Добірка наукової літератури з теми "Radar Antennas Testing"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Radar Antennas Testing".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Radar Antennas Testing"
Wang, Bin, Shunan Wang, Dan Zeng, and Min Wang. "Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition." Electronics 11, no. 9 (April 26, 2022): 1383. http://dx.doi.org/10.3390/electronics11091383.
Повний текст джерелаWang, Bin, Shunan Wang, Dan Zeng, and Min Wang. "Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition." Electronics 11, no. 9 (April 26, 2022): 1383. http://dx.doi.org/10.3390/electronics11091383.
Повний текст джерелаWang, Bin, Shunan Wang, Dan Zeng, and Min Wang. "Convolutional Neural Network-Based Radar Antenna Scanning Period Recognition." Electronics 11, no. 9 (April 26, 2022): 1383. http://dx.doi.org/10.3390/electronics11091383.
Повний текст джерелаMARUDDANI, BASO, EFRI SANDI EFRI SANDI, and MUHAMMAD FADHIL NAUFAL SALAM. "Perancangan dan Optimasi Antena Vivaldi pada Sistem Radar Penembus Permukaan (Ground Penetrating Radar)." ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika 7, no. 1 (January 24, 2019): 151. http://dx.doi.org/10.26760/elkomika.v7i1.151.
Повний текст джерелаChipengo, Ushemadzoro, Peter M. Krenz, and Shawn Carpenter. "From Antenna Design to High Fidelity, Full Physics Automotive Radar Sensor Corner Case Simulation." Modelling and Simulation in Engineering 2018 (December 27, 2018): 1–19. http://dx.doi.org/10.1155/2018/4239725.
Повний текст джерелаBernatek-Jakiel, Anita, and Marta Kondracka. "Detection of Soil Pipes Using Ground Penetrating Radar." Remote Sensing 11, no. 16 (August 9, 2019): 1864. http://dx.doi.org/10.3390/rs11161864.
Повний текст джерелаLangston, Glen. "NRAO 43-m telescope operation at 170-1700 MHz: a Bi-Static Radar Collaboration." Proceedings of the International Astronomical Union 2, no. 14 (August 2006): 367. http://dx.doi.org/10.1017/s1743921307011015.
Повний текст джерелаGalajda, Pavol, Alena Galajdova, Stanislav Slovak, Martin Pecovsky, Milos Drutarovsky, Marek Sukop, and Ihab BA Samaneh. "Robot vision ultra-wideband wireless sensor in non-cooperative industrial environments." International Journal of Advanced Robotic Systems 15, no. 4 (July 1, 2018): 172988141879576. http://dx.doi.org/10.1177/1729881418795767.
Повний текст джерелаPryshchenko, Oleksandr A., Vadym Plakhtii, Oleksandr M. Dumin, Gennadiy P. Pochanin, Vadym P. Ruban, Lorenzo Capineri, and Fronefield Crawford. "Implementation of an Artificial Intelligence Approach to GPR Systems for Landmine Detection." Remote Sensing 14, no. 17 (September 5, 2022): 4421. http://dx.doi.org/10.3390/rs14174421.
Повний текст джерелаAjith, K. K., and Amitabha Bhattacharya. "Improving the GPR Detectability Using a Novel Loop Bowtie Antenna." Journal of Telecommunications and Information Technology, no. 3 (2017): 9–16. http://dx.doi.org/10.26636/jtit.2017.120917.
Повний текст джерелаДисертації з теми "Radar Antennas Testing"
Chong, Aaron A. "Complementary GPR antennas and watertank testing /." St. Lucia, Qld, 2001. http://www.library.uq.edu.au/pdfserve.php?image=thesisabs/absthe16096.pdf.
Повний текст джерелаEsswein, Lance C. "Genetic algorithm design and testing of a random element 3-D 2.4 GHZ phased array transmit antenna constructed of commercial RF microchips." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2003. http://library.nps.navy.mil/uhtbin/hyperion-image/03Jun%5FEsswein.pdf.
Повний текст джерелаThesis advisor(s): Michael Melich, David Jenn, Rodney Johnson. Includes bibliographical references (p. 113-115). Also available online.
May, Peter T. "VHF radar studies of the troposphere /." Title page, contents and summary only, 1986. http://web4.library.adelaide.edu.au/theses/09PH/09phm4666.pdf.
Повний текст джерелаChoudhary, Vipin. "Nondestructive testing and antenna measurements using UWB radar in industrial applications." Licentiate thesis, KTH, Teknisk informationsvetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291129.
Повний текст джерелаMånga branscher ersätter snabbt de manuella testoperationerna och går mot automatiserad drift med modern teknik. Modern teknik såsom digitalkameror, soniska sensorer, infraröda sensorer och radar och lidarsystem används för i icke-förstörande tester. Bland alla olika sensorerhar radarsystem förmågan att tränga igenom byggda strukturer (dielektriskmaterial), vilket gör dem flexibla och lämpliga för ett brettspektrum av industriella och militära applikationer vid icke-förstörande avkänning. Sådana exempel är upptäckt av skador vid tillverkning av varor, övervakning av hälsa hos många strukturer, detektering av objekt genom väggen av säkerhetsskäl etc. Speciellt är radarsystem med ultrabredband (UWB) fördelaktiga då de ger hög mätnoggrannhet och samtidigt minskad känslighet mot passiva störningar (såsom regn, rök,dimma etc.), och immunitet mot yttre strålning och buller. Syftet med denna avhandling är : I) att undersöka elektriskt små dolda struktur med syntetisk bländaradar (SAR), II) att bestämma komplex brytningsindex för objekt som använder UWB radarsystem, ochIII) att svar på frågan hur vi kan minska den ömsesidiga kopplingen(överhörning) i ett UWB radarsystem med sändar- och mottagarantenner nära varandra. I mål I, är målet icke-förstörande provning avbyggda struktures såsom vid tillverkning av betongplattor eller vid renovering. I tillägg kunde inte elektriskt små strukturer och deras inre struktur urskiljas i konventionella SAR-bilder. Den föreslagna polarimetriskaanalysmetoden visar på hur användbar singulärvärdesuppdelning(SVD) med bakåtprojektion (BPA) är för att få information om och för att klassificera elektriskt små objekt.Vidare i denna avhandling visas för mål II en ny metod för att bestämma komplexa brytningsindex (eller motsvarande komplexa relativa permittiviteten) hos objekt med plana ytor. Den föreslagna metoden är relativt okänslig för svagheter hos hårdvaran, såsom frekvensberoende hos antennener och analog front-end. Objekten kan vara av ändlig storlek och på ändligt avstånd. Begränsningarna i storlek och avstånd för metoden att vara giltig undersöktes experimentellt. Sålunda är metoden utformad för industriella mätningar på föremål på transportband. I de följande delarna av avhandlingen - mål III - undersöker och visar vi dessutom hur en absorbator för mikrovågor, baserad på metamaterial, kan användas för att förbättra prestanda hos ett radarsystem för korta avstånd, när absorbatorn placeras mellan sändar- och mottagantenner. Resultatet blir att felet i det bestämda avståndet till målet minskar och undertryckning av klotter ökar.
QC 20210309
Sterne, Kevin Tyler. "Testing the Re-designed SuperDARN HF Radar and Modeling of a Twin Terminated Folded Dipole Array." Thesis, Virginia Tech, 2010. http://hdl.handle.net/10919/32239.
Повний текст джерелаMaster of Science
Ben, Abdallah Rayen. "Statistical signal processing exploiting low-rank priors with applications to detection in Heterogeneous Environment." Thesis, Paris 10, 2019. http://www.theses.fr/2019PA100076.
Повний текст джерелаIn this thesis, we consider first the problem of low dimensional signal subspace estimation in a Bayesian context. We focus on compound Gaussian signals embedded in white Gaussian noise, which is a realistic modeling for various array processing applications. Following the Bayesian framework, we derive algorithms to compute both the maximum a posteriori and the so-called minimum mean square distance estimator, which minimizes the average natural distance between the true range space of interest and its estimate. Such approaches have shown their interests for signal subspace estimation in the small sample support and/or low signal to noise ratio contexts. As a byproduct, we also introduce a generalized version of the complex Bingham Langevin distribution in order to model the prior on the subspace orthonormal basis. Numerical simulations illustrate the performance of the proposed algorithms. Then, a practical example of Bayesian prior design is presented for the purpose of radar detection.Second, we aim to test common properties between low rank structured covariance matrices.Indeed, this hypothesis testing has been shown to be a relevant approach for change and/oranomaly detection in synthetic aperture radar images. While the term similarity usually refersto equality or proportionality, we explore the testing of shared properties in the structure oflow rank plus identity covariance matrices, which are appropriate for radar processing. Specifically,we derive generalized likelihood ratio tests to infer i) on the equality/proportionality ofthe low rank signal component of covariance matrices, and ii) on the equality of the signalsubspace component of covariance matrices. The formulation of the second test involves nontrivialoptimization problems for which we tailor ecient Majorization-Minimization algorithms.Eventually, the proposed detection methods enjoy interesting properties, that are illustrated on simulations and on an application to real data for change detection
May, Peter T. "VHF radar studies of the troposphere / by Peter T. May." Thesis, 1986. http://hdl.handle.net/2440/20636.
