Статті в журналах з теми "Radio waves"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Radio waves.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Radio waves".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Hodkinson, Liam, and Elizabeth Stitt. "Radio Waves." Index on Censorship 39, no. 2 (June 2010): 49–50. http://dx.doi.org/10.1177/03064220100390021001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Apple, Jacki, Regine Beyer, and Richard Kostelanetz. "Making Radio Waves." TDR (1988-) 36, no. 2 (1992): 7. http://dx.doi.org/10.2307/1146189.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rakusen, Sam. "Making radio waves!" Primary Teacher Update 2013, no. 18 (March 2013): 53. http://dx.doi.org/10.12968/prtu.2013.1.18.53b.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

O'Sullivan, Mike. "Making radio waves." A Life in the Day 10, no. 2 (May 2006): 6–8. http://dx.doi.org/10.1108/13666282200600013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Dyson, Frances. "Radio Art in Waves." Leonardo Music Journal 4 (1994): 9. http://dx.doi.org/10.2307/1513174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dixon, E. "Radio waves of progress." Engineering & Technology 4, no. 5 (March 14, 2009): 40–41. http://dx.doi.org/10.1049/et.2009.0506.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Wait, J. R. "Propagation Of Radio Waves." IEEE Antennas and Propagation Magazine 40, no. 2 (April 1998): 88. http://dx.doi.org/10.1109/map.1998.683546.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Friebele, Elaine. "“Seeing” with radio waves." Eos, Transactions American Geophysical Union 78, no. 30 (1997): 310. http://dx.doi.org/10.1029/97eo00203.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Storey, L. R. O. "Natural VLF radio waves." Planetary and Space Science 37, no. 8 (August 1989): 1021–22. http://dx.doi.org/10.1016/0032-0633(89)90058-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Jones, Dyfrig. "Natural VLF Radio Waves." Journal of Atmospheric and Terrestrial Physics 51, no. 2 (February 1989): 151. http://dx.doi.org/10.1016/0021-9169(89)90116-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Vasilev, Dragomir. "PROTECTION AGAINST THE ELECTROMAGNETIC STRENGTH OF THE RADIO WAVES IN COMMUNICATION RADIO NETWORKS." Journal Scientific and Applied Research 22, no. 1 (March 3, 2023): 50–55. http://dx.doi.org/10.46687/jsar.v22i1.340.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper presents protection methods against Electromagnetic straight of the radio waves in communication radio networks. Examples of personal protective equipment for monitoring EMF when working near transmitting devices. Personal Monitor. When an electric current flows through the human body, cells and tissues prevent the movement of charged particles. The value of the resistance depends on the type and condition of the cells, the value and frequency of the applied voltage and the duration.
12

Rybarczyk, R. Joseph, Alexandria E. D. Federick, Oleksandr Kokhan, Ryan Luckay, and Giovanna Scarel. "Probing electromagnetic wave energy with an in-series assembly of thermoelectric devices." AIP Advances 12, no. 4 (April 1, 2022): 045201. http://dx.doi.org/10.1063/5.0082749.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study the interaction of radio waves, microwaves, and infrared laser light of power P and period τ with a macroscopic thermoelectric (TEC) device-based detector and probe the energy Pτ as being the energy of these electromagnetic (EM) waves. Our detectors are in-series assemblies of TEC devices. We treat these detectors as equivalent to capacitors and/or inductors. The energy Pτ enables characterizing detector’s parameters, such as equivalent capacitance, inductance, resistance, responsivities, effective power, and efficiency. Through various scaling procedures, Pτ also aids in determining the power P of the EM waves. We compare the performance of our detectors with that of other TEC devices and with radio- and microwave-sensitive devices reported in the current literature, such as spin–orbit torque and spin–torque oscillator devices, heterojunction backward tunnel diodes, and Schottky diodes. We observe that the performance of our detectors is inferior. However, the order of magnitude of our detector’s parameters is in reasonable agreement with those of other TEC and non-TEC devices. We conclude that TEC devices can be used to detect radio waves and that Pτ effectively captures the energy of the EM waves. Considering Pτ as the EM wave’s energy offers a classical approach to the interaction of EM waves with matter in which photons are not involved. With the EM wave’s energy depending upon two variables (P and τ), a similar response could be produced by, e.g., radio waves and visible light, leading to interesting consequences that we briefly outline.
13

DeWALD, ERICH. "Taking to the Waves: Vietnamese society around the radio in the 1930s." Modern Asian Studies 46, no. 1 (December 20, 2011): 143–65. http://dx.doi.org/10.1017/s0026749x11000606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractCompared with other public media, the colonial state showed a relative lack of interest in radio broadcasting, which developed in Vietnam in the 1930s under the aegis of two organizations based in Hanoi and Saigon, the Radio-Club de l'Indochine du Nord and Radio Saigon. These two groups were largely responsible for the new technology's expansion and for determining the content of broadcasting. The groups actively consulted the growing radio public, and that vocal audience played a role in determining not just what was heard but also in the social life of radio in late-colonial Vietnam. The content of radio was limited to a non-political domain and this fact, along with the particular position that many radios took in the social geography of towns and cities, lent itself to the easy entry of the radio into day-to-day life. Indeed, the early history of radio in Vietnam is remarkable for how rapidly it became commonplace, even banal.
14

Bokoyo Barandja, Vinci de Dieu, Bernard Zouma, Auguste Oscar Mackpayen, Martial Zoungrana, Issa Zerbo, and Dieudonné Joseph Bathiebo. "Propagation of Electromagnetic Wave into an Illuminated Polysilicon PV Cell." International Journal of Antennas and Propagation 2020 (January 30, 2020): 1–7. http://dx.doi.org/10.1155/2020/6056712.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The increasing cohabitation between telecommunication antennas generating electromagnetic waves and solar panels poses the problem of interaction between these radio waves and solar cells. In order to study the effect of radio waves on the performance of a polycrystalline silicon solar cell in a three-dimensional approach, it is necessary to assess the attenuation of the radio wave in the illuminated polysilicon grain and also to find the expressions of its components. This work investigated the attenuation of radio waves into a polycrystalline silicon grain by analyzing, firstly, the behaviour of the penetration length of the radio waves into the polysilicon grain and secondly, the behaviour of the attenuation factor. The propagation of the radio waves into the polycrystalline silicon grain can be considered without attenuation that can be neglected.
15

Lyubarskii, Yu E. "Generation of pulsar radio emission." International Astronomical Union Colloquium 177 (2000): 387–88. http://dx.doi.org/10.1017/s0252921100060073.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractThe generation of radio emission from plasma waves excited by two-stream instability in pulsar magnetospheres is considered. Induced scattering transforms the excited longitudinal waves into waves that escape freely in the form of transverse electromagnetic waves. It is shown that the spectrum and the luminosity of the generated radio emission are compatible with those observed.
16

Ohtsuki, Tomoaki. "Monitoring Techniques with Radio Waves." IEICE Communications Society Magazine 11, no. 1 (2017): 24–29. http://dx.doi.org/10.1587/bplus.11.24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Lopez, Luciana. "Virtual Barcodes Use Radio Waves." JALA: Journal of the Association for Laboratory Automation 3, no. 2 (May 1998): 13–15. http://dx.doi.org/10.1177/221106829800300205.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The wrong additive in a specimen vial, for example, could not only give completely invalid results, it could also waste a given sample. While the automation, robotics, and electronics industries have been consistently helping laboratories improve identification and classification problems over the years, there has always been room for improvement. Now, however, a new technology stands poised to take identification solutions to a new level: radio frequency identification.
18

Lewis, Sian. "The power of radio waves." Nature Reviews Neuroscience 16, no. 10 (September 16, 2015): 578. http://dx.doi.org/10.1038/nrn4031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Osborne, Ian S. "Going quantum with radio waves." Science 363, no. 6431 (March 7, 2019): 1052.14–1054. http://dx.doi.org/10.1126/science.363.6431.1052-n.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Chalmers, Matthew. "Radio waves measure body water." Physics World 16, no. 3 (March 2003): 26–27. http://dx.doi.org/10.1088/2058-7058/16/3/38.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Barclay, L. W. "The Propagation of Radio Waves." Electronics and Power 32, no. 8 (1986): 610. http://dx.doi.org/10.1049/ep.1986.0365.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Barr, R., D. Llanwyn Jones, and C. J. Rodger. "ELF and VLF radio waves." Journal of Atmospheric and Solar-Terrestrial Physics 62, no. 17-18 (November 2000): 1689–718. http://dx.doi.org/10.1016/s1364-6826(00)00121-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Adawi, I. "Centennial of Hertz’ radio waves." American Journal of Physics 57, no. 2 (February 1989): 125–27. http://dx.doi.org/10.1119/1.16106.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Cairns, R. A., A. Kay, and A. W. Taylor. "Absorption of radio-frequency waves." Plasma Physics and Controlled Fusion 30, no. 1 (January 1, 1988): 11–19. http://dx.doi.org/10.1088/0741-3335/30/1/003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Bates, D. R. "The propagation of Radio Waves." Planetary and Space Science 34, no. 6 (June 1986): 573. http://dx.doi.org/10.1016/0032-0633(86)90097-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Bougeret, J. L. "Radio waves in the heliosphere." Advances in Space Research 13, no. 6 (June 1993): 191–203. http://dx.doi.org/10.1016/0273-1177(93)90409-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Pleukhov, A. N. "Nonreciprocity of radio waves in a meteor radio channel." Radiophysics and Quantum Electronics 31, no. 5 (May 1988): 395–99. http://dx.doi.org/10.1007/bf01043601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Shoji, Eiichi. "Development and Performance of a Battery-Free Disaster Prevention Radio “HOOPRA” Using the Energy Harvested from Radio Waves." Journal of Disaster Research 11, no. 3 (June 1, 2016): 593–98. http://dx.doi.org/10.20965/jdr.2016.p0593.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
A battery-free radio receiver, HOOPRA (<span class=”underline”>hoop</span> type <span class=”underline”>ra</span>dio), is proposed for acquiring information using middle wave AM radio broadcasting during unexpected power failures or disasters, with emphasis on wide coverage, immediate information acquisition, and energy saving. The HOOPRA utilizes middle waves for energy harvesting. As this radio is intended for use during disasters, the protection methods, receiving performance, and the applications of energy harvesting are reported in this paper. The HOOPRA is ring-shaped with a diameter of 20 cm when retracted, for portability and 60 cm when expanded, for usage and is lightweight (180 g). The HOOPRA works on the principle of a crystal radio but has an adequate receiving performance without an external antenna that is generally necessary for crystal radios and is portable. It could receive a radio broadcast within an area of radius 15 km from a transmitting station of the NHK Fukui Daiichi Broadcasting (JOFG, 5 kW). Further, the energy harvested from the middle waves utilizing the high sensitivity of the HOOPRA was found to light-up a white LED. In a field test with the HOOPRA, it was found that the receiving sensitivity was particularly enhanced near a tall building, probably owing to the diffraction effect of the radio waves. Use of this effect for enhancing the sensitivity of the battery-free radio is also explained.
29

Sharif, Radwan, Suleyman Gokhun Tanyer, Stephen Harrison, William Junor, Peter Driessen, and Rodney Herring. "Locating Earth Disturbances Using the SDR Earth Imager." Remote Sensing 14, no. 24 (December 18, 2022): 6393. http://dx.doi.org/10.3390/rs14246393.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The Radio Wave Phase Imager uses monitoring and recording concepts, such as Software Defined Radio (SDR), to image Earth’s atmosphere. The Long Wavelength Array (LWA), New Mexico Observatory is considered a high-resolution camera that obtains phase information about Earth and space disturbances; therefore, it was employed to capture radio signals reflected from Earth’s F ionization layer. Phase information reveals and measures the properties of waves that exist in the ionization layer. These waves represent terrestrial and solar Earth disturbances, such as power losses from power generating and distribution stations. Two LWA locations were used to capture the ionization layer waves, including University of New Mexico’s Long Wavelength Array’s LWA-1 and LWA-SV. Two locations of the measurements showed wavevector directions of disturbances, whereas the intersection of wavevectors determined the source of the disturbance. The research described here focused on measuring the ionization layer wave’s phase shifts, frequencies, and wavevectors. This novel approach is a significant contribution to determine the source of any disturbance.
30

Chernov, Gennady, and Valery Fomichev. "On the Issue of the Origin of Type II Solar Radio Bursts." Astrophysical Journal 922, no. 1 (November 1, 2021): 82. http://dx.doi.org/10.3847/1538-4357/ac1f32.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Type II solar radio bursts are among the most powerful events in the solar radio emission in the meter wavelength range. It is generally accepted that the agents generating type II radio bursts are magnetohydrodynamic shock waves. But the relationship between the shock waves and the other manifestations of the large-scale disturbances in the solar atmosphere (coronal mass ejections, Morton waves, EUW waves) remains unclear. To clarify a problem, it is important to determine the conditions of generation of type II radio bursts. Here, the model of the radio source is based on the generation of radio emission within the front of the collisionless shock wave where the Buneman instability of plasma waves is developed. In the frame of this model, the Alfvén magnetic Mach number must exceed the critical value, and there is a strict restriction on the perpendicularity of the front. The model allows us to obtain the information about the parameters of the shock waves and the parameters of the medium by the parameters of type II bursts. The estimates, obtained in this paper for several events with the band splitting of the fundamental and harmonic emission bands of the type II bursts, confirm the necessary conditions of the model. In this case the registration of type II radio bursts is an indication of the propagation of shock waves in the solar atmosphere, and the absence of type II radio bursts is not an indication of the absence of shock waves. Such a situation should be taken into account when investigating the relationship between type II radio bursts and other manifestations of solar activity.
31

Mann, G., C. Vocks, and A. Warmuth. "Type III radio bursts and excitation of Langmuir waves by energetic electrons." Astronomy & Astrophysics 660 (April 2022): A91. http://dx.doi.org/10.1051/0004-6361/202142804.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Context. Solar activity occurs not only in terms of the well-known 11-year Sun spot cycle but also in terms of short-lived phenomena as radio bursts. For instance, type III radio bursts are the most common phenomenon of this activity in the Sun’s radio radiation. In dynamic radio spectra, they appear as short-lived stripes of enhanced radio emission rapidly drifting from high to low frequencies. They are regarded as the radio signature of beams of energetic electrons travelling along magnetic field lines in the corona. The radio emission is thought to be plasma emission, that is to say the radio emission happens near the electron plasma frequency and/or its harmonics. Plasma emission means, that energetic electrons excite Langmuir waves, which convert into radio waves. Aims. Initially, energetic electrons are injected in a small region in the corona. Due to their spatio-temporal evolution, they develop a beam-like velocity distribution function (VDF), which is able to excite Langmuir waves. The aim of the paper is to study the spatio-temporal behaviour of the generation of Langmuir waves under coronal cirumstances and its effect on type III radio bursts. Methods. The generation of Langmuir waves is treated by means of the Maxwell-Vlasov equations. The results are discussed by employing plasma parameters usually found in the corona, for instance at the 150 MHz level. Results. The Langmuir waves associated with the type III bursts are not generated by a monoenergetic electron beam, but by a population of energetic electrons with a broad velocity distribution. Hence, the Langmuir waves are produced by different parts of the energetic electron population at different times and positions. Conclusions. In the case of type III bursts, the velocities derived from their drift rates in dynamic radio spectra are not the velocities of electrons, which generate the onset of the type III burst at a given frequency. That can lead to an apparent accelerated motion of the type III radio burst source.
32

Chimeh, Jahangir Dadkhah, Saeed Bashirzadeh Parapari, and Seyed Mohmoud Mousavinejad. "Millimetric Waves Technologies: Opportunities and Challenges." Key Engineering Materials 500 (January 2012): 263–68. http://dx.doi.org/10.4028/www.scientific.net/kem.500.263.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Providing an available wideband and better antenna beam forming are two good profits of millimeter wave (mmWave) technology. MmWave technology makes radio systems lighter and smaller and radars more precise. Today, commercial MmWave equipment work below 90GHz frequencies. MmWave radios work to transport Internat traffic in the backhaul of communication networks. There is a challenge in mmWave technology since the prices of equipment increases as the frequency increases. In this paper we study the applications of mmWave technology, its products, standards and compare it with other wireless technologies.
33

FABRIKANT, A. L., V. Yu TRAKHTENGERTS, Yu G. FEDOSEEV, V. O. RAPOPORT, and V. A. ZINICHEV. "Radio-acoustic sounding of the troposphere using short radio waves." International Journal of Remote Sensing 15, no. 2 (January 1994): 347–60. http://dx.doi.org/10.1080/01431169408954078.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Sugimoto (Stray Cats), Norihiro. "Looking for radio waves with a simple radio wave detector." Physics Teacher 49, no. 8 (November 2011): 514–15. http://dx.doi.org/10.1119/1.3651739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Cartlidge, Edwin. "Radio offers view of gravitational waves." Physics World 34, no. 2 (May 1, 2021): 5. http://dx.doi.org/10.1088/2058-7058/34/02/05.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Purwadi, A., and D. T. Utomo. "Radio waves-based landslide mitigation system." IOP Conference Series: Earth and Environmental Science 672, no. 1 (March 1, 2021): 012081. http://dx.doi.org/10.1088/1755-1315/672/1/012081.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Wilkie, Bill. "The Daintree Blockade: Making (radio) waves." Queensland Review 28, no. 2 (December 2021): 166–68. http://dx.doi.org/10.1017/qre.2022.13.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Radio log 11/8/84D5 crossing creek under Timbertop’s tree … continues to fill the creek crossing … If he continues to fill it high enough the D10 should go through. Looks like a moonscape where the dozers are working.
38

SHINOHARA, Naoki. "Energy Harvesting from Radio Waves(Rectenna)." Journal of the Surface Finishing Society of Japan 67, no. 7 (2016): 353–56. http://dx.doi.org/10.4139/sfj.67.353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Aydin, Ulkem. "From radio waves to gamma rays." Journal of Oral and Maxillofacial Radiology 1, no. 3 (2013): 93. http://dx.doi.org/10.4103/2321-3841.126676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Bradley, Richard. "The many uses of radio waves." Physics Today 72, no. 5 (May 2019): 60–61. http://dx.doi.org/10.1063/pt.3.4206.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Warrington, E. M., and T. B. Jones. "Propagation of low-frequency radio waves." IEE Proceedings - Microwaves, Antennas and Propagation 147, no. 1 (2000): 35. http://dx.doi.org/10.1049/ip-map:20000172.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Peterson, I. "Detecting Jupiter's Tug on Radio Waves." Science News 140, no. 19 (November 9, 1991): 294. http://dx.doi.org/10.2307/3975910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Hellemans, Alexander. "A new twist on radio waves." IEEE Spectrum 49, no. 5 (May 2012): 16–18. http://dx.doi.org/10.1109/mspec.2012.6189563.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Thibault, Ghislain. "Bolts and waves: representing radio signals." Early Popular Visual Culture 16, no. 1 (January 2, 2018): 39–56. http://dx.doi.org/10.1080/17460654.2018.1472621.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Kirschvink, Joseph L. "Radio waves zap the biomagnetic compass." Nature 509, no. 7500 (May 7, 2014): 296–97. http://dx.doi.org/10.1038/nature13334.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Gangadhara, R. T. "Reception of Radio Waves from Pulsars." Symposium - International Astronomical Union 218 (2004): 343–44. http://dx.doi.org/10.1017/s0074180900181343.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The beamed emission by relativistic sources moving along the magnetic dipolar field lines occurs in the direction of tangents to the field lines. To receive such a beamed radiation, the line of sight must align with the tangent within the beaming angle 1/γ, where γ is the particle Lorentz factor. By solving the viewing geometry, in an inclined and rotating dipole magnetic field, we show that at any given pulse phase the observer can receive the radiation only from specific altitudes. We find that the outer conal emission is received from higher altitudes than the inner conal components including the core. At any pulse phase, low frequency emission comes from the higher altitudes than higher-frequency emission. As an application of our model, we have used it to explain the emission heights of conal components in PSR B0329+54.
47

Page, Michael Le. "Radio waves slow roach body clocks." New Scientist 243, no. 3249 (September 2019): 18. http://dx.doi.org/10.1016/s0262-4079(19)31804-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Battersby, Stephen. "Radio waves warn of imminent storm." New Scientist 194, no. 2606 (June 2007): 16. http://dx.doi.org/10.1016/s0262-4079(07)61347-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Niemeyer, James E. "Controlling mouse metabolism by radio waves." Lab Animal 45, no. 6 (May 20, 2016): 198. http://dx.doi.org/10.1038/laban.1036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Kish, Laszlo B., and Robert D. Nevels. "Twisted Radio Waves and Twisted Thermodynamics." PLoS ONE 8, no. 2 (February 12, 2013): e56086. http://dx.doi.org/10.1371/journal.pone.0056086.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії