Дисертації з теми "Radiation-induced fibrosi"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся з топ-18 дисертацій для дослідження на тему "Radiation-induced fibrosi".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.
Meziani, Lydia. "Study of Interaction Between the Inflammatory Response and Radiation-Induced Fibrosis." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA11T041.
Повний текст джерелаRadiation-induced fibrosis (RIF) is a delayed complication of radiotherapy often associated with chronic inflammatory process and macrophage infiltration. Nowadays, macrophages are suggested to be important cellular contributors to fibrogenic process, but their implication in the context of RIF has never been investigated. In a previous study we have shown that irradiation (IR) induced the polarization of cardiac macrophages into M1 in ApoE-/- mice and was associated with a high fibrosis score in ApoE-/- mice, suggesting that macrophage polarization could drive tissue sensitivity to ionizing radiation. This observation prompted us to investigate the role of macrophages in RIF using a classical experimental model of lung fibrosis developed in C57Bl/6 mice after 16Gy thorax-IR. We profiled both alveolar macrophages (AM) and interstitial macrophages (IM). During the acute phase we found AM depletion associated with CXCL1, MCP-1 and M-CSF secretion, followed by a repopulation phase mediated by recruitment and proliferation of monocytes/macrophages from the bone marrow. Interestingly, the newly recruited AM exhibited a yet never described hybrid polarization (M1/M2), associated with the up-regulation of both Th1 and Th2 cytokines. At delayed times points, IM were M2-polarized and associated with downregulation of Th1 cytokines and upregulation of Th2 cytokines in tissue lysates. These results suggest a differential contribution of hybrid AM vs M2 IM to fibrogenesis. Interestingly, in contrast to activated hybrid AM, activated M2 IM were able to induce fibroblast activation in vitro mediated by an enhanced TGF-β1 expression. Therefore, specific depletion of hybrid AM using intranasal administration of clodrosome increased RIF score and enhanced M2 IM infiltration. We next evaluated if the fibrogenic process can in turn affect macrophage polarization. Interestingly, after coculture of irradiated fibroblast with non-irradiated pulmonary macrophages, secretion of cytokines such as M-CSF and TIMP-1, which can stimulate macrophage activation, was observed. Furthermore, RIF inhibition using pravastatin treatment showed that fibrosis inhibition was associated with a decrease in M2 IM accompanied by an increase in M1 IM, but had no effect on polarization of AM. These present study shows a dual and opposite contribution of alevolar versus intertitial macrophages in RIF and the contribution of the fibrogenic process to IM polarization, resulting thereby in a chronical fibrogenic loop
Hamama, Saad. "Radiation-induced fibrosis : Characterization of the anti-fibrotic mechanisms displayed by pentoxifylline/vitamin E." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA11T071.
Повний текст джерелаRadiation-induced fibrosis is a serious late complication of radiotherapy. Pentoxifylline-vitamin E has proven effective and safe in clinical trials as treatment of fibrosis, while the molecular mechanism of its activity is yet unexplored. We showed efficacy of Pentoxifylline-vitamin E combination in radiation-induced enteropathy in a small clinical study. In parallel, using a unique in vitro model of primary smooth muscle cells isolated from intestinal samples isolated from humans with radiation enteropathy we showed that pentoxifylline and the hydrophilic analogous of vitamin E (trolox) synergize to inhibit TGF-β1 protein and mRNA expression. This inhibitory action is mediated at the transcriptional level and leads to subsequent inhibition of TGF-β1/Smad targets (Col Iα1, FN1, PAI-1, CTGF), while it has no effect on the Rho/Rock pathway. We have also demonstrated, for the first time, an overexpression of the hypoxia-induced microRNA miR-210 in the fibrotic cells. Pentoxifylline-trolox combination could reverse this miR-210 overexpression in normoxic and hypoxic conditions. While miR-210 has not been previously shown to be involved in radiation-induced enteropathy, we showed that miR-210 inhibitor could reduce mRNA expression of Col Iα1. The anti-fibrotic effect of combined pentoxifylline-vitamin E is at least in part mediated by inhibition of the TGF-β1 cascade. MiR-210 inhibition is another mechanism which needs further investigations. This study strengthens previous clinical data showing pentoxifylline-vitamin E synergy and supports its use as a first-line treatment of radiation-induced fibrosis. Also, it suggests miR-210 as a new potential therapeutic target for the treatment of this complication
Kadokawa, Yoshio. "All-trans retinoic acid prevents radiation-or bleomycin-induced pulmonary fibrosis." Kyoto University, 2009. http://hdl.handle.net/2433/124297.
