Добірка наукової літератури з теми "RAFT photo-polymerization"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "RAFT photo-polymerization".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "RAFT photo-polymerization":

1

Hartlieb, Matthias. "Photo‐Iniferter RAFT Polymerization." Macromolecular Rapid Communications 43, no. 1 (November 19, 2021): 2100514. http://dx.doi.org/10.1002/marc.202100514.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hartlieb, Matthias. "Photo‐Iniferter RAFT Polymerization." Macromolecular Rapid Communications 43, no. 1 (January 2022): 2270003. http://dx.doi.org/10.1002/marc.202270003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Li, Jiajia, Xiangqiang Pan, Na Li, Jian Zhu, and Xiulin Zhu. "Photoinduced controlled radical polymerization of methyl acrylate and vinyl acetate by xanthate." Polymer Chemistry 9, no. 21 (2018): 2897–904. http://dx.doi.org/10.1039/c8py00050f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Jiang, Ruming, Meiying Liu, Qiang Huang, Hongye Huang, Qing Wan, Yuanqing Wen, Jianwen Tian, Qian-yong Cao, Xiaoyong Zhang, and Yen Wei. "Fabrication of multifunctional fluorescent organic nanoparticles with AIE feature through photo-initiated RAFT polymerization." Polymer Chemistry 8, no. 47 (2017): 7390–99. http://dx.doi.org/10.1039/c7py01563a.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zhang, Junle, Mengya Li, Yanjie He, Xiaomeng Zhang, Zhe Cui, Peng Fu, Minying Liu, Xiaoguang Qiao, Qingxiang Zhao, and Xinchang Pang. "From 0-dimension to 1-dimensions: Au nanocrystals as versatile plasmonic photocatalyst for broadband light induced RAFT polymerization." Polymer Chemistry 12, no. 16 (2021): 2439–46. http://dx.doi.org/10.1039/d1py00088h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Quan, Qinzhi, Honghong Gong, and Mao Chen. "Preparation of semifluorinated poly(meth)acrylates by improved photo-controlled radical polymerization without the use of a fluorinated RAFT agent: facilitating surface fabrication with fluorinated materials." Polymer Chemistry 9, no. 30 (2018): 4161–71. http://dx.doi.org/10.1039/c8py00990b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

An, Nankai, Xi Chen, and Jinying Yuan. "Non-thermally initiated RAFT polymerization-induced self-assembly." Polymer Chemistry 12, no. 22 (2021): 3220–32. http://dx.doi.org/10.1039/d1py00216c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This review summarizes the recent non-thermal initiation methods in RAFT mediated polymerization-induced self-assembly (PISA), including photo-, redox/oscillatory reaction-, enzyme- and ultrasound wave-initiation.
8

Wang, Wulong, Sheng Zhong, Guicheng Wang, Hongliang Cao, Yun Gao, and Weian Zhang. "Photo-controlled RAFT polymerization mediated by organic/inorganic hybrid photoredox catalysts: enhanced catalytic efficiency." Polymer Chemistry 11, no. 18 (2020): 3188–94. http://dx.doi.org/10.1039/d0py00171f.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Photo-controlled RAFT polymerization mediated by an organic/inorganic hybrid photoredox catalyst (ZnTPP–POSS) was performed and showed enhanced catalytic efficiency compared with the ZnTPP photocatalyst.
9

Chen, Mao, Honghong Gong, and Yu Gu. "Controlled/Living Radical Polymerization of Semifluorinated (Meth)acrylates." Synlett 29, no. 12 (April 18, 2018): 1543–51. http://dx.doi.org/10.1055/s-0036-1591974.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Fluorinated polymers are important materials for applications in many areas. This article summarizes the development of controlled/living radical polymerization (CRP) of semifluorinated (meth)acrylates, and briefly introduces their reaction mechanisms. While the classical CRP such as atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization and nitroxide-mediated radical polymerization (NMP) have promoted the preparation of semifluorinated polymers with tailor-designed architectures, recent development of photo-CRP has led to unprecedented accuracy and monomer scope. We expect that synthetic advances will facilitate the engineering of advanced fluorinated materials with unique properties.1 Introduction2 Atom Transfer Radical Polymerization3 Reversible Addition-Fragmentation Chain Transfer Polymerization4 Nitroxide-Mediated Radical Polymerization5 Photo-CRP Mediated with Metal Complexes6 Metal-free Photo-CRP7 Conclusion
10

Cabannes-Boué, Benjamin, Qizhi Yang, Jacques Lalevée, Fabrice Morlet-Savary, and Julien Poly. "Investigation into the mechanism of photo-mediated RAFT polymerization involving the reversible photolysis of the chain-transfer agent." Polymer Chemistry 8, no. 11 (2017): 1760–70. http://dx.doi.org/10.1039/c6py02220k.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A new dithiocarbamate with a N-carbazole Z group is synthesized and investigated as a chain-transfer agent (CTA) in a photo-mediated RAFT polymerization mechanism involving its partial and reversible photolysis.

Дисертації з теми "RAFT photo-polymerization":

1

Allegrezza, Michael LeGrande. "Mechanistic Insight Into Photo-Polymerization Techniques Through Kinetic Analysis." Miami University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=miami1605182244121264.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Ikkene, Djallal. "Glyco-nanostructures formulées via autoassemblage induit par photo-polymérisation RAFT en dispersion aqueuse." Electronic Thesis or Diss., Université de Lorraine, 2022. http://www.theses.fr/2022LORR0035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Les nano-objets polymères obtenus par auto-assemblage de copolymères amphiphiles intéressent les chercheurs en nanomédecine, qui envisagent de les employer comme systèmes de délivrance de médicaments (SDMs). Les objets de morphologie vésiculaire, nommée polymersomes, sont particulièrement attractifs car leur morphologie compartimentale permet d’encapsuler simultanément des principes actifs hydrophiles et hydrophobes. Les glycopolymères amphiphiles (GPAs), copolymères amphiphiles associant un polysaccharide hydrophile et une partie polymère hydrophobe, sont des candidats potentiels pour produire ces SDMs, étant donné la biocompatibilité, la biodégradabilité et la non-toxicité des polysaccharides. Cependant, les travaux de recherches portant sur l'auto-assemblage des GPAs via des stratégies multi-étapes décrivent principalement des nanostructures aux morphologies primitives (micelles sphériques ou nanoparticules cœur/couronne), freinant le développement de ces potentiels SDMs. Afin de contourner cette problématique, une méthodologie émergente nommée PISA (auto-assemblage induit par polymérisation) a été employée dans le cadre de ce doctorat pour produire en une seule étape une suspension de glyco-nanostructures (GNSs, nano-objets composés de GPAs auto-assemblés). Le procédé est ici basé sur la polymérisation d’un monomère hydrophile (2-méthacrylate d’hydroxypropyle, HPMA), formant un polymère hydrophobe à partir d’une conversion critique, à partir d’un stabilisant hydrosoluble dérivé du dextrane et porteur de multiples groupements agent de transfert (DexCTA). La polymérisation radicalaire contrôlée par transfert de chaîne réversible par addition-fragmentation amorcée sous irradiation visible (photo-RAFT) a été employée pour faire croitre les greffons hydrophobes PHPMA à partir du DexCTA, et conduire à la synthèse de dextrane-gN-PHPMAX, où N et X sont respectivement le nombre et le degré de polymérisation des greffons PHPMA. Au fur et à mesure de l’accroissement des greffons PHPMA, les glycopolymères deviennent amphiphiles et s’auto-organisent in-situ pour former des GNSs. Une étude physico-chimique approfondie des GNSs formulées a été réalisée en utilisant des techniques avancées telles que la diffusion de rayonnement (diffusion de la lumière, des neutrons et des rayons X aux petits angles) et la (cryo-)microscopie électronique à transmission. Cette étude a révélé la capacité des dextrane-gN-PHPMAX à former des nano-objets de morphologie avancée (particulièrement vésiculaire) en phase aqueuse via la méthodologie PISA. Ces premières observations nous ont alors encouragés à étudier l’impact des paramètres macromoléculaires de ces copolymères (nombre et taille de greffons) et des conditions opératoires (concentration massique et température) sur la morphologie des GNSs produites. Un suivi in-situ de l’évolution de la morphologie a révélé la formation de nano-objets de morphologie originale (vésicules à multi-cœurs hydrophiles), jamais reportée dans le cas des GNSs. Le potentiel des vésicules de dextrane-gN-PHPMAX pour une utilisation comme SDMs a été évaluée en étudiant : i) la cytotoxicité de ces GPAs vis-à-vis de plusieurs cellules modèles, ii) leur stabilité dans des environnements hypotoniques et hypertoniques mimant les milieux biologiques, iii) et leur capacité à encapsuler des principes actifs hydrophobes et hydrophiles modèles
Soft nanostructures obtained by the self-assembly of amphiphilic copolymers (ACP) are of great relevance for nanomedecine, where they can be used as Drug Delivery Systems (DDSs). Among these DDSs, those with vesicular morphology (polymersomes) are under intense scrutiny, thanks to their interesting multi-compartmental morphology allowing the simultaneous encapsulation of both hydrophilic and hydrophobic drugs. Amphiphilic glycopolymers (AGPs), amphiphilic copolymers associating hydrophilic polysaccharides and hydrophobic polymers, are potential candidates for the formulation of DDSs due to the biodegradability, non-toxicity and tunable biocompatibility of polysaccharides. However, spherical micelles and core/shell nanoparticles have been frequently reported in case of the self-assembly of AGPs, which could be a limitation to their development. Herein, an emerging one-pot methodology named Polymerization-Induced Self-Assembly (PISA) in aqueous dispersion, enables producing self-assembled polymeric nanostructures directly in aqueous media, was used to fill the lack of AGPs in terms of self-assembly. More precisely, in the framework of this Ph.D., a water-soluble monomer (2-hydroxypropyl methacrylate, HPMA), forming a hydrophobic polymer, is polymerized from a water-soluble dextran derivative containing multiple chain transfer agent groups (DexCTA). Photo-mediated reversible addition-fragmentation chain transfer (photo-RAFT) was used to grow hydrophobic grafts of PHPMA from DexCTA to produce dextran-gN-PHPMAx, where N and X are respectively the number and the degree of polymerization of PHPMA grafts. As the PHPMA grafts increase, the glycopolymers become amphiphilic inducing its self-assembly to form glyco-nanostructures (GNSs). A deep physico-chemical investigation on such GNSs was carried out using advanced techniques, including radiation scattering (scattering of light, neutrons and small angle X-rays) and imaging techniques such as (cryo-) transmission electron microscopy (cryo-) TEM. This investigation revealed the ability of dextran-gN-PHPMAX to form nano-objects of advanced morphology (including vesicular one) in water via PISA process. These first observations encouraged us to study the impact of the macromolecular parameters of these AGPs (number and size of grafts) and the experimental conditions (weight concentration and temperature) on the generated self-assembly morphology. In-situ monitoring of the morphology evolution during the PISA revealed the formulation of an original morphology (multi-hydrophilic core vesicles) never reported in case of AGPs. The use of dextran-gN-PHPMAX-based vesicles as DSSs was evaluated by examining: i) the cytotoxicity of such AGPs toward various cell models, ii) their stability in various hypotonic and hypertonic environments miming biologic media, iii) and their ability to encapsulate hydrophilic and hydrophobic drugs

До бібліографії