Повний текст джерелаGrant, Stephen Ian. "Medium frequency radar studies of meteors." 2003. http://thesis.library.adelaide.edu.au/public/adt-SUA20040224.152811.
Повний текст джерелаТези доповідей конференцій з теми "Radar Antennas Testing"
Guidi, Rodolfo, Antonio Sarri, Luca Fiori, and Andreina Armogida. "An optimized radar reflector antenna pair for field testing." In 2012 Loughborough Antennas & Propagation Conference (LAPC). IEEE, 2012. http://dx.doi.org/10.1109/lapc.2012.6403050.
Повний текст джерелаIversen, P., M. Boumans, and S. Burgos. "Mini compact range for automotive radar antenna testing." In 2012 6th European Conference on Antennas and Propagation (EuCAP). IEEE, 2012. http://dx.doi.org/10.1109/eucap.2012.6206672.
Повний текст джерелаKedzia, Jean-Claude, Philippe de Souza, and Dominique Gruyer. "Advanced RADAR sensors modeling for driving assistance systems testing." In 2016 10th European Conference on Antennas and Propagation (EuCAP). IEEE, 2016. http://dx.doi.org/10.1109/eucap.2016.7481398.
Повний текст джерелаPorter, Emily, Adam Santorelli, and Milica Popovic. "Time-domain microwave radar for breast screening: Initial testing with volunteers." In 2014 8th European Conference on Antennas and Propagation (EuCAP). IEEE, 2014. http://dx.doi.org/10.1109/eucap.2014.6901703.
Повний текст джерелаPeng, Gang, Tao Hong, Minghua Xue, and Jinjun Tian. "New Method of Velocity Compensation in a Stepped-Frequency Testing Radar." In 2006 7th International Symposium on Antennas, Propagation & EM Theory. IEEE, 2006. http://dx.doi.org/10.1109/isape.2006.353264.
Повний текст джерелаSalazar-Cerreno, Jorge L., Syed S. Jehangir, Antony Segales, Nafati Aboserwal, and Zeeshan Qamar. "An Ultrawideband UAV-Based Metrology Platform for In-situ EM Testing of Antennas, Radars, and Communication Systems." In 2022 IEEE Radar Conference (RadarConf22). IEEE, 2022. http://dx.doi.org/10.1109/radarconf2248738.2022.9764263.
Повний текст джерелаChong, Aaron A., Christopher J. Leat, and Glen F. Stickley. "Gain, impedance measurements, and dielectric loading of ground penetrating radar (GPR) antennas using a watertank testing facility." In 8th International Conference on Ground Penetrating Radar, edited by David A. Noon, Glen F. Stickley, and Dennis Longstaff. SPIE, 2000. http://dx.doi.org/10.1117/12.383545.
Повний текст джерелаYounp-Jin Park, Sung-Bae Cho, Kwan-Ho Kim, and Dong-Gi Youn. "Development of an ultra wideband ground penetrating radar (UWB GPR) for nondestructive testing of underground objects." In IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1330418.
Повний текст джерелаRocha, Carlos Junio, Renato Ribeiro, Pedro Miguel Cruz, and Paula Viana. "Automatized Solution for Over-the-Air (OTA) Testing and Validation of Automotive Radar Sensors." In 2019 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). IEEE, 2019. http://dx.doi.org/10.1109/apwc.2019.8870448.
Повний текст джерелаDonovan, William, David Mueller, Erik Runge, and W. Liu. "Structural Design, Analysis, and Testing of Vivaldi Ground Penetrating Radar Antennas for the Meridian UAS." In 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
16th AIAA/ASME/AHS Adaptive Structures Conference
10t. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2008. http://dx.doi.org/10.2514/6.2008-1832.