Повний текст джерелаOkoshi, Kae. "All-trans-retinoic acid attenuates radiation-induced intestinal fibrosis in mice." Kyoto University, 2008. http://hdl.handle.net/2433/135833.
Повний текст джерелаLemay, Anne-Marie. "Identification of bleomycin and radiation-induced pulmonary fibrosis susceptibility genes in mice." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:8881/R/?func=dbin-jump-full&object_id=92173.
Повний текст джерелаLavigne, Jérémy. "Changements phénotypiques des cellules endothéliales irradiées au cours du développement des lésions radiques pulmonaires." Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066308/document.
Повний текст джерелаRadiation-induced endothelial dysfunction is known to participate to the development of normal tissue damage. PAI- is implicated in the phenotypic changes of irradiated endothelial cells and KOendo mice are protected from radiation damage to the gut. Whole thorax of PAI-1 KOendo and floxed mice were exposed to 17 Gy. Histological analyzes showed that PAI-1 KOendo induces a worsening of injuries at 2 and 13 weeks. Consequently, contrary to the gut no protection from radiation-induced lung damage is observed in PAI-1 KOendo mice. Our second aim was to study the effects of a single high dose stereotactic irradiation on pulmonary tissues. Histological analyzes and scanner imaging show important injuries on the targeted volume. An ipsilateral edema can also be observed 2 weeks after irradiation. Ipsilateral lung is moreover importantly damaged. A thickening of alveolar septa is notably observable. A transcriptomic analysis show important similarities between tissues from the ipsilateral lung and the focal lesion. As really highly damages have been observed in both scanner and histological analyzes, we decided to perform forced physical activity test on treadmill. A drastic decrease of maximal distance traveled has been observed from two weeks. These experiments highlighted a deficiency in respiratory function and all of these results show the importance of non-targeted irradiated pulmonary volume in the development of radiation-induced fibrosis. Effect of an endothelium-specific deletion of HIF-1α has been investigated in this model of stereotactic irradiation. Only few differences have been observed between KOendo and control mice. Experiments are still ongoing
Cappuccini, Federica [Verfasser], and Verena [Akademischer Betreuer] Jendrossek. "Radiation-induced pneumonitis and fibrosis - Defining the role of immune cells and regulatory molecules / Federica Cappuccini ; Betreuer: Verena Jendrossek." Duisburg, 2017. http://d-nb.info/1141053586/34.
Повний текст джерелаDardaillon, Rémi. "Fibres optiques passives et actives sous irradiation : application à l'amplification et à la dosimétrie en environnement spatial." Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS052/document.
Повний текст джерелаErbium-doped optical fibers open up many applications, especially in the field of terrestrial and underwater telecommunications, with optical amplifiers. Nowadays, there is a real interest for the space industry to use these fibers in satellites. However, in order to use their full potential, qualification in radiative environments is to be carried out, this is the main focus of this PhD work. Thanks to the partnership with Draka-Prysmian group, we have a full access to a large diversity of specialty fibers, in terms of chemical compositions : this allows us to study their sensitivity to radiations, and to determine the important role of dopants and co-dopants in this sensitivity. A real-time study of it, associated with a qualification of pristine and irradiated optical samples, enables the detection of radiation-induced defects, and the understanding of their creation process, as a function of the fiber structure. This study provides a physical model describing the degradation and the recovery of these fibers, enhanced with an amplifier modeling. It allows the prediction of the quantitative behavior of specialty fiber-based amplifiers, in terms of gain and bandwidth, versus the chemical composition of the fibers used, for a typical space mission dose ; thus this modeling meets the needs of the spatial market key actors. Furthermore, the benefit of this work opens up another avenues for some larger opportunities, in various radiative environments, such as the medical field or the areas of nuclear facilities
Di, Francesca Diego. "Roles of dopants, interstitial O2 and temperature in the effects of irradiation on silica-based optical fibers." Thesis, Saint-Etienne, 2015. http://www.theses.fr/2015STET4002/document.
Повний текст джерелаIn this Thesis work we have investigated the effect of ionizing irradiation (X and γ rays) up to 1 Grad on different types of multimode optical fibers (P-doped, P-Ce-doped , Ge-doped, Ge-F-doped, Ge-Ce-doped, and N-doped). The experiments were carried out by three main experimental techniques: online Radiation Induced Attenuation (RIA), Electron Paramagnetic Resonance (EPR) and Confocal Micro-Luminescence (CML). In the first part of the Thesis work we report on the radiation response of several types of optical fibers. The absorption due to radiation induced P-related defects was studied by RIA in the UV-Visible domain. Moreover, by EPR measurements we were able to detect POHC, P1 and P2 defects. In particular, for the detection of P1 and P2 defects we have validated the use of EPR second-harmonic detection mode which allowed us to obtain the growth kinetics of P1 and P2 with the dose. The effects due to the variation of the drawing conditions of the fibers were investigated as well as the ones due to the change of the temperature of irradiation (from 25 to 280 °C). Finally, concerning the P-doped OFs, we report on the effects due to the Cerium codoping of the core of the optical fiber. We observed a reduced generation of POHC and P2 centers under irradiation. However, EPR investigation has shown that the generation of P1 defects is essentially unaffected by the Ce-codoping. Regarding Ge-doped optical fibers we report on three basic typologies: Ge-doped, Ge-F-doped and Ge-Ce-doped. For each fiber typology we investigated three drawing conditions. The radiation responses of these fibers were characterized by RIA and EPR measurements. Furthermore, performing CML measurements we were able to obtain further insight on the role of the co-dopants and of the defect precursors in determining the radiation induced defects. We have also investigated the radiation response of N-doped OFs (three drawing conditions). The radiation responses in the UV-Visible domains were obtained by RIA, and by EPR measurements we were able to detect the signals of two N-related defects at high radiation doses. Finally, CML measurements on irradiated samples have shown three emission bands in the visible domain which are tentatively assigned to N-related centers. In the second part of the Thesis we report on the effects of an O2 loading treatment produces on some of the investigated samples. By micro-Raman measurements we demonstrate that a high pressure high temperature treatment can incorporate high quantity of O2 into Pure-Silica-Core (PSC), F, Ge and P doped optical fibers. The radiation responses of some of the O2-loaded optical fibers were investigated with particular regard to the fluorine doped and pure-silica-core optical fibers. On the basis of literature data we performed band decompositions of the RIA spectra as a function of the dose. Moreover, the EPR study of the O2 loaded P-doped optical fiber have shown a strong reduction of the signals associated to the P1 and P2 defects as compared to the untreated fibers. In this part of the thesis we also report on the characterization of the near infrared radioluminescence (1272 nm) of O2 molecules embedded in the optical fiber matrix and the feasibility of a radiation sensor based on this phenomenon for environments characterized by high radiation doses and high dose-rates
Lecomte, Pierre. "Mesure haute température en environnement irradié par fibre optique utilisant l’effet Raman." Thesis, Perpignan, 2017. http://www.theses.fr/2017PERP0067/document.
Повний текст джерелаEDF is working on Raman distributed temperature sensing using optical fiber sensors in order to map temperature of nuclear power plants big components. The sensor has to sustain harsh environmental conditions (temperatures up to 350 °C and gamma ionizing radiations). Ionizing radiations can create structural defects inside the fiber’s core, which attenuate the light transmission. This phenomenon can lead to temperature measurements errors until no measurement is possible. As for high temperature, it can affect the fiber coating, which mitigate the fiber mechanical resistance.Gamma rays in situ irradiations have been carried out over commercial off-the-shelf multimode gold coated fibers protected with a stainless steel metal tubing, with two different radiation sources, in order to observe radiation-induced attenuation over dose rate or cumulated dose. Effects of gamma rays over gold coated optical fiber sensors have been observed at both room anhigh temperature.This experimental work enlightens that high temperature can be controlled with gold coated fibers, and that the radiation-induced attenuation downsides can efficiently be balanced with high temperature. Implementation of a Raman distributed temperature optical fiber sensor in such harsh environments becomes possible, as well as the associated estimation of measurement uncertainty
Vivona, Marilena. "Radiation hardening of rare-earth doped fiber amplifiers." Thesis, Saint-Etienne, 2013. http://www.theses.fr/2013STET4008.
Повний текст джерелаThis thesis is devoted to the study of the radiation response of optical amplifiers based on Er/Yb doped fibers. These devices operating at 1.5 µm are conceived for space applications and contextually the evaluation of their performance in such harsh environment becomes of crucial importance. Two treatments, the H2-loading and the Ce-doping of the fiber core, are investigated as radiation hardening solutions. A spectroscopic study has been associated, in order to improve the knowledge of the physical mechanisms responsible for the signal degradation and the action of the hardening solutions. The thesis is organized in three parts. Part I deals with a general description of the Rare-Earth (RE)-doped fibers, with the introduction of some basic concepts of the RE-ion physics and their interaction with the host matrix material (phosphosilicate glass). The state-of-art of the radiation effects on the optical fibers, particularly the RE- doped fibers, is also overviewed. Part II describes the samples (fiber fabrication, geometry and chemical compositions), and the used experimental techniques, including a short discussion on the related theoretical background. Part III describes the main results; firstly, the active tests, performed on the RE-doped fiber as part of an optical amplifier, demonstrate that the Ce-codoping and H2-load have a key-role in the limitation of the radiation induced losses. Then, the spectroscopic analysis of the phosphosilicate glass (Raman study) and of the RE-ions (stationary and time-resolved luminescence) show a stabilization effect due to the two treatments, leading to a preservation of the high efficiency of the physical system under study
Binatti, Eleonora. "Targeting macrophages with Astaxanthin-loaded microparticles: a strategy to attenuate radiation-induced fibrosis." Doctoral thesis, 2022. http://hdl.handle.net/11562/1061895.
Повний текст джерелаJhih-YunLiu and 劉芷妘. "Investigating the role of PTX3 in radiation-induced liver fibrosis." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/4w4849.
Повний текст джерелаWu, Chin-Jui, and 吳晉睿. "The Role of IL-6 trans-signaling pathway in Radiation-induced Pulmonary Fibrosis." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/70771199899466469962.
Повний текст джерела國立臺灣大學
臨床醫學研究所
104
Radiation-induced pulmonary fibrosis (RIPF) is a late side effect of thoracic radiotherapy with few effective treatments available. Fibrosis progression not only impedes further radiation treatment but also brings life-threatening condition. The pathophysiology of RIPF is not well understood, but elevated serum levels of IL-6 is a reliable marker for disease severity. Inhibition of IL-6 results in attenuation of pulmonary fibrosis in mice. However, it is unclear whether this is due to blockade of classical signaling, mediated by membrane-bound IL-6Rα(mIL-6Rα), or trans-signaling, mediated by soluble IL-6Rα (sIL-6Rα). Here, we assessed the role of sIL-6Rα in RIPF. We demonstrated activation of IL-6 trans-signaling in mice during the onset and progression of lung fibrosis. Using a mouse model of RIPF, we demonstrated that sgp130Tg mice had a remarkable reduction in RIPF and a lower death rate compared with wild type C57BL/6 mice. This observation was associated with an attenuation of pulmonary epithelial-to-mesenchymal transition (EMT) in sgp130Tg mice. In vitro, IL-6 trans-signaling stimulated phosphorylation of STAT3 and suppressed of E-cadherin expression in lung epithelial cells, effects relevant in the progression of pulmonary fibrosis. Taken together, these results provide the first evidence that IL-6 trans-signaling mediated signaling cascade plays an essential role in the pathogenesis of RIPF, and suggest that selective inhibition of IL-6 trans-signaling may be a novel therapeutic strategy for the management of RIPF.
(8781065), Daniel R. McIlrath. "A STUDY OF RADIATION-INDUCED PULMONARY FIBROSIS (RIPF) IN MOUSE MODELS USING DIAGNOSTIC IMAGING." Thesis, 2020.
Знайти повний текст джерелаRadiation-induced lung injury (RILI) is a common condition in the setting of lung and breast cancer. Often, patients who suffer from RILI experience pneumonitis and pulmonary fibrosis months after treatment. These pathologies have commonly been modeled using mice and observing their deterioration until mortality and quantifying pathology on histological sections.
With this study, we used a longitudinal microCT and a 7T MRI to characterize male C57Bl/6 mice irradiated with a single dose of 20 Gy to the whole thoracic area delivered by an X-Rad cabinent irradiator. CT was performed with a respiratory gating sequence at 2 week timepoints to construct an RIPF model. The fraction of RIPF to total lung volume was calculated at each time point from images, and the data was anaylzed using one-way ANOVA Welch and Dunnett’s T3 multiple comparisons tests. Tidal lung volumes were also calculated and anlyazed in a simlar manner. Mice were then imaged using MRI and CT at 0, 5, and 8 week timepoints to compare results. These results were analyzed for comparison (ANOVA and Dunnett’s T3) and correlation (Pearson’s r) with each other. Histology was later performed using H&E and Trichrome stains to provide ex-vivo verification of pathology. At the 10-12 week time point ( ) significant RIPF formed. Weeks proceeding showed increased significance until the 22+ week timepoint, which showed less statistical significance ( ) due to increased variance at this timepoint. Dunnett’s T3 test showed no significant differences between tidal lung volumes over time. Tests also showed no significant differences between CT and MRI results with a correlation coefficient of . Early in the study, problems arose when pre-marture mortality was occurring to a significant portion of our subjects. Analysis later showed issues during irradiation that resulted in significant dose being absorbed by the stomach. Adjusting our shiedling lead to increased early survival of our subjects enabling us to contine our study. Significant RIPF development was not significant until 10-12 weeks post-irradiation, then RIPF became more severe at proceeding timepoints. Tidal lung volume showed no significant deviation over the development of RIPF. This result is most likely affected by the variation of results at later timepoints, since several mice with severe RIPF were significantly hindered in their ability to breathe during the study. MRI results showed close correlation with CT results and prodcued similar values at early timepoints. However, noticeable differences were seen at later timepoints when significant RIPF developed ( ).
Gong, Ping. "The role of platelet derived growth factor (PDGF) in radiation induced lung fibrosis in vitro and in vivo /." 2004. http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=012991765&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA.
Повний текст джерелаChen, Yu-Ting, та 陳宇庭. "The mechanism of inhibitory effects of low molecular weight fucoidan on γ-radiation and TGF-β1 induced fibrosis". Thesis, 2018. http://ndltd.ncl.edu.tw/handle/u53z22.
Повний текст джерела國立臺灣海洋大學
食品科學系
106
Radiation-induced fibrosis (RIF) is one of the most common late complications of radiation therapy. This study was aimed to evaluate the possible protective effects of Low molecular weight fucoidan (LMF) against γ-radiation induced damage in vitro. It was observed that the exposure to γ-radiation dose-dependently caused a significant decrease in the cell viability. The pre-treatment and pos-treatment of LMF attenuated 1 Gy cytotoxicity. In addition, LMF also reduce γ-irradiation induced fibrosis responses, as indicated by the decreased production of TGF-β1, smad3, collagen-I, fibronectin and α-SMA signaling pathway has been reported to be a key mediator involved in γ-radiation-induced cellular fibrosis. TGF-β1 is a master regulator of γ-irradiation induced fibrosis. Thus, we use TGF-β1 proteins induced cellular fibrosis to determine the effects of LMF on fibrosis index and cellular morphology. LMF pre-treatment significantly reduced p-smad3 active and form heteromeric complexes with smad 4, collagen accumulation in cell fibrosis. The long/short axis ratio was evaluated to assess the morphological differences. It was observed that the exposure to TGF-β1 caused a significant decrease in the average ratio. The pre-treatment of LMF dose-dependently caused increase average ratio. We found that LMF effectively prevents RIF, which might be a new therapeutic methods that can be used in the prevention-treatment of RIF.
Kuo, Ger-Haur, та 郭哲豪. "Expression of TGFβR1, Smad3, Erk1/2 and CCN2 in Oral Cancer and Fractionated Radiation-Induced Fibrosis of DMBA-induced Hamster Buccal Pouch Cancer Model". Thesis, 2016. http://ndltd.ncl.edu.tw/handle/drnn99.
Повний текст джерела高雄醫學大學
牙醫學系碩士班
104
Oral squamous cell carcinoma (OSCC) is one of the most diagnosed malignancy of head and neck regions with growing morbidity, and mortality, while RIF (radiation induced fibrosis) is one of the most severe long-term effects of radiotherapy for oral cancer. Like other fibrotic diseases, which may be exaggerated for years even whole life. Present study was to investigate TGFβR1 (transforming growth factorβ receptor 1) and its’ potential downstream mediators in field of OSCC and fractionated RIF in DMBA (7, 12-dimetheyl benz[a]anthrance) induced hamster buccal pouch squamous cell carcinoma model. Thirty-six male golden Syrian hamsters were divided into five groups: DMBA + Radiation (DR), DMBA (D), Radiation (R), mineral oil (MO) and no treatment (N). Hamsters were induced buccal pouch cancer by topical application of DMBA for 12 weeks, and all the hamsters in the DR and RT groups received whole head irradiation by the linear accelerator with a total dose of 42Gy divided into 6 fractions, twice weekly. Immunohistochemistry and western blotting studies showed that TGFβR1 (transforming growth factorβ receptor 1), Smad3 (drosophila mothers against decapentaplegic protein 3), Erk1/2 (extracellular signal-regulated kinase 1/2), CCN2 (connective tissue growth factor) were highly expressed in cancer cells. The gross pouch tissues in the D & DR groups showed thickened and significant volume size shrinkage, histopathology/immunohistochemistry studies showed that D and DR groups were highly fibrotic, TGFβR1, Smad3, p-Smad3, Erk1/2, p-Erk1/2, CCN2 and α-SMA (α-smooth muscle actin) expressions were all statistically significantly increased when compared with N and R groups. Only Smad3, p-Smad3, and Erk1/2 were higher in DR group than in D group with marginally statistical significant (p=0.051). In conclusion, present study indicated TGFβR1, Smad3, Erk1/2, and CCN2 may be crucial in hamster buccal pouch OSCC and RIF. Though there was no direct evidence of association within upregulation of above proteins in our experiment, further study may be conducted toward these targets. DMBA-induced hamster buccal pouch cancer model could be employed to the study of OSCC and its radiation effects.