Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Radiography neutron.

Статті в журналах з теми "Radiography neutron"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Radiography neutron".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Gan, Pingping, Haifa Ben Abdelouahed, Natko Skukan, Tomas Bily, and Danas Ridikas. "Progress in commissioning a neutron/X-ray radiography and tomography systems at IAEA NSIL." Journal of Instrumentation 17, no. 11 (November 1, 2022): T11001. http://dx.doi.org/10.1088/1748-0221/17/11/t11001.

Повний текст джерела
Анотація:
Abstract The Nuclear Science and Instrumentation Laboratory (NSIL) is currently establishing a Neutron Science Facility (NSF) based on two compact neutron generators: Deuterium-Deuterium (DD), resulting in 2.45 MeV neutrons, and Deuterium-Tritium (DT), resulting in 14.1 MeV neutrons, with maximum source intensities up to 5 × 106 n/s and 4 × 108 n/s over 4π, respectively. Neutron/X-ray radiography and tomography are two of the applications the NSF will be equipped with. In this paper, we report the state of the radiography and tomography system, and the neutron/X-ray radiography and tomography experiments we performed. Good radiographs and tomographs are obtained with X-ray. The spatial resolution of the X-ray radiography system is measured to be about 0.1 mm. The thermal neutron radiographs and fast neutron radiographs have proved that the DD neutron generator will be beneficial to demonstrate neutron radiography capabilities for educational purposes. Additionally, the detail of the collimator optimization of the DD neutron radiography was presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wang, Sheng, Yang Wu, Heyong Huo, Hang Li, Chunlei Wu, Li An, Bin Tang, and Zhenghong Li. "Preliminary Study on Improving Resolution of D-T Neutron Radiography based on Associated Alpha and Coded Source Imaging Methods." EPJ Web of Conferences 225 (2020): 07001. http://dx.doi.org/10.1051/epjconf/202022507001.

Повний текст джерела
Анотація:
Limitations of fast neutron radiography include low detection efficiency and poor spatial resolution. D-T neutron radiography is one compact fast neutron radiography method. Based on D-T associated alpha particle method and coded source imaging method, we indicate one new method to improve resolution of D-T neutron radiography. This method could get distribution of D-T neutrons by detecting alpha particles. Without real coded mask, the D-T radiography structure is considered as coded source imaging of fast neutrons. With reconstruction method, the real object could be reconstructed from projections. One prospect setup of D-T associated alpha neutron source has been carried out with Monte-Carlo simulation. The projection images of two different situations are collected and reconstruction results show that it’s possible to improve image quality of D-T neutron radiography.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Fijał-Kirejczyk, Izabela, Jacek J. Milczarek, Jacek Banaszak, Joanna Żołądek, and Andrzej Trzciński. "Drying of Kaolin Clay Cylinders: Dynamic Neutron Radiography Studies." Defect and Diffusion Forum 297-301 (April 2010): 508–12. http://dx.doi.org/10.4028/www.scientific.net/ddf.297-301.508.

Повний текст джерела
Анотація:
The results of the dynamic neutron radiography studies on drying of wet kaolin cylinders in the forced warm air flow are presented. The sample shrinkage and loss of water during drying was analyzed in terms of the brightness of registered neutron radiographs, and sample mass and temperature. The water saturation of the sample with water was discussed in comparison to the changes in local neutron effective macroscopic cross section. The neutron radiography results reveal more details of the drying process than gravimetric measurements indicating nonuniform distribution of water within samples. The obscuring effect of the scattered neutrons on the determination of the water content is discussed on the basis of the MC simulations results.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

YOSHII, Koji. "Neutron Beam Analyses and Its Application. X. Neutron Radiography. 3. Fast Neutron Radiography, Thermal Neutron Radiography, Cold Neutron Radiography and Applications. 3.1 Fast Neutron Radiography and Applications." RADIOISOTOPES 46, no. 7 (1997): 495–99. http://dx.doi.org/10.3769/radioisotopes.46.495.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Yasuda, Ryo. "Neutron Radiography." Journal of The Japan Institute of Electronics Packaging 15, no. 7 (2012): 565–70. http://dx.doi.org/10.5104/jiep.15.565.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Matsubayashi, Masahito. "Neutron Radiography." hamon 21, no. 1 (2011): 35–36. http://dx.doi.org/10.5611/hamon.21.1_35.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Hiraoka, Eiichi. "Neutron Radiography." Journal of the Japan Welding Society 64, no. 2 (1995): 109–15. http://dx.doi.org/10.2207/qjjws1943.64.109.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Whittemore, W. L. "Neutron radiography." Neutron News 1, no. 3 (January 1990): 24–29. http://dx.doi.org/10.1080/10448639008202041.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nuding, W. "Neutron radiography." International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes 39, no. 4 (January 1988): 361. http://dx.doi.org/10.1016/0883-2889(88)90033-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

TAMAKI, Masayoshi. "Neutron Beam Analyses and Its Application. X. Neutron Radiography. 3. Fast Neutron Radiography, Thermal Neutron Radiography, Cold Neutron Radiography and Applications. 3.2 Thermal and Cold Neutron Radiography and Applications." RADIOISOTOPES 46, no. 7 (1997): 500–503. http://dx.doi.org/10.3769/radioisotopes.46.500.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Li, J. J., B. Yu, T. Xu, Z. J. Chen, J. H. Zheng, L. Yao, Y. S. Dong, and J. M. Yang. "First magnifying neutron/x-ray combined radiography at Shenguang laser facility." AIP Advances 12, no. 11 (November 1, 2022): 115012. http://dx.doi.org/10.1063/5.0121977.

Повний текст джерела
Анотація:
Neutron/x-ray combined radiography can integrate the merits of x-ray and neutron radiography and have an enhanced non-destructive detecting capability compared to single neutron or x-ray radiography. In this work, magnifying neutron/x-ray combined radiography along the same line of sight was performed at the Shenguang (SG) laser facility for the first time. Based on [Formula: see text] mm point-like backlight sources of neutrons and x rays, structural defects on the order of ∼0.2 mm within polyethylene and Fe were observed in neutron and x-ray radiography, respectively. In addition, the spatial resolution obtained was 0.68 ∼ 2.05 mm in the object position for neutron radiography and ∼0.14 mm for x-ray radiography. This indicated that the combined radiography system arranged along the same line of sight at the SG laser facility possessed the ability to inspect structural defects within both low-Z and high-Z materials simultaneously, with relatively high spatial resolution.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Morgan, Sarah W., Jeffrey C. King, and Chad L. Pope. "Simulation of neutron radiograph images at the Neutron Radiography Reactor." Annals of Nuclear Energy 57 (July 2013): 341–49. http://dx.doi.org/10.1016/j.anucene.2013.02.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Tremsin, Anton S., Jason B. McPhate, Winfried A. Kockelmann, John V. Vallerga, Oswald H. W. Siegmund, and W. Bruce Feller. "Energy-Resolving Neutron Transmission Radiography at the ISIS Pulsed Spallation Source With a High-Resolution Neutron Counting Detector." IEEE Transactions on Nuclear Science 56, no. 5 (October 2009): 2931–37. http://dx.doi.org/10.1109/tns.2009.2029690.

Повний текст джерела
Анотація:
Neutron transmission radiography can be strongly enhanced by adding spectroscopic data spatially correlated with the attenuation coefficient. This can now be achieved at pulsed neutron sources, utilizing a neutron detector with high spatial and temporal resolution. The energy of transmitted neutrons can be recovered from their time-of-flight, simultaneously with the acquisition of the transmission radiographic image by a pixelated detector. From this, the positions of Bragg edges can be obtained for each pixel of the radiographic image. The combination of both spectroscopic and transmission information enables high spatial resolution studies to be carried out on material composition, phase transitions, texture variations, as well as strain analysis, as long as the resolution and statistics are favorable. This paper presents initial results from proof-of-principle experiments on energy-resolved neutron transmission radiography, using a neutron counting detector consisting of neutron-sensitive microchannel plates (MCPs) and a Medipix2 electronic readout. These experiments demonstrate that the position of Bragg edges are measurable with a few mAring resolution in each 55-mum pixel of the detector, corresponding to DeltaE/E~0.1%. However, the limited intensity of most current neutron sources requires a compromise between the energy resolution and the area over which it was integrated. Still, the latter limitation can be overcome by combining energy information for several neighboring pixels, while transmission radiography can still be done at the limit of the detector spatial resolution.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Amalia, Ayu Fitri, and Widodo Budhi. "The Segmentation of Neutron Digital Radiography Image through the Edge Detection Method." Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 10, no. 1 (July 4, 2020): 11. http://dx.doi.org/10.26740/jpfa.v10n1.p11-21.

Повний текст джерела
Анотація:
The digital image processing is one way to manipulate one or more digital images. Image segmentation has an essential role in the field of image analysis. The aim of this study was to develop an application to perform digital image processing of neutron digital radiographic images, hoping to improve the image quality of the digital images produced. The quality of edge detection could be used for the introduction of neutron digital radiographic image patterns through artificial intelligence. Interaction of neutrons with the matter mainly by nuclear reaction, elastic, and inelastic scattering. A neutron can quickly enter into a nucleus of an atom and cause a reaction. It is because a neutron has no charge. Neutrons can be used for digital imaging due to high-resolution information from deep layers of the material. The attenuated neutron beam in neutron radiography are passing through the investigated object. The object in a uniform neutron beam is irradiated to obtain an image neutron. The technique used in segmenting the neutron radiography in this study was a digital technique using a camera with a charge-coupled device (CCD), which was deemed more efficient technique compared to the conventional one. Through this technique, images could be displayed directly on the monitor without going through the film washing process. Edge detection methods were implemented in the algorithm program. It was the first step to complement the image information where edges characterize object boundaries. It is useful for the process of segmenting and identifying objects in neutron digital radiography images. The edge detection methods used in this study were Sobel, Prewitt, Canny, and Laplacian of Gaussian. According to the results of the image that have been tested for edge detection, the best image was carried out by the Canny operator because the method is more explicit. The obtained edges were more connected than the other methods which are still broken. The Canny technique provided edge gradient orientation which resulted in a proper localization.
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Lehmann, E., G. Frei, A. Nordlund, and B. Dahl. "Neutron radiography with 14 MeV neutrons from a neutron generator." IEEE Transactions on Nuclear Science 52, no. 1 (February 2005): 389–93. http://dx.doi.org/10.1109/tns.2005.843635.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Neutron Demonstrator Facility. "Neutron radiography sytem." NDT & E International 27, no. 3 (June 1994): 169–70. http://dx.doi.org/10.1016/0963-8695(94)90743-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Nuding, Wolfgang. "Neutron radiography (3)." International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes 42, no. 8 (January 1991): 777–78. http://dx.doi.org/10.1016/0883-2889(91)90185-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Alam, MK, MR Islam, S. Saha, MN Islam, and SM Azaharul Islam. "Quality study of hand made brick-DK using neutron radiography technique." Bangladesh Journal of Scientific and Industrial Research 48, no. 4 (March 8, 2014): 237–46. http://dx.doi.org/10.3329/bjsir.v48i4.18273.

Повний текст джерела
Анотація:
Neutron radiography is a powerful non-destructive testing (NDT) technique for internal evaluation of materials, such as voids/cavity, cracks, homogeneity, water absorption behavior, etc. It involves attenuation of a neutron beam by an object to be radiographed and thus to make the registration of the attenuation process (as an image) on a film or video. In the present investigation neutron radiography (NR) imaging technique has been adopted to study the quality like homogeneity, porosity, water penetrating height, behavior of incremental intrusion area, initial rapid absorption (IRA) of the brick-DK sample. Thermal neutron radiography facility installed at the tangential beam port of 3MW TRIGA MARK-II reactor is used in this study. In this cases optical density or gray values of the neutron radiographic images of the sample is measured. From this measurement it is found that the contents of the sample is not uniformly distributed all over the sample which indicates the presence of large number of internal porosity, at the two edges water uptake is slightly poorer than the middle part and initial rapid absorption is very high. Water penetrating inside the sample is faster. The results obtained and conclusion made in this study can only be compared to the properties of bricks produced under similar conditions with similar raw materials. DOI: http://dx.doi.org/10.3329/bjsir.v48i4.18273 Bangladesh J. Sci. Ind. Res. 48(4), 237-246, 2013
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Orozco, Antônio Cezar, Claudio Antonio Federico, and Odair Lelis Gonçalez. "Monte Carlo simulation-aided design of a thermal neutron generator system from 241Am-Be isotopic sources." Brazilian Journal of Radiation Sciences 11, no. 1A (Suppl.) (July 26, 2023): 1–17. http://dx.doi.org/10.15392/2319-0612.2023.2118.

Повний текст джерела
Анотація:
Collimated thermal neutron beams are obtained from neutron extraction channels in nuclear reactors for various applications in research and technology, such as neutron imaging techniques (neutron radiography, neutron radioscopy, neutron tomography, and neutron-based autoradiography). Practical setups for neutron radiography using ion beams from particle accelerators and radioisotopic sources of fast neutrons have been also developed. However, only radioisotopic sources enable autonomous and transportable thermalization systems that can produce thermal neutron collimated beams. This work presents the performance results for a prototype of a compact system that generates a collimated beam of thermal neutrons using low-activity isotopic 241Am-Be sources. It was designed with the aid of Monte Carlo simulation using the PHITS v 3.17 program. Experimental measurements of the fluence of the neutron beam produced by the built prototype showed good agreement with the simulated values by the Monte Carlo method.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Chankow, Nares, Suvit Punnachaiya, and Sarinrat Wonglee. "Neutron radiography using neutron imaging plate." Applied Radiation and Isotopes 68, no. 4-5 (April 2010): 662–64. http://dx.doi.org/10.1016/j.apradiso.2009.09.021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Kam, Erol, Iskender A. Reyhancan, and Recep Biyik. "A portable fast neutron radiography system for non-destructive analysis of composite materials." Nukleonika 64, no. 3 (September 1, 2019): 97–101. http://dx.doi.org/10.2478/nuka-2019-0012.

Повний текст джерела
Анотація:
Abstract Depending on the neutron energy used, neutron radiography can be generally categorized as fast and thermal neutron radiography. Fast neutron radiography (FNR) with neutron energy more than 1 MeV opens up a new range of possibilities for a non-destructive examination when the inspected object is thick or dense. Other traditional techniques, such as X-ray, gamma ray and thermal neutron radiography, do not meet penetration capabilities of FNR in this area. Because of these distinctive features, this technique is used in different industrial applications such as security (cargo investigation for contraband such as narcotics, explosives and illicit drugs), gas/liquid flow and mixing and radiography and tomography of encapsulated heavy shielded low Z compound materials. The FNR images are produced directly during exposure as neutrons create recoil protons, which activate a scintillator screen, allowing images to be collected with a computer-controlled charge-coupled device camera. Finally, the picture can be saved on a computer for image processing. The aim of this research was to set up a portable FN R system and to test it for use in non-destructive testing of different composite materials. Experiments were carried out by using a fast portative neutron generator Thermo Scientific MP 320.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

FUJINE, Shigenori. "Neutron Beam Analyses and Its Application. X. Neutron Radiography. 1. Fundamentals of Neutron Radiography." RADIOISOTOPES 46, no. 7 (1997): 480–87. http://dx.doi.org/10.3769/radioisotopes.46.480.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

KOBAYASHI, Hisao. "Neutron Beam Analysis and Its Application. X. Neutron Radiography. 7. Prospects of Neutron Radiography." RADIOISOTOPES 46, no. 8 (1997): 586–91. http://dx.doi.org/10.3769/radioisotopes.46.586.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Abou Mandour, M. A., R. M. Megahid, M. H. Hassan, and T. M. Abd El Salam. "Characterization and Application of the Thermal Neutron Radiography Beam in the Egyptian Second Experimental and Training Research Reactor (ETRR-2)." Science and Technology of Nuclear Installations 2007 (2007): 1–6. http://dx.doi.org/10.1155/2007/24180.

Повний текст джерела
Анотація:
The Experimental, Training, Research Reactor (ETRR-2) is an open-pool multipurpose reactor (MPR) with a core power of 22 MWthcooled and moderated by light water and reflected with beryllium. It has four neutron beams and a thermal column as the main experimental devices. The neutron radiography facility unit utilizes one of the radial beam tubes. The track-etch technique using nitrocellulose films and converter screen is applied. In this work, the radial neutron beam for the thermal neutron radiography facility has been characterized and the following values were determined: thermal flux of1.5×107 n/cm2⋅s,nth/γratio of0.1×106 n⋅cm−2⋅mR−1; a Cd ratio of 10.26, a resolution of 0.188 mm, and L/D ratio of 117.3. This characterization verifies the design parameters of the unit. Various radiographs were taken and results indicate that the neutron radiography facility of the ETRR-2 holds promising opportunities for nuclear as well as nonnuclear applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

ISHIKAWA, Isamu. "Neutron Beam Analysis and Its Application. X. Neutron Radiography. 4. Neutron Radiography with Radioactive Source." RADIOISOTOPES 46, no. 8 (1997): 567–72. http://dx.doi.org/10.3769/radioisotopes.46.567.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Iikura, Hiroshi, Takuro Sakai, and Masahito Matsubayashi. "Introduction to Neutron Radiography." hamon 25, no. 4 (2015): 277–82. http://dx.doi.org/10.5611/hamon.25.4_277.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Stanojev Pereira, M. A., R. Pugliesi, and F. Pugliesi. "Neutron induced alpha radiography." Radiation Measurements 43, no. 7 (August 2008): 1226–30. http://dx.doi.org/10.1016/j.radmeas.2008.02.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Andreani, C., U. Buontempo, J. Mayers, and F. P. Ricci. "Energy-resolved neutron radiography." Physica B: Condensed Matter 174, no. 1-4 (October 1991): 572–76. http://dx.doi.org/10.1016/0921-4526(91)90660-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Pugliesi, R., M. L. G. Andrade, M. A. Stanojev Pereira, and F. Pugliesi. "Neutron-induced electron radiography." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 542, no. 1-3 (April 2005): 81–86. http://dx.doi.org/10.1016/j.nima.2005.01.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Rant, J. "Neutron radiography with SSNTDs." International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 17, no. 1 (January 1990): 59–60. http://dx.doi.org/10.1016/1359-0189(90)90151-m.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Winkler, B. "Applications of Neutron Radiography and Neutron Tomography." Reviews in Mineralogy and Geochemistry 63, no. 1 (January 1, 2006): 459–71. http://dx.doi.org/10.2138/rmg.2006.63.17.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

MASUZAWA, Fumitake. "Neutron Beam Analysis and Its Application. X. Neutron Radiography. 8. Neutron Radiography Application to Archaeological Objects." RADIOISOTOPES 46, no. 9 (1997): 664–69. http://dx.doi.org/10.3769/radioisotopes.46.664.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Šagátová, Andrea, Marko Fülöp, Andrej Novák, Branislav Vrban, Jakub Lüley, Štefan Čerba, Ivan Benkovský, and Bohumír Zaťko. "Conversion of fast neutrons for neutron radiography with TPX2 detector." Nukleonika 69, no. 2 (June 1, 2024): 135–40. http://dx.doi.org/10.2478/nuka-2024-0020.

Повний текст джерела
Анотація:
Abstract The Timepix2-based hybrid-pixel detector with a 500 μm thick silicon sensor was employed for fast-neutrons registration to be applied in neutron radiography of metallic printed circuit heat exchanger (PCHE). Two energies of neutrons were experimentally tested. The detection of 3.55 MeV neutrons from the deuteron–deuteron (DD) reaction was compared to 15.7 MeV neutrons from the deuteron–tritium (DT) neutron generator. In order to distinguish the signal induced by the registered neutrons from the accelerator background, filtration of the recorded particle spectral tracks was applied. The benefit of applying hydrogen-based converter layer for 3.55 MeV neutrons was observable. On the other hand, in the case of 15.7 MeV neutrons, the direct registration by interaction with the sensor Si significantly dominates the conversion.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Sołtysiak, Arkadiusz, Ewelina A. Miśta-Jakubowska, Jacek J. Milczarek, Piotr Tulik, and Izabela Fijał-Kirejczyk. "Neutron radiography as a diagnostic tool in human osteology." HOMO 70, no. 4 (November 29, 2019): 277–82. http://dx.doi.org/10.1127/homo/2019/1115.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Barman, Robin, Sudipta Saha, Md Sayed Hossain, Anik Das, Md Kaosar Ahmmad Rabby, Abdullah Al Mahmud, and Debasish Chowdhury. "Study of Structural Characteristics of Ancient Bricks With Neutron Radiography Facility at BTRR." Image Analysis & Stereology 40, no. 3 (December 15, 2021): 141–59. http://dx.doi.org/10.5566/ias.2593.

Повний текст джерела
Анотація:
Neutron radiography (NR) has been applied successfully to investigate different types of building materials, rock samples, sculptures, statues or monuments for since long. The utilization of neutron imaging for non-invasive investigations of cultural heritage objects is demonstrated on the example of ancient bricks found in Mahasthangarh and Sonargaon, two key archaeological sites in Bangladesh. The visualization of the internal structure of different brick samples, by means of Neutron Radiography (NR), has been experimented using the BTRR research reactor in Bangladesh - the only neutron imaging facility available in Bangladesh for R D purposes. Manufacturing building materials have become a very good option for business in developing countries like Bangladesh. Among the non-destructive testing (NDT) techniques, neutron radiography is the most common procedure to identify light and organic materials, homogeneity, any inclusion or voids or cracks etc. inside the structure. The radiographic images in a dry condition for individual samples have been investigated. The image analysis was performed using ImageJ software and texture features were extracted using gray level co-occurrence matrix implemented by MATLAB for acquiring qualitative and quantitative information from this inspection technique at a high level of accuracy. The results obtained by neutron imaging provide the statement that the brick sample from Mahasthangarh is more homogeneous inside.
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Williams, David L., Craig M. Brown, David Tong, Alexander Sulyman, and Charles K. Gary. "A Fast Neutron Radiography System Using a High Yield Portable DT Neutron Source." Journal of Imaging 6, no. 12 (November 26, 2020): 128. http://dx.doi.org/10.3390/jimaging6120128.

Повний текст джерела
Анотація:
Resolution measurements were made using 14.1 MeV neutrons from a high-yield, portable DT neutron generator and a neutron camera based on a scintillation screen viewed by a digital camera. Resolution measurements were made using a custom-built, plastic, USAF-1951 resolution chart, of dimensions 125 × 98 × 25.4 mm3, and by calculating the modulation transfer function from the edge-spread function from edges of plastic and steel objects. A portable neutron generator with a yield of 3 × 109 n/s (DT) and a spot size of 1.5 mm was used to irradiate the object with neutrons for 10 min. The neutron camera, based on a 6LiF/ZnS:Cu-doped polypropylene scintillation screen and digital camera was placed at a distance of 140 cm, and produced an image with a spatial resolution of 0.35 cycles per millimeter.
Стилі APA, Harvard, Vancouver, ISO та ін.
37

NAKANISHI, Tomoko M. "Neutron Beam Analysis and Its Application. X. Neutron Radiography. 6. Application of Neutron Radiography to Plant Research." RADIOISOTOPES 46, no. 8 (1997): 579–85. http://dx.doi.org/10.3769/radioisotopes.46.579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Mozafari Vanani, M. J., Y. Kasesaz, M. Hosseinipanah, and A. Akhound. "Collimated neutron beam design for TRR thermal column." Journal of Instrumentation 16, no. 12 (December 1, 2021): P12023. http://dx.doi.org/10.1088/1748-0221/16/12/p12023.

Повний текст джерела
Анотація:
Abstract Tehran Research Reactor (TRR) is the main neutron source in Iran which can be used for different applications of neutrons such as neutron radiography and neutron therapy. TRR has a thermal column which can provide high intensity flux of thermal neutrons for users. The aim of this study is to design a neutron collimator for TRR thermal column to produce parallel neutron beam with suitable intensity of thermal neutrons. To achieve this goal, Monte Carlo code of MCNX has been used to evaluate different configurations, geometries and materials of neutron collimator. The results show that the final selected configuration can provide a uniform thermal neutron beam with a flux of 1.21E+13 (cm-2·s-1) which is suitable for many different neutron applications.
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Brenizer, JS, MF Sulcoski, RW Jenkins, DD McRae, and RH Newman. "Observations of Density Variations in Tobacco Rods by Neutron Radiography." Beiträge zur Tabakforschung International/Contributions to Tobacco Research 14, no. 1 (December 1, 1987): 21–28. http://dx.doi.org/10.2478/cttr-2013-0580.

Повний текст джерела
Анотація:
AbstractNeutron radiography was used to study the density of tobacco rods. Density variations in individual rods caused by local packing variations and the presence of more dense materials in the blend were easily discernible in both static and real-time radiographs. A density resolution of 0.35 mm was observed in the real-time system. By averaging center line density scans for several rods with the aid of an image processor, large scale variations in the density such as the increased packing at the rod ends could be measured. Comparison of the results from neutron radiography with those obtained by cutting rods into sections and weighing the sections showed good agreement. Both methods indicated the lighting end was approximately 9 % more dense than the middle of the rod. This work has demonstrated that neutron radiography can be used to provide accurate density information about cigarette rods with considerably greater resolution and in much less time than sectioning and the commercial beta ray gauging technique.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

BARTON, J. P. "Filters For Thermal Neutron Radiography." Nondestructive Testing and Evaluation 16, no. 2-6 (January 2001): 95–110. http://dx.doi.org/10.1080/10589750108953067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

MIDDLETON, M. F., I. pÁZSIT, and M. SOLYMAR. "PETROPHYSICAL APPLICATIONS OF NEUTRON RADIOGRAPHY." Nondestructive Testing and Evaluation 16, no. 2-6 (January 2001): 321–33. http://dx.doi.org/10.1080/10589750108953087.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

IKEDA, Y., K. YAMAMOTO, and G. MATSUMOTO. "NEUTRON RADIOGRAPHY FOR Si3N4FINE CERAMICS." Nondestructive Testing and Evaluation 11, no. 2-3 (June 1994): 129–38. http://dx.doi.org/10.1080/10589759408952825.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Hayden, M. E., G. Archibald, P. D. Barnes, W. T. Buttler, D. J. Clark, M. D. Cooper, M. Espy, et al. "Neutron radiography of helium II." Physica B: Condensed Matter 329-333 (May 2003): 236–37. http://dx.doi.org/10.1016/s0921-4526(02)01974-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Hammer, J. "Regulatory aspects of neutron radiography." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 424, no. 1 (November 1999): 148–50. http://dx.doi.org/10.1016/s0168-9002(98)01323-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Cluzeau, S. "New prospect in neutron radiography." NDT & E International 25, no. 4-5 (August 1992): 233. http://dx.doi.org/10.1016/0963-8695(92)90254-e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Podurets, K. M., V. A. Somenkov, and S. Sh Shilstein. "Neutron radiography with refraction contrast." Physica B: Condensed Matter 156-157 (January 1989): 691–93. http://dx.doi.org/10.1016/0921-4526(89)90765-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Kuba, Attila, Lajos Rodek, Zoltán Kiss, László Ruskó, Antal Nagy, and Márton Balaskó. "Discrete tomography in neutron radiography." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 542, no. 1-3 (April 2005): 376–82. http://dx.doi.org/10.1016/j.nima.2005.01.164.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

McMahon, P. J., B. E. Allman, K. A. Nugent, D. L. Jacobson, M. Arif, and S. A. Werner. "Contrast mechanisms for neutron radiography." Applied Physics Letters 78, no. 7 (February 12, 2001): 1011–13. http://dx.doi.org/10.1063/1.1347387.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Chirco, P., and R. Rosa. "Guest Editorial Neutron Radiography Conference." IEEE Transactions on Nuclear Science 52, no. 1 (February 2005): 279. http://dx.doi.org/10.1109/tns.2005.846827.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Fantidis, J. G., G. E. Nicolaou, and N. F. Tsagas. "A transportable neutron radiography system." Journal of Radioanalytical and Nuclear Chemistry 284, no. 2 (March 25, 2010): 479–84. http://dx.doi.org/10.1007/s10967-010-0502-z.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії