Статті в журналах з теми "Radiogenic heat production"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Radiogenic heat production.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Radiogenic heat production".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Anonymous. "Radiogenic heat production in continental lithosphere”." Eos, Transactions American Geophysical Union 67, no. 32 (1986): 622. http://dx.doi.org/10.1029/eo067i032p00622-02.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jaupart, Claude, Jean-Claude Mareschal, and Lidia Iarotsky. "Radiogenic heat production in the continental crust." Lithos 262 (October 2016): 398–427. http://dx.doi.org/10.1016/j.lithos.2016.07.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Alexandrino, Carlos Henrique, Carlos Mirez Tarrillo, André Froede Silva, Juliana De Oliveira Batista, and Carlos Eduardo Cardoso Nogueira. "Thermal state of the lithosphere in Eastern Paraguay and in Andean Domain (South American Platform)." International Journal of Terrestrial Heat Flow and Applications 5, no. 1 (April 2, 2022): 55–61. http://dx.doi.org/10.31214/ijthfa.v5i1.87.

Повний текст джерела
Анотація:
Crustal thermal models that incorporate thermo-barometric data have been developed for estimating depth to 1300 ºC isotherm in two xenoliths provinces: Southeast Paraguay and Andean domain, in South American Platform. Uncertainties in model results has been minimized by imposing reasonable bounds on some of the key model parameters. Considering only the best fit results it is possible to infer average values for geothermal parameters at the surface. This imply heat flow of 86 mWm-2, radiogenic heat production of 1.8 µWm-3. Besides at Moho depth: heat flow of 21 mWm-2, radiogenic heat production of 4.5x10-3 µWm-3, temperature of from Southeast Paraguay. For the Andean Domain, we have the following values for the geothermal parameters: heat flow, 72 mWm-2, radiogenic heat production, 1.0 µWm-3 in surface and heat flow of 33 mWm-2, radiogenic heat production of 2.0x10-3 µWm-3 and temperature of 785ºC in Moho depth. The heat flux estimated for the southeastern Paraguay is higher than that for the Andean domain. This result is in agreement with differences in geological ages between these sites, since the age value for Paraguayan region is approximately 20% lower than the Andean one.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Aisabokhae, Joseph, and Moses Adeoye. "Spatial distribution of radiogenic heat in the Iullemmeden basin – Precambrian basement transition zone, NW Nigeria." Geology, Geophysics and Environment 46, no. 3 (January 19, 2021): 238. http://dx.doi.org/10.7494/geol.2020.46.3.238.

Повний текст джерела
Анотація:
The area which transcends the Precambrian basement complex onto the Sokoto sector of the Iullemme-den basin in northwestern Nigeria presents a unique prospect for geothermal exploration research in the absence of regional heat production data, despite its tectonic history and depositional characteristics. In this study, geophysical exploration employing radiometric technique was adopted to classify the petrologic units within the fringes of the Iullemmeden basin and the adjoining crystalline basement complex so as to estimate the radiogenic heat potential within the terrain that may support geothermal considerations. Airborne radiometric measurements acquired over the area were digitized and processed to obtain radioelement concentration maps and the K/Th/U ternary map. Results show that the ranges of measured concentrations of 40K, 238U and 232Th are 4.6 to 18.9%, 0.7 to 4.9 ppm and 4.6 to 18.9 ppm respectively. Radiogenic heat estimation derived from radioelement data within eight petrologic units comprising quaternary sediments, schist, carbonates, shale/clay, younger granites, older granites, gneissic rock and migmatite showed that the lowest radiogenic heat production estimates ranging from 0.27–0.66 μW∙m−3 were recorded in the sedimentary terrain within the quaternary sediments while the highest radiogenic heat production values of between 2.04 to 2.34 μW∙m−3 were recorded in the basement com-plex within gneissic rocks. The spatial distribution of radiogenic heat in the area showed an increased heat gradient within the basement complex and a diminishing heat gradient over the Iullemmeded basin.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hasterok, D., and J. Webb. "On the radiogenic heat production of igneous rocks." Geoscience Frontiers 8, no. 5 (September 2017): 919–40. http://dx.doi.org/10.1016/j.gsf.2017.03.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Gazzaz, M. A., and A. H. Hashad. "Radiogenic heat production and heat flow in the northern Arabian Shield." Journal of African Earth Sciences (and the Middle East) 13, no. 3-4 (January 1991): 323–32. http://dx.doi.org/10.1016/0899-5362(91)90096-h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Veikkolainen, Toni, and Ilmo T. Kukkonen. "Highly varying radiogenic heat production in Finland, Fennoscandian Shield." Tectonophysics 750 (January 2019): 93–116. http://dx.doi.org/10.1016/j.tecto.2018.11.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Jorand, C., K. Connors, L. Pryer, and C. Pietrucha. "A new spatially continuous basement heat flow map for NW Queensland." APPEA Journal 59, no. 2 (2019): 879. http://dx.doi.org/10.1071/aj18042.

Повний текст джерела
Анотація:
A recently released open file study of the depth-to-basement and basement heat flow is presented, which covers the Queensland portion of the South Nicholson Basin and includes basins underlying the Lawn Hill Platform and Georgina Basin. The present-day basement heat flow model is derived from an analysis of basement composition, structure and history, with the crustal radiogenic and mantle heat flow assessed separately. Resulting from an integrated, iterative interpretation and analysis of a wide range of publicly available spatially continuous geophysical and geological datasets, the heat flow model reproduces faithfully sharp and high-amplitude variations of the published heat flow at small distances. Variations are replicated through the integration of interpreted basement composition and a geologically driven determination of heat production within the radiogenic crustal layer. The values of mantle heat flow based on lithosphere thickness derived from seismic tomography models are consistent with published stable mantle heat flow under terranes of similar age. The long-wavelength regional variations can be attributed to the change in the thickness of the lithosphere. Regionally, the highest values of heat flow are found where radiogenic crust is the thickest and the composition is interpreted to comprise radiogenic intrusives.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Scharfenberg, Lars, Helga de Wall, and Wolfgang Bauer. "In situ gamma radiation measurements on Variscan granites and inferred radiogenic heat production, Fichtelgebirge, Germany." Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 167, no. 1 (March 1, 2016): 19–32. http://dx.doi.org/10.1127/zdgg/2016/0051.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Siregar, Rahmat Nawi, Maria Evalina Purba, and Ahmat Munawir Siregar. "Analisa Produksi Panas Radiogenik, Densitas dan Kecepatan Seismik dari Singkapan Batu Granit Panas Bumi Nyelanding, Bangka Selatan." Science, and Physics Education Journal (SPEJ) 3, no. 2 (June 29, 2020): 103–12. http://dx.doi.org/10.31539/spej.v3i2.1151.

Повний текст джерела
Анотація:
The purpose of this study was to determine the analysis of radiogenic heat production, density and seismic velocity of the outcrops of the South Bangka Nyelanding geothermal rock. The X-ray Fluorescence (XRF) method is applied to obtain heat-carrying radioactive elements in the form of Uranium, Thorium and Potassium and other oxides which are useful for studying seismic density and velocity. The main oxides used in this study were SiO2, TiO2, Al2O3, MgO, CaO, K2O and P2O5. The results showed that the density increased from the composition of the mineral felsic (acid) - mafic (base). Conclusion, as for the relationship with heat production, the SiO2 and P2O5 elements experienced a significant decrease compared to other oxides. As for seismic velocity, the results show that seismic velocity has a strong correlation with density. Keywords: Radiogenic Heat Production, Seismic Velocity, Density, Oxides
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Mareschal, Jean-Claude, and Claude Jaupart. "Radiogenic heat production, thermal regime and evolution of continental crust." Tectonophysics 609 (December 2013): 524–34. http://dx.doi.org/10.1016/j.tecto.2012.12.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Kukkonen, I. T. "Terrestrial heat flow and radiogenic heat production in Finland, the central Baltic Shield." Tectonophysics 164, no. 2-4 (August 1989): 219–30. http://dx.doi.org/10.1016/0040-1951(89)90015-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Hamza, Valiya, Fabio Vieira, Jorge Luiz dos Santos Gomes, Suze Guimaraes, Carlos Alexandrino, and Antônio Gomes. "Update of Brazilian Heat Flow Data, within the framework of a multiprong referencing system." International Journal of Terrestrial Heat Flow and Applications 3, no. 1 (March 10, 2020): 45–72. http://dx.doi.org/10.31214/ijthfa.v3i1.42.

Повний текст джерела
Анотація:
An updated heat-flow database for Brazil is presented providing details of measurements carried out at 406 sites. It has been organized as per the scheme proposed by the International Heat Flow Commission. The data sets refer to results obtained using methods referred to as interval temperature logs (ITL), underground mines (UMM), bottom-hole temperatures (BHT), stable bottom temperatures (SBT) and water wells (AQT). The compilation provides information on depths of temperature logs, gradient determinations, measurements of thermal conductivity and radiogenic heat production. Also included is information on the methods employed and error estimates of the main parameters. A new heat flow map of Brazil has been derived based on the updated data set. A multipronged system has been employed in citing references, where the indexing scheme adopted follows chronological order. It provides information not only on the primary work concerning heat flow determination but also later improvements in measurements of main parameters (temperature gradients, thermal conductivity and radiogenic heat production) as well as techniques employed in data analysis.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Hasterok, D., M. Gard, and J. Webb. "On the radiogenic heat production of metamorphic, igneous, and sedimentary rocks." Geoscience Frontiers 9, no. 6 (November 2018): 1777–94. http://dx.doi.org/10.1016/j.gsf.2017.10.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Čermák, Vladimír, and Louise Bodri. "Crustal thinning during rifting: a possible signature in radiogenic heat production." Tectonophysics 209, no. 1-4 (August 1992): 227–39. http://dx.doi.org/10.1016/0040-1951(92)90027-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Morgan, Paul. "Crustal radiogenic heat production and the selective survival of ancient continental crust." Journal of Geophysical Research 90, S02 (1985): C561. http://dx.doi.org/10.1029/jb090is02p0c561.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Wollenberg, H. A., and A. R. Smith. "Radiogenic heat production of crustal rocks: An assessment based on geochemical data." Geophysical Research Letters 14, no. 3 (March 1987): 295–98. http://dx.doi.org/10.1029/gl014i003p00295.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Veikkolainen, Toni, Ilmo T. Kukkonen, and Jens-Ove Näslund. "Radiogenic heat production analysis of Fennoscandian Shield and adjacent areas in Sweden." Geophysical Journal International 218, no. 1 (April 20, 2019): 640–54. http://dx.doi.org/10.1093/gji/ggz186.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Wang, H. S., T. Morel, S. P. Quanz, and S. J. Mojzsis. "Europium as a lodestar: diagnosis of radiogenic heat production in terrestrial exoplanets." Astronomy & Astrophysics 644 (November 24, 2020): A19. http://dx.doi.org/10.1051/0004-6361/202038386.

Повний текст джерела
Анотація:
Context. Long-lived radioactive nuclides, such as 40K, 232Th, 235U, and 238U, contribute to persistent heat production in the mantle of terrestrial-type planets. As refractory elements, the concentrations of Th and U in a terrestrial exoplanet are implicitly reflected in the photospheric abundances of the stellar host. However, a robust determination of these stellar abundances is difficult in practice owing to the general paucity and weakness of the relevant spectral features. Aims. We draw attention to the refractory, r-process element europium, which may be used as a convenient and practical proxy for the population analysis of radiogenic heating in exoplanetary systems. Methods. As a case study, we present a determination of Eu abundances in the photospheres of α Cen A and B with high-resolution HARPS spectra and a strict line-by-line differential analysis. To first order, the measured Eu abundances can be converted into the abundances of 232Th, 235U, and 238U with observational constraints, while the abundance of 40K is approximated independently with a Galactic chemical evolution model. Results. Our determination shows that europium is depleted with respect to iron by ~0.1 dex and to silicon by ~0.15 dex compared to solar in the two binary components. The loci of α Cen AB at the low-ends of both [Eu/Fe] and [Eu/Si] distributions of a large sample of FGK stars further suggest significantly lower potential of radiogenic heat production in any putative terrestrial-like planet (i.e. α-Cen-Earth) in this system compared to that in rocky planets (including our own Earth) that formed around the majority of these Sun-like stars. Based on our calculations of the radionuclide concentrations in the mantle and assuming the mantle mass to be the same as that of our Earth, we find that the radiogenic heat budget in an α-Cen-Earth is 73.4−6.9+8.3 TW upon its formation and 8.8−1.3+1.7 TW at the present day, which is 23 ± 5% and 54 ± 5% lower than that in the Hadean Earth (94.9 ± 5.5 TW) and in the modern Earth (19.0 ± 1.1 TW), respectively. Conclusions. As a consequence, mantle convection in an α-Cen-Earth is expected to be overall weaker than that of Earth (assuming other conditions are the same), and thus such a planet would be less geologically active, suppressing its long-term potential to recycle its crust and volatiles. With Eu abundances being available for a large sample of Sun-like stars, the proposed approach can extend our ability to predict the nature of other rocky worlds that can be tested by future observations.
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Pribnow, Dan F. C., and Helmuth R. Winter. "Radiogenic heat production in the upper third of continental crust from KTB." Geophysical Research Letters 24, no. 3 (February 1, 1997): 349–52. http://dx.doi.org/10.1029/96gl03929.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

He, Lijuan, Shengbiao Hu, Wencai Yang, and Jiyang Wang. "Radiogenic heat production in the lithosphere of Sulu ultrahigh-pressure metamorphic belt." Earth and Planetary Science Letters 277, no. 3-4 (January 2009): 525–38. http://dx.doi.org/10.1016/j.epsl.2008.11.022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Mareschal, J. C., C. Pinet, C. Gariépy, C. Jaupart, G. Bienfait, G. Dalla Coletta, J. Jolivet, and R. Lapointe. "New heat flow density and radiogenic heat production data in the Canadian Shield and the Quebec Appalachians." Canadian Journal of Earth Sciences 26, no. 4 (April 1, 1989): 845–52. http://dx.doi.org/10.1139/e89-068.

Повний текст джерела
Анотація:
New heat flow density (HFD) measurements were performed at 10 sites in Quebec. For five of the sites located in the Superior Province, the heat flow density varies between 24 and 35 mW/m2 (26 and 37 mW/m2 after adjustment for Pleistocene climatic variations). In the Grenville Province, the values obtained range between 25 and 28 mW/m2 (29 and 31 mW/m2 after adjustment). For two nearby sites in the Gaspé region (Appalachians), the heat flow density is 47 mW/m2 (48 mW/m2 after adjustment). Radiogenic heat production was also measured. At the sites located in the meta-volcano-sedimentary sequences of the Superior Province, the heat production is low (0.1–0.6 μW/m3) and it does not always correlate with the surface heat flow. In the Grenville Province, the HFD is close to (slightly higher than) the reduced heat flow of the Superior. The higher HFD in the Appalachians is partly explained by the higher crustal heat production, and partly by higher deep heat flow.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Alabi, O. O., F. O. Akinluyi ., M. O. Ojo ., and B. A. Adebo . "Radiogenic Heat Production of Rock from Three Rivers in Osun State of Nigeria." Journal of Applied Sciences 7, no. 12 (June 1, 2007): 1661–63. http://dx.doi.org/10.3923/jas.2007.1661.1663.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Adagunodo, T. A., O. G. Bayowa, M. R. Usikalu, and A. I. Ojoawo. "Radiogenic heat production in the Coastal Plain Sands of Ipokia, Dahomey Basin, Nigeria." MethodsX 6 (2019): 1608–16. http://dx.doi.org/10.1016/j.mex.2019.07.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Ray, Labani, Sukanta Roy, and R. Srinivasan. "High radiogenic heat production in the Kerala Khondalite Block, Southern Granulite Province, India." International Journal of Earth Sciences 97, no. 2 (November 24, 2007): 257–67. http://dx.doi.org/10.1007/s00531-007-0278-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Abbady, A. "Radiological hazard and radiogenic heat production in some building materials in upper Egypt." Journal of Radioanalytical and Nuclear Chemistry 268, no. 2 (May 2006): 243–46. http://dx.doi.org/10.1007/s10967-006-0160-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Burton-Johnson, A., J. A. Halpin, J. M. Whittaker, F. S. Graham, and S. J. Watson. "A new heat flux model for the Antarctic Peninsula incorporating spatially variable upper crustal radiogenic heat production." Geophysical Research Letters 44, no. 11 (June 12, 2017): 5436–46. http://dx.doi.org/10.1002/2017gl073596.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Bubu, A., and C. Ononugbo. "Radiogenic Heat Production Due to Natural Radionuclides in the Sediments of Bonny River, Nigeria." Journal of Scientific Research and Reports 17, no. 6 (February 3, 2018): 1–9. http://dx.doi.org/10.9734/jsrr/2017/39159.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Wollenberg, H. A., and A. R. Smith. "Correction to “Radiogenic heat production of crustal rocks: An assessment based on geochemical data,”." Geophysical Research Letters 15, no. 12 (November 1988): 1453. http://dx.doi.org/10.1029/gl015i012p01453.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Förster, Andrea, and Hans-Jürgen Förster. "Crustal composition and mantle heat flow: Implications from surface heat flow and radiogenic heat production in the Variscan Erzgebirge (Germany)." Journal of Geophysical Research: Solid Earth 105, B12 (December 10, 2000): 27917–38. http://dx.doi.org/10.1029/2000jb900279.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Drury, Malcolm, and Alan Taylor. "Some new measurements of heat flow in the Superior Province of the Canadian Shield." Canadian Journal of Earth Sciences 24, no. 7 (July 1, 1987): 1486–89. http://dx.doi.org/10.1139/e87-140.

Повний текст джерела
Анотація:
Borehole heat-flow measurements are reported from six new sites in the Superior Province of the Canadian Shield. Values adjusted for glaciation effects, but not for Holocene climatic variations, range from 42 to 56 mW/m2. When these new values are combined with 21 previously published borehole values the mean is 42 mW/m2 with a standard deviation of 11 mW/m2. The data for a site on the Lac du Bonnet batholith suggest that the batholith has a thin veneer, less than 3 km, of rock of high radiogenic heat production at the surface.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Ali, S., and D. M. Orazulike. "Well Logs-Derived Radiogenic Heat Production in the Sediments of the Chad Basin, NE Nigeria." Journal of Applied Sciences 10, no. 10 (May 1, 2010): 786–800. http://dx.doi.org/10.3923/jas.2010.786.800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Mohammadi, Nadia, Christopher R. M. McFarlane, and David R. Lentz. "U–Pb Geochronology of Hydrothermal Monazite from Uraniferous Greisen Veins Associated with the High Heat Production Mount Douglas Granite, New Brunswick, Canada." Geosciences 9, no. 5 (May 15, 2019): 224. http://dx.doi.org/10.3390/geosciences9050224.

Повний текст джерела
Анотація:
A combination of in situ laser ablation inductively coupled plasma–mass spectrometry (LA ICP–MS) analyses guided by Scanning Electron Microscope–Back-Scattered Electron imaging (SEM–BSE) was applied to hydrothermal monazite from greisen veins of the Late Devonian, highly evolved, uraniferous Mount Douglas Granite, New Brunswick, Canada. Understanding the uraniferous nature of the suite and characterizing the hydrothermal system that produced the associated mineralized greisen veins were the main goals of this study. The uraniferous nature of the Mount Douglas Granite is evident from previous airborne radiometric surveys, whole-rock geochemical data indicating high U and Th (2–22 ppm U; 19–71 ppm Th), the presence of monazite, zircon, xenotime, thorite, bastnaesite, and uraninite within the pluton and the associated hydrothermal greisen veins, as well as anomalous levels of U and Th in wolframite, hematite, and martite within greisen veins. New U–Pb geochronology of hydrothermal monazite coexisting with sulfide and oxide minerals yielded mineralization ages ranging from 344 to 368 Ma, with most of them (90%) younger than the crystallization age of the pluton (368 ± 3 Ma). The younger mineralization age indicates post-magmatic hydrothermal activities within the Mount Douglas system that was responsible for the mineralization. The production of uraniferous greisen veins by this process is probably associated with the High Heat Production (HHP) nature of this pluton, resulting from the radioactive decay of U, Th, and K. This heat prolongs post-crystallization hydrothermal fluid circulation and promotes the generation of hydrothermal ore deposits that are younger than the pluton. Assuming a density of 2.61 g/cm3, the average weighted mean radiogenic heat production of the Mount Douglas granites is 5.9 µW/m3 (14.1 HGU; Heat Generation Unit), in which it ranges from 2.2 µW/m3 in the least evolved unit, Dmd1, up to 10.1 µW/m3 in the most fractionated unit, Dmd3. They are all significantly higher than the average upper continental crust (1.65 µW/m3). The high radiogenic heat production of the Mount Douglas Granite, accompanied by a high estimated heat flow of 70 mW/m2, supports the assignment of the granite to a ‘hot crust’ (>7 HGU) HHP granite and highlights its potential for geothermal energy exploration.
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Najam, Laith Ahmed, Sheamaa T. Al Dbag, Howaida Mansour, and Taha Y. Wais. "Radiogenic heat production from natural radionuclides in sediments of the Tigris River in Mosul City, Iraq." International Journal of Nuclear Energy Science and Technology 1, no. 1 (2022): 1. http://dx.doi.org/10.1504/ijnest.2022.10049879.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Najam, Laith Ahmed, Sheamaa T. Al Dbag, Taha Yaseen Wais, and Howaida Mansour. "Radiogenic heat production from natural radionuclides in sediments of the Tigris river in Mosul City, Iraq." International Journal of Nuclear Energy Science and Technology 15, no. 3/4 (2022): 302. http://dx.doi.org/10.1504/ijnest.2022.126067.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Mohamed, Hassan, Hideki Mizunaga, Nasser Mohamed Abou Ashour, Refaat Ahmed Elterb, Ibrahim Mostafa Elalfy, and Ayman Shebel Elsayed. "Radiogenic heat production in Rudeis Formation, Lower Miocene, Belayim marine oil field, Gulf of Suez, Egypt." Exploration Geophysics 48, no. 4 (December 2017): 512–22. http://dx.doi.org/10.1071/eg15021.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Norden, Ben, and Andrea Foster. "Thermal conductivity and radiogenic heat production of sedimentary and magmatic rocks in the Northeast German Basin." AAPG Bulletin 90, no. 6 (June 2006): 939–62. http://dx.doi.org/10.1306/01250605100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Faccenda, Manuele, Taras V. Gerya, and Sumit Chakraborty. "Styles of post-subduction collisional orogeny: Influence of convergence velocity, crustal rheology and radiogenic heat production." Lithos 103, no. 1-2 (June 2008): 257–87. http://dx.doi.org/10.1016/j.lithos.2007.09.009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Roque, Arnaldo, and Fernando Brenha Ribeiro. "Radioactivity and radiogenic heat production in the sediments of the São Francisco sedimentary basin, Central Brazil." Applied Radiation and Isotopes 48, no. 3 (March 1997): 413–22. http://dx.doi.org/10.1016/s0969-8043(96)00228-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Aisabokhae, Joseph, and Hamman Tampul. "Statistical variability of radiation exposures from Precambrian basement rocks, NW Nigeria: Implication on radiogenic heat production." Scientific African 10 (November 2020): e00577. http://dx.doi.org/10.1016/j.sciaf.2020.e00577.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Al-Alfy, I. M., and M. A. Nabih. "3D slicing of radiogenic heat production in Bahariya Formation, Tut oil field, North-Western Desert, Egypt." Applied Radiation and Isotopes 73 (March 2013): 68–73. http://dx.doi.org/10.1016/j.apradiso.2012.11.019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Vilà, M., M. Fernández, and I. Jiménez-Munt. "Radiogenic heat production variability of some common lithological groups and its significance to lithospheric thermal modeling." Tectonophysics 490, no. 3-4 (July 2010): 152–64. http://dx.doi.org/10.1016/j.tecto.2010.05.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Kuforijimi, Olorunsola, and Christopher Aigbogun. "Assessment of Aero-radiometric Data of Southern Anambra Basin for the Prospect of Radiogenic Heat Production." Journal of Applied Sciences and Environmental Management 21, no. 4 (August 18, 2017): 743. http://dx.doi.org/10.4314/jasem.v21i4.15.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Verdoya, M., V. Pasquale, P. Chiozzi, and I. T. Kukkonen. "Radiogenic heat production in the Variscan crust: new determinations and distribution models in Corsica (northwestern Mediterranean)." Tectonophysics 291, no. 1-4 (June 1998): 63–75. http://dx.doi.org/10.1016/s0040-1951(98)00031-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Verdoya, Massimo, Paolo Chiozzi, Gianluca Gola, and Elie El Jbeily. "Conductive heat flow pattern of the central-northern Apennines, Italy." International Journal of Terrestrial Heat Flow and Applications 2, no. 1 (March 22, 2019): 37–45. http://dx.doi.org/10.31214/ijthfa.v2i1.33.

Повний текст джерела
Анотація:
We analyzed thermal data from deep oil exploration and geothermal boreholes in the 1000-7000 m depth range to unravel thermal regime beneath the central-northern Apennines chain and the surrounding sedimentary basins. We particularly selected deepest bottom hole temperatures, all recorded within the permeable carbonate Paleogene-Mesozoic formations, which represent the most widespread tectono-stratigraphic unit of the study area. The available temperatures were corrected for the drilling disturbanceand the thermal conductivity was estimated from detailed litho-stratigraphic information and by taking into account the pressure and temperature effect. The thermal resistance approach, including also the radiogenic heat production, was used to infer the terrestrial heat flow and to highlight possible advective perturbation due to groundwater circulation. Only two boreholes close to recharge areas argue for deep groundwater flow in the permeable carbonate unit, whereas most of the obtained heat-flow data may reflect the deep, undisturbed, conductive thermal regime.
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Iyer, Sundaram, and Valiya Hamza. "Paleo heat flow in areas of Sedimentary Exhalative (SEDEX) deposits of Eastern Brazil." International Journal of Terrestrial Heat Flow and Applications 2, no. 1 (March 21, 2019): 11–16. http://dx.doi.org/10.31214/ijthfa.v2i1.26.

Повний текст джерела
Анотація:
Representative values of fluid inclusion temperatures and radiogenic heat production values have been compiled as part of an attempt to determine paleo heat flow in areas sedimentary exhalative (SEDEX) deposits in thirteen localities of eastern Brazil. The results obtained indicate heat flow in excess of 80 mW/m2in areas of mineral bearing sulphide ore deposits, during periods of ore forming processes. Such anomalously high heat flow are more than twice the present-day values for stable tectonic units of Precambrian age. There are indications that high heat flow values were sustained by circulation of hydrothermal fluids in the upper crust, during periods not exceeding a few hundred million years. The resulting geothermal episodes may be considered as constituting short-period “heat pulses” occurring in stable tectonic environments, generated by magma emplacements in the upper crust, leading to formation of areas of sulfide ore deposits. Model simulations indicate that subsidence episodes induced by stretching and magma under-plating constitute the mechanisms for high heat flow during the ore-forming processes.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Adeola Margaret, Asere, and Sedara Samuel Omosule. "Determination of Natural Radioactivity Concentration and Radiogenic Heat Production in Selected Quarry Sites in Ondo State, Nigeria." NIPES Journal of Science and Technology Research 2, no. 3 (August 31, 2020): 256. http://dx.doi.org/10.37933/nipes/2.3.2020.26.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Pinet, Christophe, and Claude Jaupart. "The vertical distribution of radiogenic heat production in the Precambrian crust of Norway and Sweden: Geothermal implications." Geophysical Research Letters 14, no. 3 (March 1987): 260–63. http://dx.doi.org/10.1029/gl014i003p00260.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

BRADY, R., M. DUCEA, S. KIDDER, and J. SALEEBY. "The distribution of radiogenic heat production as a function of depth in the Sierra Nevada Batholith, California." Lithos 86, no. 3-4 (February 2006): 229–44. http://dx.doi.org/10.1016/j.lithos.2005.06.003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kukkonen, I. T., and R. Lahtinen. "Variation of radiogenic heat production rate in 2.8–1.8 Ga old rocks in the central Fennoscandian shield." Physics of the Earth and Planetary Interiors 126, no. 3-4 (November 2001): 279–94. http://dx.doi.org/10.1016/s0031-9201(01)00261-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії