Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Raman coherence.

Статті в журналах з теми "Raman coherence"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Raman coherence".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

LEE, G. J., K. HARA, M. KATSURAGAWA, and K. HAKUTA. "NONLINEAR FREQUENCY CONVERSION BY RAMAN COHERENCE PREPARED IN SOLID HYDROGEN FILM." Journal of Nonlinear Optical Physics & Materials 13, no. 03n04 (December 2004): 433–37. http://dx.doi.org/10.1142/s0218863504002092.

Повний текст джерела
Анотація:
We investigated the Raman coherence characteristics in the solid hydrogen film deposited on a sapphire substrate. By using Raman coherence prepared with two single-frequency pulsed lasers, we generated the multiorder coherent Raman sidebands in solid hydrogen film. High-order Raman sidebands were obtained under strong pumping conditions (≥230 MW/cm2). The generated anti-Stokes(AS)–Raman sidebands extended from ultraviolet (292 nm for AS5 band) to visible (565 nm for AS1 band) region. The multiorder Raman sideband generation is thought to be due to the parametric coupling of pump and coupling lasers. The frequency conversion efficiency shows the maximum (14%) at the pumping intensity of 360 MW/cm2. From the experiment that makes the multimode probe beam beat with the prepared Raman coherence, we found that the prepared Raman coherence replicates the probe beam to its Raman sidebands.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhao, Yang, Sheng Zhang, Boyang Zhou, Rongwei Fan, Deying Chen, Zhonghua Zhang, and Yuanqin Xia. "Molecular vibrational dynamics in PMMA studied by femtosecond CARS." Modern Physics Letters B 28, no. 28 (November 10, 2014): 1450222. http://dx.doi.org/10.1142/s0217984914502224.

Повний текст джерела
Анотація:
The ultrafast molecular vibrational dynamics in PMMA sheets is studied by femtosecond time-resolved coherent anti-Stokes Raman spectroscopy at room temperature. The C – H stretch modes at 2870 cm-1 and 3008 cm-1 in PMMA sheets are excited and detected. The coherence relaxation times and beat wavenumbers of the Raman modes are obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kohles, N., P. Aechtner, and A. Laubereau. "The “coherence peak” in time-resolved coherent Raman scattering." Optics Communications 65, no. 5 (March 1988): 391–96. http://dx.doi.org/10.1016/0030-4018(88)90110-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Fazio, Barbara, and Alessia Irrera. "Coherence of Raman light arises from disorder." Bullettin of the Gioenia Academy of Natural Sciences of Catania 52, no. 382 (December 24, 2019): MISC1—MISC3. http://dx.doi.org/10.35352/gioenia.v52i382.75.

Повний текст джерела
Анотація:
Light propagation in random materials is a topic of great interest for the scientific community, not only for the possible relevant applications in the fields of photonics and renewable energies but even more since it allows to unveil new fascinating phenomena related to wave physics. Among these physical events, the most robust and always surviving any ensemble average is the coherent backscattering of light (CBS). It is a very subtle interference effect in disordered scattering media (such as semiconductor powders or micro-particle suspensions like milk or fog), in which wave coherence is preserved even after a very large number of random scattering events, eventually manifesting as a maximum of interference in the exact backscattering direction. CBS is related to the well-defined wave character and to the preservation of the optical information, for this reason it has been so far experimentally observed and theoretically studied only for elastic scattering, while the occurrence of inelastic scattering is known to reduce the degree of coherence in the diffusion process, affecting the visibility of the effect. Fazio et al. (2017) have demonstrated that this experimental evidence surprisingly survives also for the inelastic light scattering, such as the spontaneous Raman process, as long as the optical information of the propagating wave is retained. In this kind of inelastic scattering events, light loses a small part of its energy by slightly changing wavelength. Its phase coherence, however, is preserved for a very short time, thus making interference between Raman scattered waves still possible. The observed maximum of interference in the exact backscattering direction is therefore a signature of the coherent nature of individual Raman scattering processes. To date, indications on the coherence properties of Raman scattering have been reported only by looking at the nanoscopic scale, through complex near-field experiments making use of very sharp tips or through ultra-fast time resolved techniques. This time, however, we did not rely on complex experiments or advanced techniques. Conversely, the combination of an accurate experimental procedure and the unique structural properties of a silicon-based material were the only simple ingredients for the observation of a new unexpected physical phenomenon. In particular, a dense forest of ultrathin silicon wires arranged in a disordered fashion, where light waves bounce back and forth countless times before coming out, was the medium that allowed us to reveal this new effect, which opens the way for new and important discoveries.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Pestov, Dmitry, Gombojav O. Ariunbold, Xi Wang, Robert K. Murawski, Vladimir A. Sautenkov, Alexei V. Sokolov, and Marlan O. Scully. "Coherent versus incoherent Raman scattering: molecular coherence excitation and measurement." Optics Letters 32, no. 12 (June 6, 2007): 1725. http://dx.doi.org/10.1364/ol.32.001725.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Walker, D. R., D. D. Yavuz, M. Y. Shverdin, G. Y. Yin, A. V. Sokolov, and S. E. Harris. "Raman self-focusing at maximum coherence." Optics Letters 27, no. 23 (December 1, 2002): 2094. http://dx.doi.org/10.1364/ol.27.002094.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Che, Junling, Wenqi Xu, Hui Wang, Yuhang Gao, Li Wang, Huayan Lan, Zhaoying Wei, and Ming-Liang Hu. "Controlling Raman gain with atomic coherence." Infrared Physics & Technology 127 (December 2022): 104449. http://dx.doi.org/10.1016/j.infrared.2022.104449.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Palinginis, Phedon, and Hailin Wang. "Coherent Raman scattering from electron spin coherence in GaAs quantum wells." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 1919–20. http://dx.doi.org/10.1016/j.jmmm.2003.12.1186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kou, Jun, Ren-Gang Wan, Zhi-Hui Kang, Xiao-Jun Zhang, Hai-Hua Wang, Yun Jiang, and Jin-Yue Gao. "Measurement of coherence dynamics based on coherent anti-Stokes Raman scattering." Optics Communications 282, no. 23 (December 2009): 4573–76. http://dx.doi.org/10.1016/j.optcom.2009.08.049.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gazizov, Almaz R., Myakzyum Kh Salakhov, and Sergey S. Kharintsev. "Tip-enhanced Stokes and anti-Stokes Raman scattering in defect-enriched carbon films." Journal of Physics: Conference Series 2015, no. 1 (November 1, 2021): 012044. http://dx.doi.org/10.1088/1742-6596/2015/1/012044.

Повний текст джерела
Анотація:
Abstract Anti-Stokes Raman scattering is one of the mechanisms that lie behind an optical refrigeration due to release of photons with greater energy than of incoming photons. To achieve a cooling regime the enhancement of anti-Stokes scattering is necessary, since spontaneous Stokes scattering dominates over anti-Stokes scattering under normal conditions. Here, we investigate the opportunity of enhancement of spontaneous anti-Stokes Raman scattering in defect-enriched carbon film by means of localized plasmon resonances. In our simulations, incoherence of Raman scattering results in excess of anti-Stokes intensity over Stokes one. However, when the field is localized within the phonon coherence volume (coherent regime), the anti-Stokes intensity is lower compared to Stokes one. The provided analysis shows that plasmon-enhanced anti-Stokes Raman scattering can be achieved in highly-defective carbon films. The results are beneficial for Raman-based temperature measurements on the nanoscale.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Ooi, C. H. Raymond, S. W. Harun, and H. Ahmad. "Quantum coherence effects in a Raman amplifier." Journal of Modern Optics 58, no. 1 (January 10, 2011): 11–13. http://dx.doi.org/10.1080/09500340.2010.521594.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Lobanov, S. A., and V. G. Bespalov. "Spatial coherence of transient stimulated Raman scattering." Optics Communications 239, no. 1-3 (September 2004): 7–13. http://dx.doi.org/10.1016/j.optcom.2004.05.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Yeong, K. C., Joseph W. Haus, and A. V. Chizhov. "Quantum-field coherence in a Raman amplifier." Physical Review A 53, no. 5 (May 1, 1996): 3606–13. http://dx.doi.org/10.1103/physreva.53.3606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Robles, Francisco E., Kevin C. Zhou, Martin C. Fischer, and Warren S. Warren. "Stimulated Raman scattering spectroscopic optical coherence tomography." Optica 4, no. 2 (February 14, 2017): 243. http://dx.doi.org/10.1364/optica.4.000243.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Meiselman, S., O. Cohen, M. F. DeCamp, and V. O. Lorenz. "Measuring vibrational coherence lifetimes in liquid methanol using transient coherent Raman scattering." Journal of Physics: Conference Series 497 (April 9, 2014): 012004. http://dx.doi.org/10.1088/1742-6596/497/1/012004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Voronine, Dmitri V., Zhenrong Zhang, Alexei V. Sokolov, and Marlan O. Scully. "Surface-enhanced FAST CARS: en route to quantum nano-biophotonics." Nanophotonics 7, no. 3 (February 23, 2018): 523–48. http://dx.doi.org/10.1515/nanoph-2017-0066.

Повний текст джерела
Анотація:
AbstractQuantum nano-biophotonics as the science of nanoscale light-matter interactions in biological systems requires developing new spectroscopic tools for addressing the challenges of detecting and disentangling weak congested optical signals. Nanoscale bio-imaging addresses the challenge of the detection of weak resonant signals from a few target biomolecules in the presence of the nonresonant background from many undesired molecules. In addition, the imaging must be performed rapidly to capture the dynamics of biological processes in living cells and tissues. Label-free non-invasive spectroscopic techniques are required to minimize the external perturbation effects on biological systems. Various approaches were developed to satisfy these requirements by increasing the selectivity and sensitivity of biomolecular detection. Coherent anti-Stokes Raman scattering (CARS) and surface-enhanced Raman scattering (SERS) spectroscopies provide many orders of magnitude enhancement of chemically specific Raman signals. Femtosecond adaptive spectroscopic techniques for CARS (FAST CARS) were developed to suppress the nonresonant background and optimize the efficiency of the coherent optical signals. This perspective focuses on the application of these techniques to nanoscale bio-imaging, discussing their advantages and limitations as well as the promising opportunities and challenges of the combined coherence and surface enhancements in surface-enhanced coherent anti-Stokes Raman scattering (SECARS) and tip-enhanced coherent anti-Stokes Raman scattering (TECARS) and the corresponding surface-enhanced FAST CARS techniques. Laser pulse shaping of near-field excitations plays an important role in achieving these goals and increasing the signal enhancement.
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Kou, Xiaolong, Qian Zhou, Dong Wang, Jinghe Yuan, Xiaohong Fang, and Lijun Wan. "High-resolution imaging of graphene by tip-enhanced coherent anti-Stokes Raman scattering." Journal of Innovative Optical Health Sciences 12, no. 01 (January 2019): 1841003. http://dx.doi.org/10.1142/s1793545818410031.

Повний текст джерела
Анотація:
Coherent anti-Stokes Raman scattering (CARS) is able to enhance molecular signals by vibrational coherence compared to weak Raman signal. The surface or tip enhancement are successful technologies, which make it possible for Raman to detect single molecule with nanometer resolution. However, due to technical difficulties, tip-enhanced CARS (TECARS) is not as successful as expected. For single molecular detection, high sensitivity and resolution are two main challenges. Here, we reported the first single atom layer TECARS imaging on Graphene with the highest resolution about 20[Formula: see text]nm, which has ever been reported. The highest EF[Formula: see text] is about 104, the similar order of magnitude with SECARS (EF of tip is usually smaller than that of substrates). Such resolution and sensitivity is promising for medical, biology and chemical applications in the future.
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Thai, Thanh Doan, Quy Quang Ho, and Thang Manh Nguyen. "Efficient Generation of Coherent Stokes Field in Hydrogen Gas-Filled Hollow Core Photonic Crystal Fibres." Communications in Physics 30, no. 2 (May 26, 2020): 143. http://dx.doi.org/10.15625/0868-3166/30/2/14460.

Повний текст джерела
Анотація:
In this paper, we study of the coherent Stokes generation in a transient Raman regime by Hydrogen gas-filled hollow-core photonic crystal fibres (HC-PCFs) configuration. The temporal and spatial evolution of the pump and Stokes field envelopes as well as the coherence and population inversion is numerically observed. The influence of the pump pulse width and gas pressure on the energy exchange along fiber and Stokes generation efficiency is investigated.
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Lucht, Robert P., Sukesh Roy, Terrence R. Meyer, and James R. Gord. "Femtosecond coherent anti-Stokes Raman scattering measurement of gas temperatures from frequency-spread dephasing of the Raman coherence." Applied Physics Letters 89, no. 25 (December 18, 2006): 251112. http://dx.doi.org/10.1063/1.2410237.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Zhang, Zhihao, Fangbo Zhang, Bo Xu, Hongqiang Xie, Botao Fu, Xu Lu, Ning Zhang, et al. "High-Sensitivity Gas Detection with Air-Lasing-Assisted Coherent Raman Spectroscopy." Ultrafast Science 2022 (April 8, 2022): 1–8. http://dx.doi.org/10.34133/2022/9761458.

Повний текст джерела
Анотація:
Remote or standoff detection of greenhouse gases, air pollutants, and biological agents with innovative ultrafast laser technology attracts growing interests in recent years. Hybrid femtosecond/picosecond coherent Raman spectroscopy is considered as one of the most versatile techniques due to its great advantages in terms of detection sensitivity and chemical specificity. However, the simultaneous requirement for the femtosecond pump and the picosecond probe increases the complexity of optical system. Herein, we demonstrate that air lasing naturally created inside a filament can serve as an ideal light source to probe Raman coherence excited by the femtosecond pump, producing coherent Raman signal with molecular vibrational signatures. The combination of pulse self-compression effect and air lasing action during filamentation improves Raman excitation efficiency and greatly simplifies the experimental setup. The air-lasing-assisted Raman spectroscopy was applied to quantitatively detect greenhouse gases mixed in air, and it was found that the minimum detectable concentrations of CO2 and SF6 can reach 0.1% and 0.03%, respectively. The ingenious designs, especially the optimization of pump-seed delay and the choice of perpendicular polarization, ensure a high detection sensitivity and signal stability. Moreover, it is demonstrated that this method can be used for simultaneously measuring CO2 and SF6 gases and distinguishing 12CO2 and 13CO2. The developed scheme provides a new route for high-sensitivity standoff detection and combustion diagnosis.
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Ghosh, Arnab, David Gelbwaser-Klimovsky, Wolfgang Niedenzu, Alexander I. Lvovsky, Igor Mazets, Marlan O. Scully, and Gershon Kurizki. "Two-level masers as heat-to-work converters." Proceedings of the National Academy of Sciences 115, no. 40 (September 18, 2018): 9941–44. http://dx.doi.org/10.1073/pnas.1805354115.

Повний текст джерела
Анотація:
Heat engines, which cyclically transform heat into work, are ubiquitous in technology. Lasers and masers may be viewed as heat engines that rely on population inversion or coherence in the active medium. Here we put forward an unconventional paradigm of a remarkably simple and robust electromagnetic heat-powered engine that bears basic differences to any known maser or laser: The proposed device makes use of only one Raman transition and does not rely on population inversion or coherence in its two-level working medium. Nor does it require any coherent driving. The engine can be powered by the ambient temperature difference between the sky and the ground surface. Its autonomous character and “free” power source make this engine conceptually and technologically enticing.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Rahmatullah and Sajid Qamar. "Two-dimensional atom localization via Raman-driven coherence." Physics Letters A 378, no. 9 (February 2014): 684–90. http://dx.doi.org/10.1016/j.physleta.2013.12.025.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Garcia, Wilson, Jonathan Palero, and Caesar Saloma. "Temporal coherence control of Nd:YAG pumped Raman shifter." Optics Communications 197, no. 1-3 (September 2001): 109–14. http://dx.doi.org/10.1016/s0030-4018(01)01424-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Chen, L. Q., Guo-Wan Zhang, Chun-Hua Yuan, Jietai Jing, Z. Y. Ou, and Weiping Zhang. "Enhanced Raman scattering by spatially distributed atomic coherence." Applied Physics Letters 95, no. 4 (July 27, 2009): 041115. http://dx.doi.org/10.1063/1.3193550.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Separovic, Frances, Nikolai R. Skrynnikov, and Bryan C. Sanctuary. "Selective On-Resonance N.M.R. Irradiation of a Dipolar Double." Australian Journal of Chemistry 53, no. 4 (2000): 355. http://dx.doi.org/10.1071/ch00044.

Повний текст джерела
Анотація:
Raman magnetic resonance where double-quantum transitions are observed without the need for multidimensional n.m.r. spectroscopy has been investigated further. Theoretical analysis of the on-resonance case where weak continuous-wave irradiation was applied at the frequency of a single-quantum transition was performed and guidelines for a consistent perturbation treatment were devised. Theoretical results agree well with experimental data obtained for a system of two dipolar coupled nuclei of spin oriented by a liquid crystal. The same approach is applicable to near-resonance experiments which are shown to be the optimal experimental scheme for Raman n.m.r. By using weak selective irradiation, a symmetric excitation–detection scheme can be realized for multiple-quantum n.m.r. experiments. Near- or on-resonance selective irradiation provides an efficient transfer of multiquantum coherence into observable coherences and could be used to study multiquantum relaxation processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Ivanda, Mile, M. Buljan, U. V. Desnica, K. Furić, D. Ristić, G. C. Righini, and Maurizio Ferrari. "Low Frequency Coherent Raman Scattering of Spherical Acoustical Vibrations of Three-Dimensional Self-Organized Germanium Nanocrystals." Advances in Science and Technology 55 (September 2008): 127–31. http://dx.doi.org/10.4028/www.scientific.net/ast.55.127.

Повний текст джерела
Анотація:
The Ge+SiO2 and SiO2 alternating multilayers are prepared by the magnetron sputtering of germanium and silica targets. By controlling the substrate temperature and by subsequent thermal annealing, the self-organized germanium quantum dots in 3D rombohedral (R 3 m) superlattice are produced. The polarized low-frequency Raman scattering measurements shows the coherent effects on the symmetric and quadrupolar spheroidal vibrations of Ge nanocrystals. It has been shown that the coherence effects are dependent on degree of Ge-ordering in the superlattice.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Meng, Xiangfu, Chen Wang, Honghai An, Guo Jia, Huazhen Zhou, and Sizu Fu. "Experimental observation of backscattered light based on different coherence between incident laser beams." High Power Laser Science and Engineering 1, no. 2 (July 24, 2013): 94–97. http://dx.doi.org/10.1017/hpl.2013.11.

Повний текст джерела
Анотація:
AbstractRecent experimental results on NIF revealed a much higher stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) backscatter than expected; one possible reason was due to the coherence between incident laser beams. In our research, two laser beams (${\sim }1~\mathrm{ns} $, ${\sim }250~\mathrm{J} , 527~\mathrm{nm} $ in each one) with different coherent degrees between them from the SG-II facility were employed to irradiate an Au plate target; the backscatter of SBS and SRS in the range of the given solid angle had been measured. The results showed that it could change dramatically corresponding to the difference of the coherent degree between the two laser beams, and there was usually more intense backscatter the higher the coherent degree between the incident beams.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Katsuragawa, M., M. Suzuki, R. S. D. Sihombing, J. Z. Li, and K. Hakuta. "Nonlinear optics in solid hydrogen." Laser and Particle Beams 16, no. 4 (December 1998): 641–48. http://dx.doi.org/10.1017/s0263034600011459.

Повний текст джерела
Анотація:
We show through experiments of stimulated Raman scattering how solid hydrogen (parahydrogen) can open new perspectives on nonlinear optics. Two phenomena are described: One is the self-induced phase matching in parametric anti-Stokes stimulated Raman scattering (SRS) in which the phase matching is self-organized automatically without the stringent restriction of refractive-index dispersion of the medium, and the other is the extremely slow coherence decay behavior for the Raman transition that may result in the Raman width of 80 kHz full width at half maximum (FWHM).
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Enaki, Nicolae A. "Cooperative properties of multiple quantum scattering: I quantum nutation." Physica Scripta 99, no. 4 (March 1, 2024): 045102. http://dx.doi.org/10.1088/1402-4896/ad29cb.

Повний текст джерела
Анотація:
Abstract The cooperative models of the bimodal field in the multiple quantum scattering nutations are discussed and proposed for possible detections in open cavities. We proposed two types of cooperation between the converted photon processes in these multiple steps of scattering nutation in the cavity. One of them takes into consideration the cooperative process between the photons of each step of the multiple steps of Raman conversion. The second cooperative process takes place between the photons belonging to different steps of multiple scattering conversions. The proposed novel bimodal entangled sources take into consideration both the coherence and collective phenomena between the photons belonging to the system of the bimodal field obtained in multiple scattering emissions. The application of higher-order multiple Raman bimodal coherent field in quantum information is proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Meddour, H., Sh Askar, S. Dehraj, F. Al-dolaimy, B. S. Abdullaeva, A. Alsaalamy, M. N. Fenjan, A. Alawadi, S. H. Kareem, and D. Thabit. "Efficient two-dimensional Fraunhofer diffraction pattern via electron spin coherence." Laser Physics 33, no. 11 (October 6, 2023): 116003. http://dx.doi.org/10.1088/1555-6611/acfd9a.

Повний текст джерела
Анотація:
Abstract In this letter, we have discussed the two-dimensional diffraction pattern via electron spin coherence in a GaAs quantum dot. Impulsive stimulated Raman excitation utilizing coherent optical fields is employed for the purpose of regulating the electron spin coherence within a charged ensemble of GaAs quantum dots, by means of an intermediate charged exciton (trion) state. We show that for the coupling two-dimensional standing wave (SW) field in the x and y directions, the two-dimensional Fraunhofer pattern can be formed for a weak probe light. By using the experimental parameters and controlling the Rabi frequency of the SW field and relative phase between applied lights, the symmetry and asymmetry diffraction pattern are obtained for the weak probe light due to the four-wave mixing mechanism. Our proposed model may have potential applications in high-capacity optical communications and quantum information technologies.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Kamali, Tschackad, Boris Považay, Sunil Kumar, Yaron Silberberg, Boris Hermann, René Werkmeister, Wolfgang Drexler, and Angelika Unterhuber. "Hybrid single-source online Fourier transform coherent anti-Stokes Raman scattering/optical coherence tomography." Optics Letters 39, no. 19 (September 29, 2014): 5709. http://dx.doi.org/10.1364/ol.39.005709.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Kulatilaka, Waruna D., Paul S. Hsu, Hans U. Stauffer, James R. Gord, and Sukesh Roy. "Direct measurement of rotationally resolved H2 Q-branch Raman coherence lifetimes using time-resolved picosecond coherent anti-Stokes Raman scattering." Applied Physics Letters 97, no. 8 (August 23, 2010): 081112. http://dx.doi.org/10.1063/1.3483871.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Novikov, S., T. Sweeney, J. E. Robinson, S. P. Premaratne, B. Suri, F. C. Wellstood, and B. S. Palmer. "Raman coherence in a circuit quantum electrodynamics lambda system." Nature Physics 12, no. 1 (November 9, 2015): 75–79. http://dx.doi.org/10.1038/nphys3537.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Qamar, Shahid, S. Y. Zhu, and M. S. Zubairy. "Two-photon phase-sensitive amplifier via Raman-driven coherence." Optics Communications 147, no. 4-6 (February 1998): 274–78. http://dx.doi.org/10.1016/s0030-4018(97)87581-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Gel'mukhanov, Faris, and Hans A˚gren. "Dynamics and coherence of resonant X-ray Raman scattering." Journal of Electron Spectroscopy and Related Phenomena 88-91 (March 1998): 29–33. http://dx.doi.org/10.1016/s0368-2048(97)00263-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Lerminiaux, Ch, and M. Dumont. "Saturation-spectroscopy transients from Raman coherence between metastable levels." Journal of the Optical Society of America B 3, no. 4 (April 1, 1986): 477. http://dx.doi.org/10.1364/josab.3.000477.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Penman, C. "Development of coherence in the Raman free-electron laser." Optics Communications 119, no. 1-2 (August 1995): 183–90. http://dx.doi.org/10.1016/0030-4018(95)00355-c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Ma, Dongxia, and Yuri V. Rostovtsev. "Efficient excitation of Raman coherence by a gradient force." Journal of Raman Spectroscopy 44, no. 9 (July 21, 2013): 1259–62. http://dx.doi.org/10.1002/jrs.4353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ariunbold, Gombojav O., Bryan Semon, Supriya Nagpal, and Yuri Rostovtsev. "Ultrafast dephasing in hydrogen-bonded pyridine–water mixtures." Open Physics 19, no. 1 (January 1, 2021): 234–40. http://dx.doi.org/10.1515/phys-2021-0027.

Повний текст джерела
Анотація:
Abstract Hydrogen-bonded mixtures with varying concentration are a complicated networked system that demands a detection technique with both time and frequency resolutions. Hydrogen-bonded pyridine–water mixtures are studied by a time-frequency resolved coherent Raman spectroscopic technique. Femtosecond broadband dual-pulse excitation and delayed picosecond probing provide sub-picosecond time resolution in the mixtures temporal evolution. For different pyridine concentrations in water, asymmetric blue versus red shifts (relative to pure pyridine spectral peaks) were observed by simultaneously recording both the coherent anti-Stokes and Stokes Raman spectra. Macroscopic coherence dephasing times for the perturbed pyridine ring modes were observed in ranges of 0.9–2.6 ps for both 18 and 10 cm − 1 10\hspace{0.33em}{{\rm{cm}}}^{-1} broad probe pulses. For high pyridine concentrations in water, an additional spectral broadening (or escalated dephasing) for a triangular ring vibrational mode was observed. This can be understood as a result of ultrafast collective emissions from coherently excited ensemble of pairs of pyridine molecules bound to water molecules.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Gibson, Emily A., Omid Masihzadeh, Tim C. Lei, David A. Ammar, and Malik Y. Kahook. "Multiphoton Microscopy for Ophthalmic Imaging." Journal of Ophthalmology 2011 (2011): 1–11. http://dx.doi.org/10.1155/2011/870879.

Повний текст джерела
Анотація:
We review multiphoton microscopy (MPM) including two-photon autofluorescence (2PAF), second harmonic generation (SHG), third harmonic generation (THG), fluorescence lifetime (FLIM), and coherent anti-Stokes Raman Scattering (CARS) with relevance to clinical applications in ophthalmology. The different imaging modalities are discussed highlighting the particular strength that each has for functional tissue imaging. MPM is compared with current clinical ophthalmological imaging techniques such as reflectance confocal microscopy, optical coherence tomography, and fluorescence imaging. In addition, we discuss the future prospects for MPM in disease detection and clinical monitoring of disease progression, understanding fundamental disease mechanisms, and real-time monitoring of drug delivery.
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Wang, Pan, Shengtao Lin, Jiaojiao Zhang, Xingyu Bao, Longqun Ni, Yifei Qi, and Zinan Wang. "Efficient 1054 nm Raman Random Fiber Laser." Photonics 10, no. 7 (July 22, 2023): 851. http://dx.doi.org/10.3390/photonics10070851.

Повний текст джерела
Анотація:
Low–coherence laser is regarded as the key to mitigating laser–plasma instability (LPI) in laser–driven inertial confinement fusion (ICF), where LPI can decrease the laser energy coupled to the target. With the merits of low coherence, high spectral stability, and flexible output characteristics, the Raman random fiber laser (RRFL) is considered to be a candidate light source in ICF. In this paper, the 1054 nm RRFL with high slope efficiency is achieved for the first time. In the RRFL pump source design section, we have optimized the ytterbium–doped fiber (YDF) length by simulation and amplified the power by Master Oscillator Power Amplifier (MOPA) to realize a 1011 nm YDF laser with 47.3 dB optical signal–to–noise ratio (OSNR). In terms of RRFL cavity design, a fiber loop mirror and Rayleigh scattering in the HI 1060 Flex fiber provide wideband point feedback and random distributed feedback, respectively. Based on this system, we achieve an RRFL output with 0.4 nm half–maximum full width, 182% slope efficiency, and 41.3 dB OSNR. This work will provide guidance for the application of RRFL in high–energy–density physics research.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Placzek, Fabian, Eliana Cordero Bautista, Simon Kretschmer, Lara M. Wurster, Florian Knorr, Gerardo González-Cerdas, Mikael T. Erkkilä, et al. "Morpho-molecular ex vivo detection and grading of non-muscle-invasive bladder cancer using forward imaging probe based multimodal optical coherence tomography and Raman spectroscopy." Analyst 145, no. 4 (2020): 1445–56. http://dx.doi.org/10.1039/c9an01911a.

Повний текст джерела
Анотація:
Characterization of bladder biopsies, using a combined fiber optic probe-based optical coherence tomography and Raman spectroscopy imaging system that allows a large field-of-view imaging and detection and grading of cancerous bladder lesions.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Andreana, Marco, Ryan Sentosa, Mikael T. Erkkilä, Wolfgang Drexler, and Angelika Unterhuber. "Depth resolved label-free multimodal optical imaging platform to study morpho-molecular composition of tissue." Photochemical & Photobiological Sciences 18, no. 5 (2019): 997–1008. http://dx.doi.org/10.1039/c8pp00410b.

Повний текст джерела
Анотація:
The presented multi-modal platform combines optical coherence tomography, two-photon excited fluorescence, second harmonic generation and anti-Stokes Raman scattering to provide molecular and structural information of tissue in a fast and non-invasive manner.
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Zadoyan, R., and V. A. Apkarian. "Imaging the molecular rovibrational coherence through time-gated, frequency-resolved coherent anti-Stokes Raman scattering." Chemical Physics Letters 326, no. 1-2 (August 2000): 1–10. http://dx.doi.org/10.1016/s0009-2614(00)00689-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Ye, C. Y., V. A. Sautenkov, Y. V. Rostovtsev, G. R. Welch, and M. O. Scully. "Control of population and atomic coherence by adiabatic rapid passage and optimization of coherent anti-Stokes Raman scattering signal by maximal coherence." Journal of Modern Optics 51, no. 16-18 (November 2004): 2555–69. http://dx.doi.org/10.1080/09500340408231814.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Darvin, Maxim E. "Optical Methods for Non-Invasive Determination of Skin Penetration: Current Trends, Advances, Possibilities, Prospects, and Translation into In Vivo Human Studies." Pharmaceutics 15, no. 9 (September 3, 2023): 2272. http://dx.doi.org/10.3390/pharmaceutics15092272.

Повний текст джерела
Анотація:
Information on the penetration depth, pathways, metabolization, storage of vehicles, active pharmaceutical ingredients (APIs), and functional cosmetic ingredients (FCIs) of topically applied formulations or contaminants (substances) in skin is of great importance for understanding their interaction with skin targets, treatment efficacy, and risk assessment—a challenging task in dermatology, cosmetology, and pharmacy. Non-invasive methods for the qualitative and quantitative visualization of substances in skin in vivo are favored and limited to optical imaging and spectroscopic methods such as fluorescence/reflectance confocal laser scanning microscopy (CLSM); two-photon tomography (2PT) combined with autofluorescence (2PT-AF), fluorescence lifetime imaging (2PT-FLIM), second-harmonic generation (SHG), coherent anti-Stokes Raman scattering (CARS), and reflectance confocal microscopy (2PT-RCM); three-photon tomography (3PT); confocal Raman micro-spectroscopy (CRM); surface-enhanced Raman scattering (SERS) micro-spectroscopy; stimulated Raman scattering (SRS) microscopy; and optical coherence tomography (OCT). This review summarizes the state of the art in the use of the CLSM, 2PT, 3PT, CRM, SERS, SRS, and OCT optical methods to study skin penetration in vivo non-invasively (302 references). The advantages, limitations, possibilities, and prospects of the reviewed optical methods are comprehensively discussed. The ex vivo studies discussed are potentially translatable into in vivo measurements. The requirements for the optical properties of substances to determine their penetration into skin by certain methods are highlighted.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Azkune, Mikel, Igor Ayesta, Leire Ruiz-Rubio, Eneko Arrospide, Jose Luis Vilas-Vilela, and Joseba Zubia. "Hydrogel-Core Microstructured Polymer Optical Fibers for Selective Fiber Enhanced Raman Spectroscopy." Sensors 21, no. 5 (March 6, 2021): 1845. http://dx.doi.org/10.3390/s21051845.

Повний текст джерела
Анотація:
A new approach of Fiber Enhanced Raman Spectroscopy (FERS) is described within this article based on the use of Hydrogel-Core microstructured Polymer Optical Fibers (HyC-mPOF). The incorporation of the hydrogel only on the core of the Hollow-Core microstructured Polymer Optical Fiber (HC-mPOF) enables to perform FERS measurements in a functionalized matrix, enabling high selectivity Raman measurements. The hydrogel formation was continuously monitored and quantified using a Principal Component Analysis verifying the coherence between the components and the Raman spectrum of the hydrogel. The performed measurements with high and low affinity target molecules prove the feasibility of the presented HyC-mPOF platform.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Chiwo, F. S., and And F. J. Gonzalez. "Design and implementation of a low-cost portable Raman spectrometer." Revista Mexicana de Física 65, no. 3 (May 7, 2019): 274. http://dx.doi.org/10.31349/revmexfis.65.274.

Повний текст джерела
Анотація:
Non-invasive medical diagnosis has become popular due to the possibility of detecting illnesses in vivo and in real time this technique, often referred to as "optical biopsy", comprises several optical techniques such as thermography, diffuse reflectance spectroscopy, optical coherence tomography and Raman spectroscopy among others. Particularly Raman spectroscopy is an optical technique based on the inelastic scattering of light that can detect disease markers, this technique has been successfully used to detect several types of diseases, however the high price of a Raman spectrometer makes it difficult for the medical community to adopt its use as a common diagnostic procedure. In this work a Raman spectroscopy system was designed and fabricated from low-cost readily available components. The system was characterized and the Raman spectra obtained was compared to commercial systems. Results show that it is possible to fabricate a custom Raman system with the desired optical configuration for non-invasive optical diagnosis at low costs and portable size.
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Li, J. Z., M. Katsuragawa, M. Suzuki, and K. Hakuta. "Stimulated Raman scattering in solid hydrogen: Measurement of coherence decay." Physical Review A 58, no. 1 (July 1, 1998): R58—R60. http://dx.doi.org/10.1103/physreva.58.r58.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Liang, J. Q., M. Katsuragawa, Fam Le Kien, and K. Hakuta. "Sideband Generation Using Strongly Driven Raman Coherence in Solid Hydrogen." Physical Review Letters 85, no. 12 (September 18, 2000): 2474–77. http://dx.doi.org/10.1103/physrevlett.85.2474.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії