Книги з теми "Rainfall extreme"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Rainfall extreme.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-32 книг для дослідження на тему "Rainfall extreme".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте книги для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Dr, Nazrul Islam Md, and SAARC Meteorological Research Centre, eds. Understanding the rainfall climatology and detection of extreme weather events in SAARC region. Dhaka: SAARC Meteorological Research Centre, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Khaladkar, R. M. Alarming rise in the number and intensity of extreme point rainfall events over the Indian region under climate change scenario. Pune: Indian Institute of Tropical Meteorology, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Daoo, V. J. Extreme value analysis of meteorological parameters and long term (1959-1996) rainfall statistics at Trombay. Mumbai, India: Bhabha Atomic Research Centre, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lam, Ching-chi. Extreme rainfall statistics and design rainstorm profiles at selected locations in Hong Kong. Kowloon, Hong Kong: Royal Observatory, 1994.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dr, Nazrul Islam Md, and SAARC Meteorological Research Centre, eds. Understanding the rainfall climatology and detection of extreme weather events in SAARC region. Dhaka: SAARC Meteorological Research Centre, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Tattelman, Paul. Model vertical profiles of extreme rainfall rate, liquid water content, and drop-size distribution. Hanscom AFB, MA: Atmospheric Sciences Division, Air Force Geophysics Laboratory, 1985.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lanning-Rush, Jennifer. Extreme precipitation depths for Texas, excluding the Trans-Pecos region. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lanning-Rush, Jennifer. Extreme precipitation depths for Texas, excluding the Trans-Pecos region. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lanning-Rush, Jennifer. Extreme precipitation depths for Texas, excluding the Trans-Pecos region. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Lanning-Rush, Jennifer. Extreme precipitation depths for Texas, excluding the Trans-Pecos region. Austin, Tex: U.S. Dept. of the Interior, U.S. Geological Survey, 1998.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Earth's rainiest places. New York: Gareth Stevens Publishing, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Bergin, Virginia. The rain. London: Macmillan Children's, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

J, Štekl, ed. Extrémni denní srážky na území České Republiky v období 1879-2000 a jejich synoptické příčny =: Extreme daily precipitation on the territory of the Czech Republic in the period 1879-2000 and their synoptic causes. Praha: [Český hydrometeorologický ústav], 2001.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Los lugares más lluviosos de la tierra. New York, NY: Gareth Stevens Publishing, 2015.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Ranade, Ashwini A. Large-scale wet spell and spatio-temporal rainfall extremes over India during 1951-2007. Pune: Indian Institute of Tropical Meteorology, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Rustad, Martha E. H. The wettest places on Earth. Mankato, Minn: Capstone Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Wet and dry. Mankato, Minn: Riverstream Publishing, 2013.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Wet and dry places. Mankato, Minn: Amicus, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Rustad, Martha E. H. The wettest places on Earth. Mankato, Minn: Capstone Press, 2010.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Understanding the rainfall climatology and detection of extreme weather events in SAARC region. Dhaka: SAARC Meteorological Research Centre, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Starkel, Leszek. Rainfall, Runoff, and Soil Erosion in the Globally Extreme Humid Area, Cherrapunji Region, India. Polska Akademia Nauk Instytut Geografii I Prz, 2004.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Understanding the rainfall climatology and detection of extreme weather events in SAARC region: part I - Bangladesh. Dhaka: SAARC Meteorological Research Centre, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Understanding the rainfall climatology and detection of extreme weather events in SAARC region: part I - Bangladesh. Dhaka: SAARC Meteorological Research Centre, 2008.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

O'Connell, Bailey. Earth's Rainiest Places. Stevens Publishing LLLP, Gareth, 2014.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Alarming rise in the number and intensity of extreme point rainfall events over the Indian region under climate change scenario. Pune: Indian Institute of Tropical Meteorology, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Alarming rise in the number and intensity of extreme point rainfall events over the Indian region under climate change scenario. Pune: Indian Institute of Tropical Meteorology, 2009.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Abbot, John, and Andrew Hammond, eds. Rainfall - Extremes, Distribution and Properties. IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.77580.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Rainfall: Extremes, Distribution and Properties. IntechOpen, 2019.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Nash, David. Changes in Precipitation Over Southern Africa During Recent Centuries. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.539.

Повний текст джерела
Анотація:
Precipitation levels in southern Africa exhibit a marked east–west gradient and are characterized by strong seasonality and high interannual variability. Much of the mainland south of 15°S exhibits a semiarid to dry subhumid climate. More than 66 percent of rainfall in the extreme southwest of the subcontinent occurs between April and September. Rainfall in this region—termed the winter rainfall zone (WRZ)—is most commonly associated with the passage of midlatitude frontal systems embedded in the austral westerlies. In contrast, more than 66 percent of mean annual precipitation over much of the remainder of the subcontinent falls between October and March. Climates in this summer rainfall zone (SRZ) are dictated by the seasonal interplay between subtropical high-pressure systems and the migration of easterly flows associated with the Intertropical Convergence Zone. Fluctuations in both SRZ and WRZ rainfall are linked to the variability of sea-surface temperatures in the oceans surrounding southern Africa and are modulated by the interplay of large-scale modes of climate variability, including the El Niño-Southern Oscillation (ENSO), Southern Indian Ocean Dipole, and Southern Annular Mode.Ideas about long-term rainfall variability in southern Africa have shifted over time. During the early to mid-19th century, the prevailing narrative was that the climate was progressively desiccating. By the late 19th to early 20th century, when gauged precipitation data became more readily available, debate shifted toward the identification of cyclical rainfall variation. The integration of gauge data, evidence from historical documents, and information from natural proxies such as tree rings during the late 20th and early 21st centuries, has allowed the nature of precipitation variability since ~1800 to be more fully explored.Drought episodes affecting large areas of the SRZ occurred during the first decade of the 19th century, in the early and late 1820s, late 1850s–mid-1860s, mid-late 1870s, earlymid-1880s, and mid-late 1890s. Of these episodes, the drought during the early 1860s was the most severe of the 19th century, with those of the 1820s and 1890s the most protracted. Many of these droughts correspond with more extreme ENSO warm phases.Widespread wetter conditions are less easily identified. The year 1816 appears to have been relatively wet across the Kalahari and other areas of south central Africa. Other wetter episodes were centered on the late 1830s–early 1840s, 1855, 1870, and 1890. In the WRZ, drier conditions occurred during the first decade of the 19th century, for much of the mid-late 1830s through to the mid-1840s, during the late 1850s and early 1860s, and in the early-mid-1880s and mid-late 1890s. As for the SRZ, markedly wetter years are less easily identified, although the periods around 1815, the early 1830s, mid-1840s, mid-late 1870s, and early 1890s saw enhanced rainfall. Reconstructed rainfall anomalies for the SRZ suggest that, on average, the region was significantly wetter during the 19th century than the 20th and that there appears to have been a drying trend during the 20th century that has continued into the early 21st. In the WRZ, average annual rainfall levels appear to have been relatively consistent between the 19th and 20th centuries, although rainfall variability increased during the 20th century compared to the 19th.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Arnbjerg-Nielsen, Karsten, Simon Beecham, Jonas Olsson, Ida Bulow Gregersen, and Patrick Willems. Impacts of Climate Change on Rainfall Extremes and Urban Drainage Systems. IWA Publishing, 2012.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Goswami, B. N., and Soumi Chakravorty. Dynamics of the Indian Summer Monsoon Climate. Oxford University Press, 2017. http://dx.doi.org/10.1093/acrefore/9780190228620.013.613.

Повний текст джерела
Анотація:
Lifeline for about one-sixth of the world’s population in the subcontinent, the Indian summer monsoon (ISM) is an integral part of the annual cycle of the winds (reversal of winds with seasons), coupled with a strong annual cycle of precipitation (wet summer and dry winter). For over a century, high socioeconomic impacts of ISM rainfall (ISMR) in the region have driven scientists to attempt to predict the year-to-year variations of ISM rainfall. A remarkably stable phenomenon, making its appearance every year without fail, the ISM climate exhibits a rather small year-to-year variation (the standard deviation of the seasonal mean being 10% of the long-term mean), but it has proven to be an extremely challenging system to predict. Even the most skillful, sophisticated models are barely useful with skill significantly below the potential limit on predictability. Understanding what drives the mean ISM climate and its variability on different timescales is, therefore, critical to advancing skills in predicting the monsoon. A conceptual ISM model helps explain what maintains not only the mean ISM but also its variability on interannual and longer timescales.The annual ISM precipitation cycle can be described as a manifestation of the seasonal migration of the intertropical convergence zone (ITCZ) or the zonally oriented cloud (rain) band characterized by a sudden “onset.” The other important feature of ISM is the deep overturning meridional (regional Hadley circulation) that is associated with it, driven primarily by the latent heat release associated with the ISM (ITCZ) precipitation. The dynamics of the monsoon climate, therefore, is an extension of the dynamics of the ITCZ. The classical land–sea surface temperature gradient model of ISM may explain the seasonal reversal of the surface winds, but it fails to explain the onset and the deep vertical structure of the ISM circulation. While the surface temperature over land cools after the onset, reversing the north–south surface temperature gradient and making it inadequate to sustain the monsoon after onset, it is the tropospheric temperature gradient that becomes positive at the time of onset and remains strongly positive thereafter, maintaining the monsoon. The change in sign of the tropospheric temperature (TT) gradient is dynamically responsible for a symmetric instability, leading to the onset and subsequent northward progression of the ITCZ. The unified ISM model in terms of the TT gradient provides a platform to understand the drivers of ISM variability by identifying processes that affect TT in the north and the south and influence the gradient.The predictability of the seasonal mean ISM is limited by interactions of the annual cycle and higher frequency monsoon variability within the season. The monsoon intraseasonal oscillation (MISO) has a seminal role in influencing the seasonal mean and its interannual variability. While ISM climate on long timescales (e.g., multimillennium) largely follows the solar forcing, on shorter timescales the ISM variability is governed by the internal dynamics arising from ocean–atmosphere–land interactions, regional as well as remote, together with teleconnections with other climate modes. Also important is the role of anthropogenic forcing, such as the greenhouse gases and aerosols versus the natural multidecadal variability in the context of the recent six-decade long decreasing trend of ISM rainfall.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії