Добірка наукової літератури з теми "Querying clinical database"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Querying clinical database".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Querying clinical database"

1

Nigrin, D. J., and I. S. Kohane. "Temporal Expressiveness in Querying a Time-stamp--based Clinical Database." Journal of the American Medical Informatics Association 7, no. 2 (March 1, 2000): 152–63. http://dx.doi.org/10.1136/jamia.2000.0070152.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Giardine, Belinda M., Philippe Joly, Serge Pissard, Henri Wajcman, David H. K. Chui, Ross C. Hardison, and George P. Patrinos. "Clinically relevant updates of the HbVar database of human hemoglobin variants and thalassemia mutations." Nucleic Acids Research 49, no. D1 (October 30, 2020): D1192—D1196. http://dx.doi.org/10.1093/nar/gkaa959.

Повний текст джерела
Анотація:
Abstract HbVar (http://globin.bx.psu.edu/hbvar) is a widely-used locus-specific database (LSDB) launched 20 years ago by a multi-center academic effort to provide timely information on the numerous genomic variants leading to hemoglobin variants and all types of thalassemia and hemoglobinopathies. Here, we report several advances for the database. We made clinically relevant updates of HbVar, implemented as additional querying options in the HbVar query page, allowing the user to explore the clinical phenotype of compound heterozygous patients. We also made significant improvements to the HbVar front page, making comparative data querying, analysis and output more user-friendly. We continued to expand and enrich the regular data content, involving 1820 variants, 230 of which are new entries. We also increased the querying potential and expanded the usefulness of HbVar database in the clinical setting. These several additions, expansions and updates should improve the utility of HbVar both for the globin research community and in a clinical setting.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Tradigo, G., P. Veltri, and S. Greco. "Geomedica: managing and querying clinical data distributions on geographical database systems." Procedia Computer Science 1, no. 1 (May 2010): 979–86. http://dx.doi.org/10.1016/j.procs.2010.04.108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

d’Acierno, Antonio, Angelo Facchiano, and Anna Marabotti. "GALT Protein Database: Querying Structural and Functional Features of GALT Enzyme." Human Mutation 35, no. 9 (July 23, 2014): 1060–67. http://dx.doi.org/10.1002/humu.22613.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hurdle, J. F., S. C. Haroldsen, A. Hammer, C. Spigle, A. M. Fraser, G. P. Mineau, and S. J. Courdy. "Identifying clinical/translational research cohorts: ascertainment via querying an integrated multi-source database." Journal of the American Medical Informatics Association 20, no. 1 (January 1, 2013): 164–71. http://dx.doi.org/10.1136/amiajnl-2012-001050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mudaranthakam, Dinesh Pal, Jeffrey Thompson, Jinxiang Hu, Dong Pei, Shanthan Reddy Chintala, Michele Park, Brooke L. Fridley, Byron Gajewski, Devin C. Koestler, and Matthew S. Mayo. "A Curated Cancer Clinical Outcomes Database (C3OD) for accelerating patient recruitment in cancer clinical trials." JAMIA Open 1, no. 2 (July 10, 2018): 166–71. http://dx.doi.org/10.1093/jamiaopen/ooy023.

Повний текст джерела
Анотація:
Abstract Data used to determine patient eligibility for cancer clinical trials often come from disparate sources that are typically maintained by different groups within an institution, use differing technologies, and are stored in different formats. Collecting data and resolving inconsistencies across sources increase the time it takes to screen eligible patients, potentially delaying study completion. To address these challenges, the Biostatistics and Informatics Shared Resource at The University of Kansas Cancer Center developed the Curated Cancer Clinical Outcomes Database (C3OD). C3OD merges data from the electronic medical record, tumor registry, bio-specimen and data registry, and allows querying through a single unified platform. By centralizing access and maintaining appropriate controls, C3OD allows researchers to more rapidly obtain detailed information about each patient in order to accelerate eligibility screening. This case report describes the design of this informatics platform as well as initial assessments of its reliability and usability.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Schwabe-Fry, Kristen, Mark Bollenbeck, Merilee Teylan, Duane Beekly, George Thomas, Janene Hubbard, Mary Jacka, Joylee Wu, Lilah M. Besser, and Walter A. Kukull. "THE NATIONAL ALZHEIMER'S COORDINATING CENTER: QUERYING THE DATABASE AND REQUESTING DATA." Alzheimer's & Dementia 13, no. 7 (July 2017): P158. http://dx.doi.org/10.1016/j.jalz.2017.06.2599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bollenbeck, Mark, Kristen Schwabe-Fry, Merilee Teylan, Duane Beekly, George Thomas, Janene Hubbard, Mary Jacka, Joylee Wu, Lilah M. Besser, and Walter A. Kukull. "[P1-555]: THE NATIONAL ALZHEIMER'S COORDINATING CENTER: QUERYING THE DATABASE AND REQUESTING DATA." Alzheimer's & Dementia 13, no. 7S_Part_10 (July 2017): P507. http://dx.doi.org/10.1016/j.jalz.2017.06.571.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Nagarakshitha, B. R., K. S. Lohith, K. P. Aarthy, Arjun Gopkumar, and Uma Satya Ranjan. "Application of NoSQL Technology to Facilitate Storing and Retrieval of Clinical Data Using IndexedDb in Offline Conditions." Journal of Computational and Theoretical Nanoscience 17, no. 9 (July 1, 2020): 4012–15. http://dx.doi.org/10.1166/jctn.2020.9010.

Повний текст джерела
Анотація:
Data collection is a very important aspect of any research, especially while dealing with the collection of clinical data. This paper presents a way to collect and manage clinical data using a web application with offline functionality. The whole application is an end-to-end PWA providing an interface to collect the data, store, and query. The available data is very huge and it is unstructured. To store it, a NoSQL database such as Cassandra is most suitable. The data will mostly be used for an OLAP system for querying the data, cleaning and performing analysis on it. In the process of collection of data, the application has to work under low or no bandwidth conditions for which a NoSQL system provided by most web browsers called IndexedDB, can be used to locally store data under offline conditions.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Dong, Qun, Feng Li, Yanjun Xu, Jing Xiao, Yingqi Xu, Desi Shang, Chunlong Zhang, et al. "RNAactDrug: a comprehensive database of RNAs associated with drug sensitivity from multi-omics data." Briefings in Bioinformatics 21, no. 6 (December 3, 2019): 2167–74. http://dx.doi.org/10.1093/bib/bbz142.

Повний текст джерела
Анотація:
Abstract Drug sensitivity has always been at the core of individualized cancer chemotherapy. However, we have been overwhelmed by large-scale pharmacogenomic data in the era of next-generation sequencing technology, which makes it increasingly challenging for researchers, especially those without bioinformatic experience, to perform data integration, exploration and analysis. To bridge this gap, we developed RNAactDrug, a comprehensive database of RNAs associated with drug sensitivity from multi-omics data, which allows users to explore drug sensitivity and RNA molecule associations directly. It provides association data between drug sensitivity and RNA molecules including mRNAs, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) at four molecular levels (expression, copy number variation, mutation and methylation) from integrated analysis of three large-scale pharmacogenomic databases (GDSC, CellMiner and CCLE). RNAactDrug currently stores more than 4 924 200 associations of RNA molecules and drug sensitivity at four molecular levels covering more than 19 770 mRNAs, 11 119 lncRNAs, 438 miRNAs and 4155 drugs. A user-friendly interface enriched with various browsing sections augmented with advance search facility for querying the database is offered for users retrieving. RNAactDrug provides a comprehensive resource for RNA molecules acting in drug sensitivity, and it could be used to prioritize drug sensitivity–related RNA molecules, further promoting the identification of clinically actionable biomarkers in drug sensitivity and drug development more cost-efficiently by making this knowledge accessible to both basic researchers and clinical practitioners. Database URL: http://bio-bigdata.hrbmu.edu.cn/RNAactDrug.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Querying clinical database"

1

Taylor, David. "The development, construction and querying of a dynamic clinical relational database." Thesis, Coventry University, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.404732.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

POZZANI, Gabriele. "Modeling and querying spatio-temporal clinical databases with multiple granularities." Doctoral thesis, 2011. http://hdl.handle.net/11562/351591.

Повний текст джерела
Анотація:
In molti campi di ricerca, i ricercatori hanno la necessità di memorizzare, gestire e interrogare dati spazio-temporali. Tali dati sono classici dati alfanumerici arricchiti però con una o più componenti temporali, spaziali e spazio-temporali che, con diversi possibili significati, li localizzano nel tempo e/o nello spazio. Ambiti in cui tali dati spazio-temporali devono essere raccolti e gestiti sono, per esempio, la gestione del territorio o delle risorse naturali, l'epidemiologia, l'archeologia e la geografia. Più in dettaglio, per esempio nelle ricerche epidemiologiche, i dati spazio-temporali possono servire a rappresentare diversi aspetti delle malattie e delle loro caratteristiche, quali per esempio la loro origine, espansione ed evoluzione e i fattori di rischio potenzialmente connessi alle malattie e al loro sviluppo. Le componenti spazio-temporali dei dati possono essere considerate come dei "meta-dati" che possono essere sfruttati per introdurre nuovi tipi di analisi sui dati stessi. La gestione di questi "meta-dati" può avvenire all'interno di diversi framework proposti in letteratura. Uno dei concetti proposti a tal fine è quello delle granularità. In letteratura c'è ampio consenso sul concetto di granularità temporale, di cui esistono framework basati su diversi approcci. D'altro canto, non esiste invece un consenso generale sulla definizione di un framework completo, come quello delle granularità temporali, per le granularità spaziali e spazio-temporali. Questa tesi ha lo scopo di riempire questo vuoto proponendo un framework per le granularità spaziali e, basandosi su questo e su quello già presente in letteratura per le granularità temporali, un framework per le granularità spazio-temporali. I framework proposti vogliono essere completi, per questo, oltre alle definizioni dei concetti di granularità spaziale e spazio-temporale, includono anche la definizione di diversi concetti legati alle granularità, quali per esempio le relazioni e le operazioni tra granularità. Le relazioni permettono di conoscere come granularità diverse sono legate tra loro, costruendone anche una gerarchia. Tali informazioni sono poi utili al fine di conoscere se e come è possibile confrontare dati associati e rappresentati con granularità diverse. Le operazioni permettono invece di creare nuove granularità a partire da altre granularità già definite nel sistema, manipolando o selezionando alcune loro componenti. Basandosi su questi framework, l'obiettivo della tesi si sposta poi sul mostrare come le granularità possano essere utilizzate per arricchire basi di dati spazio-temporali già esistenti al fine di una loro migliore e più ricca gestione e interrogazione. A tal fine, proponiamo qui una base di dati per la gestione dei dati riguardanti le granularità temporali, spaziali e spazio-temporali. Nella base di dati proposta possono essere rappresentate tutte le componenti di una granularità come definito nei framework proposti. La base di dati può poi essere utilizzata per estendere una base di dati spazio-temporale esistente aggiungendo alle tuple di quest'ultima delle referenze alle granularità dove quei dati possono essere localizzati nel tempo e/o nel spazio. Per dimostrare come ciò possa essere fatto, nella tesi introduciamo la base di dati sviluppata ed utilizzata dal Servizio Psichiatrico Territoriale (SPT) di Verona. Tale base di dati memorizza le informazioni su tutti i pazienti venuti in contatto con l'SPT negli ultimi 30 anni e tutte le informazioni sui loro contatti con il servizio stesso (per esempio: chiamate telefoniche, visite a domicilio, ricoveri). Parte di tali informazioni hanno una componente spazio-temporale e possono essere quindi analizzate studiandone trend e pattern nel tempo e nello spazio. Nella tesi quindi estendiamo questa base di dati psichiatrica collegandola a quella proposta per la gestione delle granularità. A questo punto i dati psichiatrici possono essere interrogati anche sulla base di vincoli spazio-temporali basati su granularità. L'interrogazione di dati spazio-temporali associati a granularità richiede l'utilizzo di un linguaggio d'interrogazione che includa, oltre a strutture, operatori e funzioni spazio-temporali per la gestione delle componenti spazio-temporali dei dati, anche costrutti per l'utilizzo delle granularità nelle interrogazioni. Quindi, partendo da un linguaggio d'interrogazione spazio-temporale già presente in letteratura, in questa tesi proponiamo anche un linguaggio d'interrogazione che permetta ad un utente di recuperare dati da una base di dati spazio-temporale anche sulla base di vincoli basati su granularità. Il linguaggio viene introdotto fornendone la sintassi e la semantica. Inoltre per mostrare l'effettivo ruolo delle granularità nell'interrogazione di una base di dati clinica, mostreremo diversi esempi di interrogazioni, scritte con il linguaggio d'interrogazione proposto, sulla base di dati psichiatrica dell'SPT di Verona. Tali interrogazioni spazio-temporali basate su granularità possono essere utili ai ricercatori ai fini di analisi epidemiologiche dei dati psichiatrici.
In several research fields, temporal, spatial, and spatio-temporal data have to be managed and queried with several purposes. These data are usually composed by classical data enriched with a temporal and/or a spatial qualification. For instance, in epidemiology spatio-temporal data may represent surveillance data, origins of disease and outbreaks, and risk factors. In order to better exploit the time and spatial dimensions, spatio-temporal data could be managed considering their spatio-temporal dimensions as meta-data useful to retrieve information. One way to manage spatio-temporal dimensions is by using spatio-temporal granularities. This dissertation aims to show how this is possible, in particular for epidemiological spatio-temporal data. For this purpose, in this thesis we propose a framework for the definition of spatio-temporal granularities (i.e., partitions of a spatio-temporal dimension) with the aim to improve the management and querying of spatio-temporal data. The framework includes the theoretical definitions of spatial and spatio-temporal granularities (while for temporal granularities we refer to the framework proposed by Bettini et al.) and all related notions useful for their management, e.g., relationships and operations over granularities. Relationships are useful for relating granularities and then knowing how data associated with different granularities can be compared. Operations allow one to create new granularities from already defined ones, manipulating or selecting their components. We show how granularities can be represented in a database and can be used to enrich an existing spatio-temporal database. For this purpose, we conceptually and logically design a relational database for temporal, spatial, and spatio-temporal granularities. The database stores all data about granularities and their related information we defined in the theoretical framework. This database can be used for enriching other spatio-temporal databases with spatio-temporal granularities. We introduce the spatio-temporal psychiatric case register, developed by the Verona Community-based Psychiatric Service (CPS), for storing and managing information about psychiatric patient, their personal information, and their contacts with the CPS occurred in last 30 years. The case register includes both clinical and statistical information about contacts, that are also temporally and spatially qualified. We show how the case register database can be enriched with spatio-temporal granularities both extending its structure and introducing a spatio-temporal query language dealing with spatio-temporal data and spatio-temporal granularities. Thus, we propose a new spatio-temporal query language, by defining its syntax and semantics, that includes ad-hoc features and constructs for dealing with spatio-temporal granularities. Finally, using the proposed query language, we report several examples of spatio-temporal queries on the psychiatric case register showing the ``usage'' of granularities and their role in spatio-temporal queries useful for epidemiological studies.
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Querying clinical database"

1

Kinn, Sue, and Tanya Siann. "Querying a database." In Computers and Clinical Audit, 75–82. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4899-6639-1_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Fang, Yilu, Jae Hyun Kim, Betina Ross Idnay, Rebeca Aragon Garcia, Carmen E. Castillo, Yingcheng Sun, Hao Liu, Cong Liu, Chi Yuan, and Chunhua Weng. "Participatory Design of a Clinical Trial Eligibility Criteria Simplification Method." In Studies in Health Technology and Informatics. IOS Press, 2021. http://dx.doi.org/10.3233/shti210325.

Повний текст джерела
Анотація:
Clinical trial eligibility criteria are important for selecting the right participants for clinical trials. However, they are often complex and not computable. This paper presents the participatory design of a human-computer collaboration method for criteria simplification that includes natural language processing followed by user-centered eligibility criteria simplification. A case study on the ARCADIA trial shows how criteria were simplified for structured database querying by clinical researchers and identifies rules for criteria simplification and concept normalization.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Jean-Baptiste, Lamy, Abdelmalek Mouazer, Karima Sedki, and Rosy Tsopra. "Translating the Observational Medical Outcomes Partnership – Common Data Model (OMOP-CDM) Electronic Health Records to an OWL Ontology." In MEDINFO 2021: One World, One Health – Global Partnership for Digital Innovation. IOS Press, 2022. http://dx.doi.org/10.3233/shti220035.

Повний текст джерела
Анотація:
The heterogeneity of electronic health records model is a major problem: it is necessary to gather data from various models for clinical research, but also for clinical decision support. The Observational Medical Outcomes Partnership – Common Data Model (OMOP-CDM) has emerged as a standard model for structuring health records populated from various other sources. This model is proposed as a relational database schema. However, in the field of decision support, formal ontologies are commonly used. In this paper, we propose a translation of OMOP-CDM into an ontology, and we explore the utility of the semantic web for structuring EHR in a clinical decision support perspective, and the use of the SPARQL language for querying health records. The resulting ontology is available online.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії