use of the Kendall’s tau distance, which decomposes rankings into pairwise comparisons. This enables us to analyze distributions over rankings through their pairwise marginals and through a specific assumption called transitivity, which prevents cycles in the preferences from happening. The second one is the extensive use of embeddings tailored to ranking data, mapping rankings to a vector space. Three different problems, unsupervised and supervised, have been addressed in this context: ranking aggregation, dimensionality reduction and predicting rankings with features.The first part of this thesis focuses on the ranking aggregation problem, where the goal is to summarize a dataset of rankings by a consensus ranking. Among the many ways to state this problem stands out the Kemeny aggregation method, whose solutions have been shown to satisfy many desirable properties, but can be NP-hard to compute. In this work, we have investigated the hardness of this problem in two ways. Firstly, we proposed a method to upper bound the Kendall’s tau distance between any consensus candidate (typically the output of a tractable procedure) and a Kemeny consensus, on any dataset. Then, we have casted the ranking aggregation problem in a rigorous statistical framework, reformulating it in terms of ranking distributions, and assessed the generalization ability of empirical Kemeny consensus.The second part of this thesis is dedicated to machine learning problems which are shown to be closely related to ranking aggregation. The first one is dimensionality reduction for ranking data, for which we propose a mass-transportation approach to approximate any distribution on rankings by a distribution exhibiting a specific type of sparsity. The second one is the problem of predicting rankings with features, for which we investigated several methods. Our first proposal is to adapt piecewise constant methods to this problem, partitioning the feature space into regions and locally assigning as final label (a consensus ranking) to each region. Our second proposal is a structured prediction approach, relying on embedding maps for ranking data enjoying theoretical and computational advantages
FILHO, FRANCISCO BENJAMIM. "RANKING OF WEB PAGES BY LEARNING MULTIPLE LATENT CATEGORIES." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2012. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=19540@1.
Повний текст джерелаO crescimento explosivo e a acessibilidade generalizada da World Wide Web (WWW) levaram ao aumento da atividade de pesquisa na área da recuperação de informação para páginas Web. A WWW é um rico e imenso ambiente em que as páginas se assemelham a uma comunidade grande de elementos conectada através de hiperlinks em razão da semelhança entre o conteúdo das páginas, a popularidade da página, a autoridade sobre o assunto e assim por diante, sabendo-se que, em verdade, quando um autor de uma página a vincula à outra, está concebendo-a como importante para si. Por isso, a estrutura de hiperlink da WWW é conhecida por melhorar significativamente o desempenho das pesquisas para além do uso de estatísticas de distribuição simples de texto. Nesse sentido, a abordagem Hyperlink Induced Topic Search (HITS) introduz duas categorias básicas de páginas Web, hubs e autoridades, que revelam algumas informações semânticas ocultas a partir da estrutura de hiperlink. Em 2005, fizemos uma primeira extensão do HITS, denominada de Extended Hyperlink Induced Topic Search (XHITS), que inseriu duas novas categorias de páginas Web, quais sejam, novidades e portais. Na presente tese, revisamos o XHITS, transformando-o em uma generalização do HITS, ampliando o modelo de duas categorias para várias e apresentando um algoritmo eficiente de aprendizagem de máquina para calibrar o modelo proposto valendo-se de múltiplas categorias latentes. As descobertas aqui expostas indicam que a nova abordagem de aprendizagem fornece um modelo XHITS mais preciso. É importante registrar, por fim, que os experimentos realizados com a coleção ClueWeb09 25TB de páginas da WWW, baixadas em 2009, mostram que o XHITS pode melhorar significativamente a eficácia da pesquisa Web e produzir resultados comparáveis aos do TREC 2009/2010 Web Track, colocando-o na sexta posição, conforme os resultados publicados.
The rapid growth and generalized accessibility of the World Wide Web (WWW) have led to an increase in research in the field of the information retrieval for Web pages. The WWW is an immense and prodigious environment in which Web pages resemble a huge community of elements. These elements are connected via hyperlinks on the basis of similarity between the content of the pages, the popularity of a given page, the extent to which the information provided is authoritative in relation to a given field etc. In fact, when the author of a Web page links it to another, s/he is acknowledging the importance of the linked page to his/her information. As such the hyperlink structure of the WWW significantly improves research performance beyond the use of simple text distribution statistics. To this effect, the HITS approach introduces two basic categories of Web pages, hubs and authorities which uncover certain hidden semantic information using the hyperlink structure. In 2005, we made a first extension of HITS, called Extended Hyperlink Induced Topic Search (XHITS), which inserted two new categories of Web pages, which are novelties and portals. In this thesis, we revised the XHITS, transforming it into a generalization of HITS, broadening the model from two categories to various and presenting an efficient machine learning algorithm to calibrate the proposed model using multiple latent categories. The findings we set out here indicate that the new learning approach provides a more precise XHITS model. It is important to note, in closing, that experiments with the ClueWeb09 25TB collection of Web pages, downloaded in 2009, demonstrated that the XHITS is capable of significantly improving Web research efficiency and producing results comparable to those of the TREC 2009/2010 Web Track.
Cheung, Chi-Wai. "Probabilistic rank aggregation for multiple SVM ranking /." View abstract or full-text, 2009. http://library.ust.hk/cgi/db/thesis.pl?CSED%202009%20CHEUNG.
Повний текст джерелаVogel, Robin. "Similarity ranking for biometrics : theory and practice." Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT031.
Повний текст джерелаThe rapid growth in population, combined with the increased mobility of people has created a need for sophisticated identity management systems.For this purpose, biometrics refers to the identification of individuals using behavioral or biological characteristics. The most popular approaches, i.e. fingerprint, iris or face recognition, are all based on computer vision methods. The adoption of deep convolutional networks, enabled by general purpose computing on graphics processing units, made the recent advances incomputer vision possible. These advances have led to drastic improvements for conventional biometric methods, which boosted their adoption in practical settings, and stirred up public debate about these technologies. In this respect, biometric systems providers face many challenges when learning those networks.In this thesis, we consider those challenges from the angle of statistical learning theory, which leads us to propose or sketch practical solutions. First, we answer to the proliferation of papers on similarity learningfor deep neural networks that optimize objective functions that are disconnected with the natural ranking aim sought out in biometrics. Precisely, we introduce the notion of similarity ranking, by highlighting the relationship between bipartite ranking and the requirements for similarities that are well suited to biometric identification. We then extend the theory of bipartite ranking to this new problem, by adapting it to the specificities of pairwise learning, particularly those regarding its computational cost. Usual objective functions optimize for predictive performance, but recentwork has underlined the necessity to consider other aspects when training a biometric system, such as dataset bias, prediction robustness or notions of fairness. The thesis tackles all of those three examplesby proposing their careful statistical analysis, as well as practical methods that provide the necessary tools to biometric systems manufacturers to address those issues, without jeopardizing the performance of their algorithms
Zacharia, Giorgos 1974. "Regularized algorithms for ranking, and manifold learning for related tasks." Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/47753.
Повний текст джерелаIncludes bibliographical references (leaves 119-127).
This thesis describes an investigation of regularized algorithms for ranking problems for user preferences and information retrieval problems. We utilize regularized manifold algorithms to appropriately incorporate data from related tasks. This investigation was inspired by personalization challenges in both user preference and information retrieval ranking problems. We formulate the ranking problem of related tasks as a special case of semi-supervised learning. We examine how to incorporate instances from related tasks, with the appropriate penalty in the loss function to optimize performance on the hold out sets. We present a regularized manifold approach that allows us to learn a distance metric for the different instances directly from the data. This approach allows incorporation of information from related task examples, without prior estimation of cross-task coefficient covariances. We also present applications of ranking problems in two text analysis problems: a) Supervise content-word learning, and b) Company Entity matching for record linkage problems.
by Giorgos Zacharia.
Ph.D.
Guo, Li Li. "Direct Optimization of Ranking Measures for Learning to Rank Models." Wright State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=wright1341520987.
Повний текст джерелаКниги з теми "Ranking learning"
Hawkins, John N., Aki Yamada, Reiko Yamada, and W. James Jacob, eds. New Directions of STEM Research and Learning in the World Ranking Movement. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98666-1.
Повний текст джерелаLearning to rank for information retrieval and natural language processing. San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA): Morgan & Claypool, 2011.
Знайти повний текст джерелаUnited States. Government Accountability Office. Military education: DOD needs to develop performance goals and metrics for advanced distributed learning in professional military education : report to the Ranking Minority Member, Committee on Armed Services, House of Representatives. Washington, D.C.]: U.S. Government Accountability Office, 2004.
Знайти повний текст джерелаOffice, General Accounting. Student financial aid: Federal aid awarded to students taking remedial courses : report to the ranking minority member, Subcommittee on Postsecondary Education, Training, and Life-Long Learning, Committee on Education and the Workforce, House of Representatives. Washington, D.C: The Office, 1997.
Знайти повний текст джерелаJarosz, Gaja. Learning with Violable Constraints. Edited by Jeffrey L. Lidz, William Snyder, and Joe Pater. Oxford University Press, 2016. http://dx.doi.org/10.1093/oxfordhb/9780199601264.013.30.
Повний текст джерелаHawkins, John N., W. James Jacob, Reiko Yamada, and Aki Yamada. New Directions of STEM Research and Learning in the World Ranking Movement: A Comparative Perspective. Palgrave Macmillan, 2018.
Знайти повний текст джерелаHawkins, John N., W. James Jacob, Reiko Yamada, and Aki Yamada. New Directions of STEM Research and Learning in the World Ranking Movement: A Comparative Perspective. Palgrave Macmillan, 2019.
Знайти повний текст джерелаHuber, Franz. Belief and Counterfactuals. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780199976119.001.0001.
Повний текст джерелаStudent financial aid: Federal aid awarded to students taking remedial courses : report to the ranking minority member, Subcommittee on Postsecondary Education, Training, and Life-Long Learning, Committee on Education and the Workforce, House of Representatives. Washington, D.C: The Office, 1997.
Знайти повний текст джерелаOffice, General Accounting. Student financial aid: Federal aid awarded to students taking remedial courses : report to the ranking minority member, Subcommittee on Postsecondary Education, Training, and Life-Long Learning, Committee on Education and the Workforce, House of Representatives. Washington, D.C: The Office, 1997.
Знайти повний текст джерелаЧастини книг з теми "Ranking learning"
Joshi, Ameet V. "Ranking." In Machine Learning and Artificial Intelligence, 193–98. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-26622-6_20.
Повний текст джерелаCossock, David, and Tong Zhang. "Subset Ranking Using Regression." In Learning Theory, 605–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11776420_44.
Повний текст джерелаLiu, Tie-Yan. "Relational Ranking." In Learning to Rank for Information Retrieval, 103–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14267-3_6.
Повний текст джерелаLiu, Tie-Yan. "Transfer Ranking." In Learning to Rank for Information Retrieval, 127–30. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14267-3_9.
Повний текст джерелаAgarwal, Shivani, and Dan Roth. "Learnability of Bipartite Ranking Functions." In Learning Theory, 16–31. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11503415_2.
Повний текст джерелаKamishima, Toshihiro, and Shotaro Akaho. "Dimension Reduction for Object Ranking." In Preference Learning, 203–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14125-6_10.
Повний текст джерелаVembu, Shankar, and Thomas Gärtner. "Label Ranking Algorithms: A Survey." In Preference Learning, 45–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14125-6_3.
Повний текст джерелаZhang, Jianping, Jerzy W. Bala, Ali Hadjarian, and Brent Han. "Ranking Cases with Classification Rules." In Preference Learning, 155–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-14125-6_8.
Повний текст джерелаRendle, Steffen. "Learning Context-Aware Ranking." In Context-Aware Ranking with Factorization Models, 39–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16898-7_4.
Повний текст джерелаGrady, Leo J., and Jonathan R. Polimeni. "Manifold Learning and Ranking." In Discrete Calculus, 243–66. London: Springer London, 2010. http://dx.doi.org/10.1007/978-1-84996-290-2_7.
Повний текст джерелаТези доповідей конференцій з теми "Ranking learning"
Chew, Min Min, Sourav S. Bhowmick, and Adam Jatowt. "Ranking Without Learning." In SIGIR '18: The 41st International ACM SIGIR conference on research and development in Information Retrieval. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3209978.3210100.
Повний текст джерелаOuyang, Hua, and Alex Gray. "Learning dissimilarities by ranking." In the 25th international conference. New York, New York, USA: ACM Press, 2008. http://dx.doi.org/10.1145/1390156.1390248.
Повний текст джерелаFALKOWSKI, BERND-JÜRGEN. "RANKING AND PERCEPTRON LEARNING." In Proceedings of the 9th International FLINS Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814324700_0077.
Повний текст джерелаClémençon, Stéphan, Marine Depecker, and Nicolas Vayatis. "Bagging Ranking Trees." In 2009 International Conference on Machine Learning and Applications (ICMLA). IEEE, 2009. http://dx.doi.org/10.1109/icmla.2009.14.
Повний текст джерелаCaragiannis, Ioannis, and Evi Micha. "Learning a Ground Truth Ranking Using Noisy Approval Votes." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/22.
Повний текст джерелаLyubchyk, Leonid, and Galyna Grinberg. "Online Ranking Learning on Clusters." In 2018 IEEE Second International Conference on Data Stream Mining & Processing (DSMP). IEEE, 2018. http://dx.doi.org/10.1109/dsmp.2018.8478520.
Повний текст джерелаChang, Xiao, and Qinghua Zheng. "Sparse Bayesian learning for ranking." In 2009 IEEE International Conference on Granular Computing (GRC). IEEE, 2009. http://dx.doi.org/10.1109/grc.2009.5255164.
Повний текст джерелаRoussinov, D., and Weiguo Fan. "Learning Ranking vs. Modeling Relevance." In Proceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS'06). IEEE, 2006. http://dx.doi.org/10.1109/hicss.2006.252.
Повний текст джерелаCosta, Miguel, Francisco Couto, and Mário Silva. "Learning temporal-dependent ranking models." In SIGIR '14: The 37th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY, USA: ACM, 2014. http://dx.doi.org/10.1145/2600428.2609619.
Повний текст джерелаMeng, Jiana, and Hongfei Lin. "Transfer learning based on graph ranking." In 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE, 2012. http://dx.doi.org/10.1109/fskd.2012.6233765.
Повний текст джерелаЗвіти організацій з теми "Ranking learning"
Berkhout, Emilie, Goldy Dharmawan, Amanda Beatty, Daniel Suryadarma, and Menno Pradhan. Who Benefits and Loses from Large Changes to Student Composition? Assessing Impacts of Lowering School Admissions Standards in Indonesia. Research on Improving Systems of Education (RISE), April 2022. http://dx.doi.org/10.35489/bsg-risewp_2022/094.
Повний текст джерелаBerkhout, Emilie, Goldy Dharmawan, Amanda Beatty, Daniel Suryadarma, and Menno Pradhan. Who Benefits and Loses from Large Changes to Student Composition? Assessing Impacts of Lowering School Admissions Standards in Indonesia. Research on Improving Systems of Education (RISE), April 2022. http://dx.doi.org/10.35489/bsg-risewp_2022/094.
Повний текст джерелаSandford, Robert, Vladimir Smakhtin, Colin Mayfield, Hamid Mehmood, John Pomeroy, Chris Debeer, Phani Adapa, et al. Canada in the Global Water World: Analysis of Capabilities. United Nations University Institute for Water, Environment and Health, November 2018. http://dx.doi.org/10.53328/vsgg2030.
Повний текст джерела