Добірка наукової літератури з теми "Rank-one tensors"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Rank-one tensors".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Rank-one tensors"
POPA, FLORIAN CATALIN, and OVIDIU TINTAREANU-MIRCEA. "IRREDUCIBLE KILLING TENSORS FROM THIRD RANK KILLING–YANO TENSORS." Modern Physics Letters A 22, no. 18 (June 14, 2007): 1309–17. http://dx.doi.org/10.1142/s0217732307023559.
Повний текст джерелаTyrtyshnikov, Eugene E. "Tensor decompositions and rank increment conjecture." Russian Journal of Numerical Analysis and Mathematical Modelling 35, no. 4 (August 26, 2020): 239–46. http://dx.doi.org/10.1515/rnam-2020-0020.
Повний текст джерелаZhang, Tong, and Gene H. Golub. "Rank-One Approximation to High Order Tensors." SIAM Journal on Matrix Analysis and Applications 23, no. 2 (January 2001): 534–50. http://dx.doi.org/10.1137/s0895479899352045.
Повний текст джерелаHu, Shenglong, Defeng Sun, and Kim-Chuan Toh. "Best Nonnegative Rank-One Approximations of Tensors." SIAM Journal on Matrix Analysis and Applications 40, no. 4 (January 2019): 1527–54. http://dx.doi.org/10.1137/18m1224064.
Повний текст джерелаBachmayr, Markus, Wolfgang Dahmen, Ronald DeVore, and Lars Grasedyck. "Approximation of High-Dimensional Rank One Tensors." Constructive Approximation 39, no. 2 (November 12, 2013): 385–95. http://dx.doi.org/10.1007/s00365-013-9219-x.
Повний текст джерелаFriedland, S., V. Mehrmann, R. Pajarola, and S. K. Suter. "On best rank one approximation of tensors." Numerical Linear Algebra with Applications 20, no. 6 (March 19, 2013): 942–55. http://dx.doi.org/10.1002/nla.1878.
Повний текст джерелаBreiding, Paul, and Nick Vannieuwenhoven. "On the average condition number of tensor rank decompositions." IMA Journal of Numerical Analysis 40, no. 3 (June 20, 2019): 1908–36. http://dx.doi.org/10.1093/imanum/drz026.
Повний текст джерелаGrasedyck, Lars, and Wolfgang Hackbusch. "An Introduction to Hierarchical (H-) Rank and TT-Rank of Tensors with Examples." Computational Methods in Applied Mathematics 11, no. 3 (2011): 291–304. http://dx.doi.org/10.2478/cmam-2011-0016.
Повний текст джерелаKrieg, David, and Daniel Rudolf. "Recovery algorithms for high-dimensional rank one tensors." Journal of Approximation Theory 237 (January 2019): 17–29. http://dx.doi.org/10.1016/j.jat.2018.08.002.
Повний текст джерелаMilošević, Ivanka. "Second-rank tensors for quasi-one-dimensional systems." Physics Letters A 204, no. 1 (August 1995): 63–66. http://dx.doi.org/10.1016/0375-9601(95)00412-v.
Повний текст джерелаДисертації з теми "Rank-one tensors"
Wang, Roy Chih Chung. "Adaptive Kernel Functions and Optimization Over a Space of Rank-One Decompositions." Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36975.
Повний текст джерелаMorgan, William Russell IV. "Investigations into Parallelizing Rank-One Tensor Decompositions." Thesis, University of Maryland, Baltimore County, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10683240.
Повний текст джерелаTensor Decompositions are a solved problem in terms of evaluating for a result. Performance, however, is not. There are several projects to parallelize tensor decompositions, using a variety of different methods. This work focuses on investigating other possible strategies for parallelization of rank-one tensor decompositions, measuring performance across a variety of tensor sizes, and reporting the best avenues to continue investigation
Sokal, Bruno. "Semi-blind receivers for multi-relaying mimo systems using rank-one tensor factorizations." reponame:Repositório Institucional da UFC, 2017. http://www.repositorio.ufc.br/handle/riufc/25988.
Повний текст джерелаSubmitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-15T20:38:29Z No. of bitstreams: 1 2017_dis_bsokal.pdf: 1689224 bytes, checksum: f0e2e9424de721f23bf0629ba55330c1 (MD5)
Rejected by Marlene Sousa (mmarlene@ufc.br), reason: Prezado Bruno: Existe uma orientação para que normalizemos as dissertações e teses da UFC, em suas paginas pré-textuais e lista de referencias, pelas regras da ABNT. Por esse motivo, sugerimos consultar o modelo de template, para ajudá-lo nesta tarefa, disponível em: http://www.biblioteca.ufc.br/educacao-de-usuarios/templates/ Vamos agora as correções sempre de acordo com o template: 1. As informações da capa, folha de rosto (que segue a capa) e ficha catalográfica devem ser em língua portuguesa, mesmo que sua dissertação esteja em língua inglesa. A partir da folha de aprovação, devem ser em língua inglesa. 2. Exemplificando a capa, as informações que devem aparecer são pela ordem (Toadas em Maiúsculo e negrito): Nome da universidade, do centro, do departamento e nome do programa; Nome do aluno; Título; Cidade e data. 2. A folha de rosto também tem informações que não são necessárias. Consulte o template para ver uso de maiúsculas, negrito e ordem de apresentação das informações. 3. A ficha catalográfica deve vir antes da folha de aprovação e não depois desta. 4. A folha de aprovação não deve ter as informações do quadro no alto da folha, nem deve ser em negrito. Veja modelo no template. 5. De acordo com a ABNT mesmo escrita em outro idioma, primeiro coloca-se o resumo na língua portuguesa e depois o Abstract. As palavras RESUMO e ABSTRCT vem ser em caixa alta, negrito e no centro da folha. Não devem iniciar com paragrafo. Essa folhas são contadas mas não numeradas. Só a partir da introdução é que são numeradas. 6. Veja no template a ordem das folhas a partir dos agradecimentos e como devem ser apresentadas. 7. Na lista de figuras mantenha o mesmo espaço entre as linhas. 8. O sumário não deve conter as informações anteriores a INTRODUÇÃO, deve ser em negrito e sem recuo de paragrafo. Observe o uso de Caixa alta, itálico nas seções. Após a conclusão devem vir os APÊNDICES e as REFERENCIAS. 9. Na lista de referencias, pela ABNT, deve-se iniciar pelo sobrenome do autor, seguido do prenome. Elaboramos ferramentas para ajuda-lo a gerar as referencias e gerenciadores bibliográficos disponivel em: http://www.biblioteca.ufc.br/ferramentas-de-pesquisa/ Em artigos de revistas usa-se a seguinte nomenclatura para volume, numero e páginas: v. , n. , p. Não se destacam subtítulos e nos artigos de revistas se destaca-se apenas o ´nome da revista. Att. Marlene Rocha 3366-9620 mmarlene@ufc.br on 2017-09-18T11:38:11Z (GMT)
Submitted by Renato Vasconcelos (ppgeti@ufc.br) on 2017-09-20T14:04:25Z No. of bitstreams: 1 2017_dis_bsokal.pdf: 1481998 bytes, checksum: bdf4f504f50622f6b0e2084361272481 (MD5)
Approved for entry into archive by Marlene Sousa (mmarlene@ufc.br) on 2017-09-21T17:44:15Z (GMT) No. of bitstreams: 1 2017_dis_bsokal.pdf: 1481998 bytes, checksum: bdf4f504f50622f6b0e2084361272481 (MD5)
Made available in DSpace on 2017-09-21T17:44:15Z (GMT). No. of bitstreams: 1 2017_dis_bsokal.pdf: 1481998 bytes, checksum: bdf4f504f50622f6b0e2084361272481 (MD5) Previous issue date: 2017-07-27
Cooperative communications have shown to be an alternative to combat the impairments of signal propagation in wireless communications, such as path loss and shadowing, creating a virtual array of antennas for the source. In this work, we start with a two-hop MIMO system using a a single relay. By adding a space-time filtering step at the receiver, we propose a rank-one tensor factorization model for the resulting signal. Exploiting this model, two semi-blind receivers for joint symbol and channel estimation are derived: i) an iterative receiver based on the trilinear alternating least squares (Tri-ALS) algorithm and ii) a closed-form receiver based on the truncated higher order SVD (T-HOSVD). For this system, we also propose a space-time coding tensor having a PARAFAC decomposition structure, which gives more flexibility to system design, while allowing an orthogonal coding. In the second part of this work, we present an extension of the rank-one factorization approach to a multi-relaying scenario and a closed-form semi-blind receiver based on coupled SVDs (C-SVD) is derived. The C-SVD receiver efficiently combines all the available cooperative links to enhance channel and symbol estimation performance, while enjoying a parallel implementation.
Comunicações cooperativas têm mostrado ser uma alternativa para combater os efeitos de propagação do sinal em comunicações sem-fio, como, por exemplo, a perda por percurso e sombreamento, criando um array virtual de antenas para a fonte transmissora. Neste trabalho, toma-se como ponto de partida um modelo de sistema MIMO de dois saltos com um único relay. Adicionando um estágio de filtragem no receptor, é proposta uma fatoração de rank-um para o sinal resultante. A partir deste modelo, dois receptores semi-cegos para estimação conjunta de símbolo e canal são propostos: i) um receptor iterativo baseado no algoritmo trilinear de mínimos quadrados alternados (Tri-ALS) e ii) um receptor de solução fechada baseado na SVD de ordem superior truncada (T-HOSVD). Para este sistema, é também proposto um tensor de codificação espacial-temporal com uma estrutura PARAFAC, o que permite maior flexibilidade de design do sistema, além de uma codificação ortogonal. Na segunda parte deste trabalho, é apresentada uma extensão da fatoração de rank-um para o cenário multi-relay e um receptor semi-cego de solução fechada baseado em SVD's acopladas (C-SVD) é desenvolvido. O receptor C-SVD combina de modo eficiente todos os links cooperativos disponíveis, melhorando o desempenho da estimação de símbolos e de canal, além de oferecer uma implementação paralelizável.
Ossman, Hala. "Etude mathématique de la convergence de la PGD variationnelle dans certains espaces fonctionnels." Thesis, La Rochelle, 2017. http://www.theses.fr/2017LAROS006/document.
Повний текст джерелаIn this thesis, we are interested in the PGD (Proper Generalized Decomposition), one of the reduced order models which consists in searching, a priori, the solution of a partial differential equation in a separated form. This work is composed of five chapters in which we aim to extend the PGD to the fractional spaces and the spaces of functions of bounded variation and to give theoretical interpretations of this method for a class of elliptic and parabolic problems. In the first chapter, we give a brief review of the litterature and then we introduce the mathematical notions and tools used in this work. In the second chapter, the convergence of rank-one alternating minimisation AM algorithms for a class of variational linear elliptic equations is studied. We show that rank-one AM sequences are in general bounded in the ambient Hilbert space and are compact if a uniform non-orthogonality condition between iterates and the reaction term is fulfilled. In particular, if a rank-one (AM) sequence is weakly convergent then it converges strongly and the common limit is a solution of the alternating minimization problem. In the third chapter, we introduce the notion of fractional derivatives in the sense of Riemann-Liouville and then we consider a variational problem which is a generalization of fractional order of the Poisson equation. Basing on the quadratic nature and the decomposability of the associated energy, we prove that the progressive PGD sequence converges strongly towards the weak solution of this problem. In the fourth chapter, we benefit from tensorial structure of the spaces BV with respect to the weak-star topology to define the PGD sequences in this type of spaces. The convergence of this sequence remains an open question. The last chapter is devoted to the d-dimensional heat equation, we discretize in time and then at each time step one seeks the solution of the elliptic equation using the PGD. Then, we show that the piecewise linear function in time obtained from the solutions constructed using the PGD converges to the weak solution of the equation
Sodomaco, Luca. "The Distance Function from the Variety of partially symmetric rank-one Tensors." Doctoral thesis, 2020. http://hdl.handle.net/2158/1220535.
Повний текст джерелаЧастини книг з теми "Rank-one tensors"
Liu, Chang, Kun He, Ji-liu Zhou, and Chao-Bang Gao. "Discriminant Orthogonal Rank-One Tensor Projections for Face Recognition." In Intelligent Information and Database Systems, 203–11. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20042-7_21.
Повний текст джерелаKobayashi, Toshiyuki, and Birgit Speh. "Minor Summation Formulæ Related to Exterior Tensor $$\begin{array}{lll}\bigwedge^i\;(\mathbb{C}^n)\end{array}$$." In Symmetry Breaking for Representations of Rank One Orthogonal Groups II, 111–18. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-2901-2_7.
Повний текст джерелаKaimakamis, George, and Konstantina Panagiotidou. "The *-Ricci Tensor of Real Hypersurfaces in Symmetric Spaces of Rank One or Two." In Springer Proceedings in Mathematics & Statistics, 199–210. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-55215-4_18.
Повний текст джерелаOertel, Gerhard. "Effects of Stress." In Stress and Deformation. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195095036.003.0011.
Повний текст джерелаTing, T. T. C. "Transformation of the Elasticity Matrices and Dual Coordinate Systems." In Anisotropic Elasticity. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195074475.003.0010.
Повний текст джерелаTing, T. T. C. "The Structures and Identities of the Elasticity Matrices." In Anisotropic Elasticity. Oxford University Press, 1996. http://dx.doi.org/10.1093/oso/9780195074475.003.0009.
Повний текст джерелаDeng, Zhaoxian, and Zhiqiang Zeng. "Multi-View Subspace Clustering by Combining ℓ2,p-Norm and Multi-Rank Minimization of Tensors." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2022. http://dx.doi.org/10.3233/faia220020.
Повний текст джерелаGreen, Mark, Phillip Griffiths, and Matt Kerr. "Classification of Mumford-Tate Subdomains." In Mumford-Tate Groups and Domains. Princeton University Press, 2012. http://dx.doi.org/10.23943/princeton/9780691154244.003.0008.
Повний текст джерелаNewnham, Robert E. "Thermodynamic relationships." In Properties of Materials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198520757.003.0008.
Повний текст джерелаNewnham, Robert E. "Diffusion and ionic conductivity." In Properties of Materials. Oxford University Press, 2004. http://dx.doi.org/10.1093/oso/9780198520757.003.0021.
Повний текст джерелаТези доповідей конференцій з теми "Rank-one tensors"
Najafi, Mehrnaz, Lifang He, and Philip S. Yu. "Outlier-Robust Multi-Aspect Streaming Tensor Completion and Factorization." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/442.
Повний текст джерелаVora, Jian, Karthik S. Gurumoorthy, and Ajit Rajwade. "Recovery of Joint Probability Distribution from One-Way Marginals: Low Rank Tensors and Random Projections." In 2021 IEEE Statistical Signal Processing Workshop (SSP). IEEE, 2021. http://dx.doi.org/10.1109/ssp49050.2021.9513818.
Повний текст джерелаYang, Chaoqi, Cheng Qian, and Jimeng Sun. "GOCPT: Generalized Online Canonical Polyadic Tensor Factorization and Completion." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/326.
Повний текст джерелаPhan, Anh-Huy, Petr Tichavsky, and Andrzej Cichocki. "Rank-one tensor injection: A novel method for canonical polyadic tensor decomposition." In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2016. http://dx.doi.org/10.1109/icassp.2016.7472137.
Повний текст джерелаHou, Jingyao, Feng Zhang, Yao Wang, and Jianjun Wang. "Low-Tubal-Rank Tensor Recovery From One-Bit Measurements." In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020. http://dx.doi.org/10.1109/icassp40776.2020.9054163.
Повний текст джерелаVandecappelle, Michiel, Nico Vervliet, and Lieven De Lathauwer. "Rank-one Tensor Approximation with Beta-divergence Cost Functions." In 2019 27th European Signal Processing Conference (EUSIPCO). IEEE, 2019. http://dx.doi.org/10.23919/eusipco.2019.8902937.
Повний текст джерелаGhassemi, Mohsen, Zahra Shakeri, Anand D. Sarwate, and Waheed U. Bajwa. "STARK: Structured dictionary learning through rank-one tensor recovery." In 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2017. http://dx.doi.org/10.1109/camsap.2017.8313164.
Повний текст джерелаHua, Gang, Paul A. Viola, and Steven M. Drucker. "Face Recognition using Discriminatively Trained Orthogonal Rank One Tensor Projections." In 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007. http://dx.doi.org/10.1109/cvpr.2007.383107.
Повний текст джерелаHongcheng Wang and N. Ahuja. "Compact representation of multidimensional data using tensor rank-one decomposition." In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. IEEE, 2004. http://dx.doi.org/10.1109/icpr.2004.1334001.
Повний текст джерелаLi, Ping, Jiashi Feng, Xiaojie Jin, Luming Zhang, Xianghua Xu, and Shuicheng Yan. "Online Robust Low-Rank Tensor Learning." In Twenty-Sixth International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2017. http://dx.doi.org/10.24963/ijcai.2017/303.
Повний текст джерела