Добірка наукової літератури з теми "R-convexity"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "R-convexity".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "R-convexity":

1

Zhang, Tao, Alatancang Chen, Bo-Yan Xi, and Huan-Nan Shi. "The relationship between r-convexity and Schur-convexity and its application." Journal of Mathematical Inequalities, no. 3 (2023): 1145–52. http://dx.doi.org/10.7153/jmi-2023-17-74.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Zhao, Feng-Zhen. "The log-convexity of $r$-derangement numbers." Rocky Mountain Journal of Mathematics 48, no. 3 (June 2018): 1031–42. http://dx.doi.org/10.1216/rmj-2018-48-3-1031.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Nikoufar, Ismail. "A Perspective Approach for Characterization of Lieb Concavity Theorem." Demonstratio Mathematica 49, no. 4 (December 1, 2016): 463–69. http://dx.doi.org/10.1515/dema-2016-0040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Lieb’s extension theorem holds for generalized p + q ∈ [0; 1] and Ando convexity theorem holds for q - r > 1. In this paper, we give a complete characterization for concavity or convexity of Lieb well known theorem in the case where p + q ≥ 1 or p+q ≤ 0. We also characterize some auxiliary results including Ando theorem for q-r ≤ 1.
4

Quast, Peter, and Makiko Sumi Tanaka. "Convexity of reflective submanifolds in symmetric $R$-spaces." Tohoku Mathematical Journal 64, no. 4 (2012): 607–16. http://dx.doi.org/10.2748/tmj/1356038981.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hou, Qing-Hu, and Zuo-Ru Zhang. "Asymptotic r-log-convexity and P-recursive sequences." Journal of Symbolic Computation 93 (July 2019): 21–33. http://dx.doi.org/10.1016/j.jsc.2018.04.012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Yu-Liang, Shen. "On the weak uniform convexity of $Q(R)$." Proceedings of the American Mathematical Society 124, no. 6 (1996): 1879–82. http://dx.doi.org/10.1090/s0002-9939-96-03317-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rekic-Vukovic, Amra, and Nermin Okicic. "A convexity in R^2 with river metric." Gulf Journal of Mathematics 15, no. 2 (November 12, 2023): 25–39. http://dx.doi.org/10.56947/gjom.v15i2.1226.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this paper we consider the space R2 with the river metric d* and different types of convexity of this space. We define W-convex structure in (R2, d*) and we give the complete characterization of the convex sets in this space. We consider some measures of noncompactness and we give the moduli of noncompactness for considered measures on this space.
8

Sayed, Osama, El-Sayed El-Sanousy, and Yaser Sayed. "On (L,M)-fuzzy convex structures." Filomat 33, no. 13 (2019): 4151–63. http://dx.doi.org/10.2298/fil1913151s.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This paper defines a new class of L-fuzzy sets called r-L-fuzzy biconvex sets in (L,M)-fuzzy convex structures (X,C), where C is an (L,M)-fuzzy convexity on X, and some of their properties were studied. In addition, weintroduce (L,M)-fuzzy topological convexity space and study some of its properties. Finally, we introduce locally (L,M)-fuzzy topology (L,M)-fuzzy convexity space and study some of its properties.
9

Almutairi, Ohud, and Adem Kılıçman. "Generalized Integral Inequalities for Hermite–Hadamard-Type Inequalities via s-Convexity on Fractal Sets." Mathematics 7, no. 11 (November 6, 2019): 1065. http://dx.doi.org/10.3390/math7111065.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this article, we establish new Hermite–Hadamard-type inequalities via Riemann–Liouville integrals of a function ψ taking its value in a fractal subset of R and possessing an appropriate generalized s-convexity property. It is shown that these fractal inequalities give rise to a generalized s-convexity property of ψ . We also prove certain inequalities involving Riemann–Liouville integrals of a function ψ provided that the absolute value of the first or second order derivative of ψ possesses an appropriate fractal s-convexity property.
10

Geschke, Stefan, and Menachem Kojman. "Convexity numbers of closed sets in $\mathbb R^n$." Proceedings of the American Mathematical Society 130, no. 10 (March 25, 2002): 2871–81. http://dx.doi.org/10.1090/s0002-9939-02-06437-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "R-convexity":

1

Cotsakis, Ryan. "Sur la géométrie des ensembles d'excursion : garanties théoriques et computationnelles." Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5007.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
L'ensemble d'excursion EX(u) d'un champ aléatoire réel X sur R^d à un niveau de seuil u ∈ R est le sous-ensemble du domaine R^d où X dépasse u. Ainsi, l'ensemble d'excursion est aléatoire, et sa distribution à un niveau fixe u est déterminée par la distribution de X. Étant des sous-ensembles de R^d, les ensembles d'excursions peuvent être étudiés en termes de leurs propriétés géométriques comme moyen d'obtenir des informations partielles sur les propriétés de distribution des champs aléatoires sous-jacents.Cette thèse examine :(a) comment les mesures géométriques d'un ensemble d'excursion peuvent être déduites à partir d'un échantillon discret de l'ensemble d'excursion, et(b) comment ces mesures peuvent être liées aux propriétés distributionnelles du champ aléatoire à partir duquel l'ensemble d'excursion a été obtenu. Chacun de ces points est examiné en détail dans le Chapitre 1, qui fournit un aperçu global des résultats trouvés tout au long du reste de ce manuscrit. Les mesures géométriques que nous étudions (pour les ensembles d'excursion et les sous-ensembles déterministes de R^d) lors de l'adressage du point (a) sont la mesure de la surface de dimension (d−1), le reach, et le rayon de r-convexité. Chacune de ces quantités peut être liée à la régularité de la frontière de l'ensemble, ce qui est souvent difficile à déduire à partir d'échantillons discrets de points.Pour résoudre ce problème, nous apportons les contributions suivantes au domaine de la géométrie computationnelle :- Dans le Chapitre 2, nous identifions le facteur de biais qui correspond aux algorithmes de comptage local pour calculer la mesure de la surface de dimension (d − 1) des ensembles d'excursion sur une grande classe de pavages de R^d. Le facteur de biais dépend uniquement de la dimension d et non de la géométrie précise du pavage.- Dans le Chapitre 3, nous introduisons un algorithme de comptage pseudo-local pour calculer le périmètre des ensembles d'excursion en deux dimensions. L'algorithme proposé est convergent multigrille (multigrid convergent en anglais) et comporte un hyper paramètre réglable pouvant être choisi automatiquement à partir d'informations accessibles.- Dans le Chapitre 4, nous introduisons le β-reach en tant que généralisation du reach, et l'utilisons pour prouver la cohérence d'un estimateur du reach des sous-ensembles fermés de R^d. De même, nous définissons un estimateur cohérent du rayon de r-convexité des sous-ensembles fermés de R^d. De nouvelles relations théoriques sont établies entre le reach et le rayon de r-convexité. Nous étudions également comment ces mesures géométriques des ensembles d'excursion sont liées à la distribution du champ aléatoire.- Dans le Chapitre 5, nous introduisons l'extremal range : une statistique géométrique locale qui caractérise l'étendue spatiale des dépassements de seuil à un niveau fixe u ∈ R. La distribution de l'extremal range est entièrement déterminée par la distribution de l'ensemble d'excursion au niveau u. Nous montrons comment l'extremal range est liée distributionnellement aux volumes intrinsèques de l'ensemble d'excursion. De plus, le comportement limite de l'extremal range aux grands seuils est étudié en relation avec la stabilité des peaks-over-threshold du champ aléatoire sous-jacent. Enfin, la théorie est appliquée à des données climatiques réelles pour mesurer le degré d'indépendance asymptotique présent et sa variation dans l'espace.Des perspectives sur la manière dont ces résultats peuvent être améliorés et étendus sont fournies dans le Chapitre 6
The excursion set EX(u) of a real-valued random field X on R^d at a threshold level u ∈ R is the subset of the domain R^d on which X exceeds u. Thus, the excursion set is random, and its distribution at a fixed level u is determined by the distribution of X. Being subsets of R^d, excursion sets can be studied in terms of their geometrical properties as a means of obtaining partial information about the distributional properties of the underlying random fields.This thesis investigates(a) how the geometric measures of an excursion set can be inferred from a discrete sample of the excursion set, and(b) how these measures can be related back to the distributional properties of the random field from which the excursion set was obtained.Each of these points are examined in detail in Chapter 1, which provides a broad overview of the results found throughout the remainder of this manuscript. The geometric measures that we study (for both excursion sets and deterministic subsets of R^d) when addressing point (a) are the (d − 1)-dimensional surface area measure, the reach, and the radius of r-convexity. Each of these quantities can be related to the smoothness of the boundary of the set, which is often difficult to infer from discrete samples of points. To address this problem, we make the following contributions to the field of computational geometry:• In Chapter 2, we identify the bias factor in using local counting algorithms for computing the (d − 1)-dimensional surface area of excursion sets over a large class of tessellations of R^d. The bias factor is seen to depend only on the dimension d and not on the precise geometry of the tessellation.• In Chapter 3, we introduce a pseudo-local counting algorithm for computing the perimeter of excursion sets in two-dimensions. The proposed algorithm is multigrid convergent, and features a tunable hyperparameter that can be chosen automatically from accessible information.• In Chapter 4, we introduce the β-reach as a generalization of the reach, and use it to prove the consistency of an estimator for the reach of closed subsets of R^d. Similarly, we define a consistent estimator for the radius of r-convexity of closed subsets of R^d. New theoretical relationships are established between the reach and the radius of r-convexity.We also study how these geometric measures of excursion sets relate to the distribution of the random field.• In Chapter 5, we introduce the extremal range: a local, geometric statistic that characterizes the spatial extent of threshold exceedances at a fixed level threshold u ∈ R. The distribution of the extremal range is completely determined by the distribution of the excursion set at the level u. We show how the extremal range is distributionally related to the intrinsic volumes of the excursion set. Moreover, the limiting behavior of the extremal range at large thresholds is studied in relation to the peaks-over-threshold stability of the underlying random field. Finally, the theory is applied to real climate data to measure the degree of asymptotic independence present, and its variation throughout space.Perspectives on how these results may be improved and expanded upon are provided in Chapter 6

Книги з теми "R-convexity":

1

Berkovitz, Leonard David. Convexity and optimization in R [superscript n]. New York: J. Wiley, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "R-convexity":

1

Rapcsák, Tamás. "Geodesic Convexity on R + n." In Nonconvex Optimization and Its Applications, 167–83. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6357-0_10.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Demetriou, Ioannis C., and Evangelos E. Vassiliou. "On Distributed-Lag Modeling Algorithms by r-Convexity and Piecewise Monotonicity." In Optimization in Science and Engineering, 115–40. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0808-0_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Martínez-Pérez, Alvaro, Luis Montejano, and Deborah Oliveros. "Extremal Results on Intersection Graphs of Boxes in $${\mathbb R}^d$$ R d." In Convexity and Discrete Geometry Including Graph Theory, 137–44. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-28186-5_11.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Flavin, J. N. "Convexity considerations for the biharmonic equation in plane polars with applications to elasticity." In Nonlinear Elasticity and Theoretical Mechanics, 39–50. Oxford University PressOxford, 1994. http://dx.doi.org/10.1093/oso/9780198534860.003.0004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Solutions of the biharmonic equation are considered in the arch-like region 0 < θ < α < r < b in the presence of boundary conditions ϕ = ϕ = 0 on the edges r = a, r = b ((r, θ) denoting plane polar coordinates). A cross-sectional measure F(θ) of the solution is considered and is proved to be convex in 0 for b/a ≤ exp π. If, additionally, the condition ϕ = ϕθ = 0 obtains on the edge 0 = α, F(θ) satisfies an enhanced inequality (generalized convexity); upper bounds for F(θ) in terms of suitable data follow.

Тези доповідей конференцій з теми "R-convexity":

1

Wang, Ming-Zheng, and Wen-Li Li. "On Convexity of Service-Level Measures of the Discrete (r,Q) Inventory System." In Second International Conference on Innovative Computing, Informatio and Control (ICICIC 2007). IEEE, 2007. http://dx.doi.org/10.1109/icicic.2007.414.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

До бібліографії