Статті в журналах з теми "Quasi monochromatic"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Quasi monochromatic.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Quasi monochromatic".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Mokhun, I., Yu Galushko, Ye Kharitonova, and Ju Viktorovskaya. "Energy currents for quasi-monochromatic fields." Ukrainian Journal of Physical Optics 13, no. 3 (2012): 151. http://dx.doi.org/10.3116/16091833/13/3/151/2012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Brucoli, Giovanni, Patrick Bouchon, Riad Haïdar, Mondher Besbes, Henri Benisty, and Jean-Jacques Greffet. "High efficiency quasi-monochromatic infrared emitter." Applied Physics Letters 104, no. 8 (February 24, 2014): 081101. http://dx.doi.org/10.1063/1.4866342.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Galeana-Sánchez, Hortensia, and Rocío Rojas-Monroy. "Monochromatic paths and quasi-monochromatic cycles in edge-coloured bipartite tournaments." Discussiones Mathematicae Graph Theory 28, no. 2 (2008): 285. http://dx.doi.org/10.7151/dmgt.1406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Galeana-Sánchez, Hortensia, Rocío Rojas-Monroy, and B. Zavala. "Monochromatic paths and monochromatic sets of arcs in quasi-transitive digraphs." Discussiones Mathematicae Graph Theory 30, no. 4 (2010): 545. http://dx.doi.org/10.7151/dmgt.1512.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Ahad, Lutful, Ismo Vartiainen, Tero Setälä, Ari T. Friberg, and Jari Turunen. "Quasi-monochromatic modes of quasi-stationary, pulsed scalar optical fields." Journal of the Optical Society of America A 34, no. 9 (August 2, 2017): 1469. http://dx.doi.org/10.1364/josaa.34.001469.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Diop, Babacar, and Vu Thien Binh. "Quasi-monochromatic field-emission x-ray source." Review of Scientific Instruments 83, no. 9 (September 2012): 094704. http://dx.doi.org/10.1063/1.4752406.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Baldelli, P., A. Taibi, A. Tuffanelli, and M. Gambaccini. "Quasi-monochromatic x-rays for diagnostic radiology." Physics in Medicine and Biology 48, no. 22 (October 24, 2003): 3653–65. http://dx.doi.org/10.1088/0031-9155/48/22/003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Uesugi, Kentaro, Toshihiro Sera, and Naoto Yagi. "Fast tomography using quasi-monochromatic undulator radiation." Journal of Synchrotron Radiation 13, no. 5 (August 12, 2006): 403–7. http://dx.doi.org/10.1107/s0909049506023466.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Savran, D., and J. Isaak. "Self-absorption with quasi-monochromatic photon beams." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 899 (August 2018): 28–31. http://dx.doi.org/10.1016/j.nima.2018.05.018.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Egorov, Yuriy, and Alexander Rubass. "Spin-Orbit Coupling in Quasi-Monochromatic Beams." Photonics 10, no. 3 (March 13, 2023): 305. http://dx.doi.org/10.3390/photonics10030305.

Повний текст джерела
Анотація:
We investigate the concept that the value of the spin-orbit coupling is the energy efficiency of energy transfer between orthogonal components. The energy efficiency changes as the beam propagates through the crystal. For a fundamental Gaussian beam, its value cannot exceed 50%, while the energy efficiency for Hermite–Gaussian and Laguerre–Gaussian beams of higher orders of the complex argument can reach a value close to 100%. For Hermite–Gauss and Laguerre–Gauss beams of higher orders of real argument, the maximum energy efficiency can only slightly exceed 50%. It is shown that zero-order Bessel–Gauss beams are able to achieve an energy efficiency close to 100% when generating an axial vortex in the orthogonal component in both monochromatic and polychromatic light, while for a polychromatic Laguerre–Gauss or Hermite–Gauss beam of a complex argument, the energy efficiency reduced to a value not exceeding 50%. The spin angular momentum is compensated by changing the orbital angular momentum of the entire beam, which occurs as a result of the difference in the topological charge of the orthogonally polarized component by 2 units.
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Pekur, D. V., V. M. Sorokin, Yu E. Nikolaenko, І. V. Pekur, and M. A. Minyaylo. "Determination of optical parameters in quasi-monochromatic LEDs for implementation of lighting systems with tunable correlated color temperature." Semiconductor Physics, Quantum Electronics and Optoelectronics 25, no. 3 (October 6, 2022): 303–14. http://dx.doi.org/10.15407/spqeo25.03.303.

Повний текст джерела
Анотація:
The paper proposes a new method for determining the optimal peak wavelengths of quasi-monochromatic LEDs, when they are combined with white broadband high-power LEDs in lighting systems with tunable correlated color temperature (CCT). Simulation of the resulting radiation spectrum was used to demonstrate the possibility to use the developed method in LED lighting systems with tunable parameters of the synthesized light. The study enables to determine the peak wavelengths of quasi-monochromatic LEDs (474 and 600 nm), which, when being combined with a basic white LED (Cree CMA 2550), allow controlling the widest CCT range. Quasi-monochromatic LEDs with particular optimal spectral parameters allow adjusting CCT within the range from 3098 up to 6712 K, while maintaining a high color rendering index (higher than 80) over the most part (3098 to 5600 K) of the regulation range.
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Yoneyama, Akio, Satoshi Takeya, Thet Thet Lwin, Daiko Takamatsu, Rika Baba, Kumiko Konishi, Ryusei Fujita, et al. "Advanced X-ray imaging at beamline 07 of the SAGA Light Source." Journal of Synchrotron Radiation 28, no. 6 (October 21, 2021): 1966–77. http://dx.doi.org/10.1107/s1600577521009553.

Повний текст джерела
Анотація:
The SAGA Light Source provides X-ray imaging resources based on high-intensity synchrotron radiation (SR) emitted from the superconducting wiggler at beamline 07 (BL07). By combining quasi-monochromatic SR obtained by the newly installed water-cooled metal filter and monochromatic SR selected by a Ge double-crystal monochromator (DCM) with high-resolution lens-coupled X-ray imagers, fast and low-dose micro-computed tomography (CT), fast phase-contrast CT using grating-based X-ray interferometry, and 2D micro-X-ray absorption fine structure analysis can be performed. In addition, by combining monochromatic SR obtained by a Si DCM with large-area fiber-coupled X-ray imagers, high-sensitivity phase-contrast CT using crystal-based X-ray interferometry can be performed. Low-temperature CT can be performed using the newly installed cryogenic system, and time-resolved analysis of the crystallinity of semiconductor devices in operation can be performed using a time-resolved topography system. The details of each instrument and imaging method, together with exemplary measurements, are presented.
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Hasegawa, Hiroaki, and Masanori Sato. "Acquisition of Quasi-Monochromatic Dual-Energy in a Microfocus X-ray Generator and Development of Applied Technology." Diagnostics 9, no. 1 (March 4, 2019): 27. http://dx.doi.org/10.3390/diagnostics9010027.

Повний текст джерела
Анотація:
In regenerative medicine, evaluation of bone mineral density using a microfocus X-ray generator could eventually be used to determine the degree of bone tissue regeneration. To evaluate bone mineral density against regenerated bone material, two low-energy X-rays are necessary. Herein, the acquisition of quasi-monochromatic, dual-energy soft X-ray and the subsequent medical application were examined using the K-absorption edges of two types of metal filters (i.e., zirconium and tin) in a microfocus X-ray generator. Investigation of the optimal tube voltage and filter thickness to form a quasi-monochromatic energy spectrum with a single filter revealed that a filter thickness of 0.3 mm results in an optimal monochromatization state. When a dual filter was used, the required filter thickness was 0.3 mm for tin and 0.2 mm for zirconium at a tube voltage of 35 kV. For the medical application, we measured quasi-monochromatic, dual-energy X-rays to evaluate the measurement accuracy of bone mineral density. Using aluminum as a simulated bone sample, a relative error of ≤5% was consistent within the aluminum thickness range of 1–3 mm. These data suggest that a bone mineral density indicator of recycled bone material can be easily obtained with the quasi-monochromatic X-ray technique using a microfocus X-ray generator.
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Karataev, P., G. Naumenko, A. Potylitsyn, M. Shevelev, and K. Artyomov. "Observation of quasi-monochromatic resonant Cherenkov diffraction radiation." Results in Physics 33 (February 2022): 105079. http://dx.doi.org/10.1016/j.rinp.2021.105079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Wang Rui-Rong, An Hong-Hai, Xiong Jun, Xie Zhi-Yong, and Wang Wei. "X-ray source with quasi-monochromatic parallel beam." Acta Physica Sinica 67, no. 24 (2018): 240701. http://dx.doi.org/10.7498/aps.67.20180861.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Domanski, A. W., D. Budaszewski, R. Cieslak, and T. R. Wolinski. "Bandwidth Measurement Method for Quasi-Monochromatic Light Sources." IEEE Transactions on Instrumentation and Measurement 58, no. 8 (August 2009): 2606–10. http://dx.doi.org/10.1109/tim.2009.2015637.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Omer, Mohamed, Toshiyuki Shizuma та Ryoichi Hajima. "Compton scattering of quasi-monochromatic γ-ray beam". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 951 (січень 2020): 162998. http://dx.doi.org/10.1016/j.nima.2019.162998.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Migliardo, M. "Quasi-monochromatic wave modulation in anisotropic dielectric media." International Journal of Non-Linear Mechanics 30, no. 6 (November 1995): 879–85. http://dx.doi.org/10.1016/0020-7462(95)00029-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Le Quéau, D., and A. Roux. "Quasi-monochromatic wave-particle interactions in magnetospheric plasmas." Solar Physics 111, no. 1 (March 1987): 59–80. http://dx.doi.org/10.1007/bf00145441.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Westphal, Maximillian S., Sara N. Lim, Sultana N. Nahar, Enam Chowdhury, and Anil K. Pradhan. "Broadband, monochromatic and quasi-monochromatic x-ray propagation in multi-Zmedia for imaging and diagnostics." Physics in Medicine & Biology 62, no. 16 (July 20, 2017): 6361–78. http://dx.doi.org/10.1088/1361-6560/aa7cd6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Nikitin, P. A. "Backward collinear acousto-optic diffraction of quasi-monochromatic radiation." Journal of Optical Technology 86, no. 3 (March 1, 2019): 133. http://dx.doi.org/10.1364/jot.86.000133.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Jost, Gregor, Tristan Mensing, Sven Golfier, Rüdiger Lawaczeck, Hubertus Pietsch, Joachim Hütter, Levent Cibik, et al. "Photoelectric-enhanced radiation therapy with quasi-monochromatic computed tomography." Medical Physics 36, no. 6Part1 (May 7, 2009): 2107–17. http://dx.doi.org/10.1118/1.3125137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Budagovsky, A. V., N. V. Solovykh, O. N. Budagovskaya, and I. A. Budagovsky. "Cell response to quasi-monochromatic light with different coherence." Quantum Electronics 45, no. 4 (April 27, 2015): 351–57. http://dx.doi.org/10.1070/qe2015v045n04abeh015594.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Baldelli, P., M. Gambaccini, A. Taibi, A. Tuffanelli, and C. Gilardoni. "Development of a quasi-monochromatic source for mammography applications." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 518, no. 1-2 (February 2004): 386–88. http://dx.doi.org/10.1016/j.nima.2003.11.029.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Onorato, M., D. Ambrosi, A. R. Osborne, and M. Serio. "Interaction of two quasi-monochromatic waves in shallow water." Physics of Fluids 15, no. 12 (December 2003): 3871–74. http://dx.doi.org/10.1063/1.1622394.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Vartiainen, Ismo, Jani Tervo, and Markku Kuittinen. "Depolarization of quasi-monochromatic light by thin resonant gratings." Optics Letters 34, no. 11 (May 22, 2009): 1648. http://dx.doi.org/10.1364/ol.34.001648.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Sato, E., Y. Hayasi, R. Germer, E. Tanaka, H. Mori, T. Kawai, T. Ichimaru, S. Sato, K. Takayama, and H. Ido. "Quasi-monochromatic parallel radiography utilizing a computed radiography system." Journal of Electron Spectroscopy and Related Phenomena 137-140 (July 2004): 705–11. http://dx.doi.org/10.1016/j.elspec.2004.02.008.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Jost, Gregor, Sven Golfier, Ruediger Lawaczeck, Hanns-Joachim Weinmann, Martin Gerlach, Levent Cibik, Michael Krumrey, et al. "Imaging-therapy computed tomography with quasi-monochromatic X-rays." European Journal of Radiology 68, no. 3 (December 2008): S63—S68. http://dx.doi.org/10.1016/j.ejrad.2008.04.040.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Broll, N. "Fundamental coefficient method applied to a quasi-monochromatic excitation." X-Ray Spectrometry 19, no. 4 (August 1990): 193–95. http://dx.doi.org/10.1002/xrs.1300190408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Pekur, I. V. "SPECTRAL PARAMETERS OF QUASI-MONOCHROMATIC LEDS FOR LIGHTING SYSTEMS WITH TUNABLE SPECTRAL COMPOSITION." Optoelektronìka ta napìvprovìdnikova tehnìka 57 (December 30, 2022): 145–51. http://dx.doi.org/10.15407/iopt.2022.57.145.

Повний текст джерела
Анотація:
In this paper, the influence on the parameters of the synthesized light of the full width at the half-height level of the spectra of additional quasi-monochromatic LEDs for LED clusters with adjustable correlated color temperature built on the basis of a combination of white broadband high-power LEDs and quasi-monochromatic LEDs with peak wavelengths of 474 and 600 nm is considered. It was shown that the construction of LED clusters with adjustable CCT with an increase in the full width at half the height of the spectrum of quasi-monochromatic LEDs increases the CIE Ra of the resulting radiation. At the same time, the spectrum of quasi-monochromatic LEDs with a smaller full width at half the height of the spectrum has a greater influence on the change in the CCT of the resulting light, and therefore the contribution of the luminous flux of such LEDs to the resulting radiation will be less. Given that the parameters of the light sources used to create the light environment in which a person is, depends on the secretion of the hormones melatonin and cortisol, which significantly affect the well-being and psychophysiological state of a person, it is becoming increasingly common to build lighting systems with adjustable correlated color temperature. At the same time, achieving high luminous efficiency of modern LED lighting systems often negatively affects the quality parameters of the light environment they create. Non-compliance of the spectral composition of light with human needs at a certain time of day can adversely affect the natural cycles of human biorhythms. The results of the work contribute to the development of further research in the direction of finding new ways to build modern powerful energy-efficient LED lighting systems.
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Mikula, P., and M. Vrána. "New type of versatile neutron diffractometer with a double-crystal monochromator system." Powder Diffraction 30, S1 (December 22, 2014): S41—S46. http://dx.doi.org/10.1017/s0885715614001201.

Повний текст джерела
Анотація:
Properties of a special double-crystal (DC) monochromator employing bent-perfect crystals of Si in (1, −1) and (n, −m) settings are presented. The first monochromator was the bent Si(111) crystal (4 mm thickness) and the second one was in the form of a sandwich consisting of two bent Si(111) and Si(220) slabs (2 and 1.3 mm thickness, respectively). It has been found that by a simple exchange of diffraction conditions on the second monochromator one can use either Si(111) + Si(111) bent crystals in (1, −1) setting providing good luminosity and worse diffractometer resolution or Si(111) + Si(220) bent crystals in quasi-dispersive (n, −m) setting providing very good diffractometer resolution and correspondingly weaker luminosity. It has been found that besides an excellent focusing and reflectivity properties of the dispersive double-bent-crystal setting the obtained monochromatic neutron current is sufficiently high for diffraction experiments even at the medium-power research reactor.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Choi, Cheong R., M. H. Woo, P. H. Yoon, D. Y. Lee, and K. S. Park. "Anomalous Proton Velocity Diffusion by Quasi-monochromatic Kinetic Alfvén Waves." Astrophysical Journal 910, no. 2 (April 1, 2021): 140. http://dx.doi.org/10.3847/1538-4357/abe859.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Bugai, A. N., and V. A. Khaliapin. "Behavior of quasi-monochromatic rectanglar pulses in a nonlinear medium." Bulletin of the Russian Academy of Sciences: Physics 79, no. 12 (December 2015): 1464–67. http://dx.doi.org/10.3103/s1062873815120102.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Hoover, Brian G. "Comparison of field correlations in multiply scattered quasi-monochromatic light." Applied Optics 39, no. 22 (August 1, 2000): 3978. http://dx.doi.org/10.1364/ao.39.003978.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Nguyen, Thanhhai, Xun Lu, Chang Jun Lee, Jin-Ho Jung, Gye-Hwan Jin, Sung Youb Kim, and Insu Jeon. "A mirror for lab-based quasi-monochromatic parallel x-rays." Review of Scientific Instruments 85, no. 9 (September 2014): 093110. http://dx.doi.org/10.1063/1.4896232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Baldelli, P., A. Taibi, A. Tuffanelli, M. C. Gilardoni, and M. Gambaccini. "A prototype of a quasi-monochromatic system for mammography applications." Physics in Medicine and Biology 50, no. 10 (April 27, 2005): 2225–40. http://dx.doi.org/10.1088/0031-9155/50/10/003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Iwatani, S., J. Kaneko, J. Hasegawa, H. Fukuda, R. He, Y. Saitoh, T. Sakai, T. Ogawa, and Y. Oguri. "Imaging by using proton-induced quasi-monochromatic X-ray emission." Science and Technology of Advanced Materials 5, no. 5-6 (January 2004): 597–602. http://dx.doi.org/10.1016/j.stam.2004.03.010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Oliva, P., B. Golosio, S. Stumbo, and M. Carpinelli. "Advantages of quasi-monochromatic X-ray sources in absorption mammography." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 608, no. 1 (September 2009): S106—S108. http://dx.doi.org/10.1016/j.nima.2009.05.043.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Baier, V. N., and V. M. Katkov. "Transition radiation as a source of quasi-monochromatic X-rays." Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 439, no. 1 (January 2000): 189–98. http://dx.doi.org/10.1016/s0168-9002(99)00825-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Biswas, Anjan. "Quasi–monochromatic dynamics of optical solitons having quadratic–cubic nonlinearity." Physics Letters A 384, no. 21 (July 2020): 126528. http://dx.doi.org/10.1016/j.physleta.2020.126528.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Jia, Zi-xun, Yong Shuai, Jia-hui Zhang, and He-ping Tan. "Mediating surface mode for intensive quasi-monochromatic evanescent wave tunneling." Journal of Quantitative Spectroscopy and Radiative Transfer 202 (November 2017): 58–63. http://dx.doi.org/10.1016/j.jqsrt.2017.07.017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Gevorgyan, L. A., and P. M. Pogosyan. "Quasi-monochromatic hard radiation in a spiral undulator with medium." Radiation Effects 91, no. 3-4 (May 1986): 275–81. http://dx.doi.org/10.1080/00337578608227603.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Shapiro, Jeffrey H. "Quasi-monochromatic bound on ultrashort light-pulse transmission through fog." Optics Letters 36, no. 17 (August 23, 2011): 3356. http://dx.doi.org/10.1364/ol.36.003356.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Lewis, C. L. S., and J. McGlinchey. "Quasi-monochromatic, projection radiography of dense laser driven spherical targets." Optics Communications 53, no. 3 (March 1985): 179–86. http://dx.doi.org/10.1016/0030-4018(85)90327-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Shan, Lican, Christian Mazelle, Karim Meziane, Magda Delva, Quanming Lu, Yasong S. Ge, Aimin Du, and Tielong Zhang. "Characteristics of quasi‐monochromatic ULF waves in the Venusian foreshock." Journal of Geophysical Research: Space Physics 121, no. 8 (August 2016): 7385–97. http://dx.doi.org/10.1002/2016ja022876.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Леунов, В. И., Л. Б. Прикупец, Т. А. Терешонкова, and М. Н. АльРукаби. "The effect of Phytopyramide lighting systems on the production and reaction of tomato hybrids to different spectra." Kartofel` i ovoshi, no. 7 (July 7, 2023): 23–27. http://dx.doi.org/10.25630/pav.2023.71.72.003.

Повний текст джерела
Анотація:
Цель исследования: сравнительная оценка гибридов томатов при выращивании на установке «Фитопирамида» при естественном и искусственном освещении и различных световых спектрах. Опыт 1 проводили в 2020 году во ВНИИО – филиале ФГБНУ ФНЦО (Московская область) в поликарбонатной теплице на многоярусной вегетационной трубной установке (МВТУ) «Фитопирамида». Были отобраны два крупноплодных гибрида томата F1Розанна и F1 Пламенный – детерминантного типа роста, отличающиеся по массе, окраске плода и скороспелости, селекции Агрофирмы «Поиск» (Россия). Опыт 2 с разными вариантами освещения проводили в 2021 году в лаборатории искусственного климата РГАУ – МСХА имени К.А. Тимирязева. Растения выращивали в вегетационных сосудах объемом 2 л с использованием субстрата на основе нейтрализованного верхового торфа. Были отобраны четыре гибрида селекции агрофирмы «Поиск»: F1Капитан (ультраранний), F1 Рафинад (раннеспелый), F1 Коралловый риф (среднеспелый) и F1 Огонь (средне-среднеспелый). В эксперименте было использовано семь вариантов освещения: 1. Квазимонохроматический красный; 2. Зеленый + синий; 3. Квазимонохроматический зеленый; 4. Синий + красный; 5. Зеленый + красный; 6. Квазимонохроматический синий; 7. Белый. Опыт 3 проводили в 2023 году в НПЦ «Светокультура». Выявлено, что квазимонохроматический красный свет более всего подходит для увеличения числа листьев томата до первой кисти по сравнению с квазимонохроматическим синим и квазимонохроматическим зеленым. Искусственное освещение оказало большее влияние на рост и развитие томата, чем естественное, и привело к увеличению товарной продуктивности 1 растения и товарной урожайности. У гибрида F1 Пламенный при искусственном освещении отмечено ускорение созревания на 7 дней. В то же время у растений гибрида F1 Розанна сроки созревания и число плодов были близки при искусственном и при естественном освещении. The purpose of the study: a comparative assessment of tomato hybrids when grown on the plant Phytopyramide under natural and artificial lighting and various light spectra. Experiment 1 was carried out in 2020 at the ARRIVG – branch of FSBSI FSVC (Moscow region) in a polycarbonate greenhouse on a multi-tiered vegetation pipe installation (MVPI) Phytopyramide. Two large-fruited tomato hybrids F1 Rozanna and F1 Plamennyi were selected – a determinant type of growth, differing in weight, color of the fruit and precocity, selection of the Poisk Agrofirm (Russia). Experiment 2 with different lighting options was carried out in 2021 in the laboratory of artificial climate of the RSAU – MTAA named after K.A. Timiryazev. The plants were grown in vegetative vessels with a volume of 2 liters using a substrate based on neutralized peat. Four hybrids of the selection of the Poisk Agrofirm were selected: F1 Kapitan (ultra-early), F1Rafinad (early-ripening), F1 Korallovyi rif (medium-ripe) and F1Ogon» (medium-ripe). Seven lighting options were used in the experiment: 1. Quasi-monochromatic Red; 2. Green + Blue; 3. Quasi-monochromatic Green; 4. Blue + Red; 5. Green + Red; 6. Quasi-monochromatic blue; 7. White. Experiment 3 was carried out in 2023 at the SPC «Svetokultura». It was revealed that quasi-monochromatic red light is most suitable for increasing the number of tomato leaves to the first brush in comparison with quasi-monochromatic blue and quasi-monochromatic green. Artificial lighting had a greater impact on the growth and development of tomatoes than natural lighting, and led to an increase in the commercial productivity of 1 plant and commercial yield. In the F1 Plamennyi hybrid, an acceleration of maturation by 7 days was noted under artificial lighting. At the same time, the plants of the F1 Rozanna hybrid had maturation dates and the number of fruits were close under artificial and natural lighting.
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Lai, Chang, Wei Li, Jiyao Xu, Xiao Liu, Wei Yuan, Jia Yue, and Qinzeng Li. "Extraction of Quasi-Monochromatic Gravity Waves from an Airglow Imager Network." Atmosphere 11, no. 6 (June 10, 2020): 615. http://dx.doi.org/10.3390/atmos11060615.

Повний текст джерела
Анотація:
An algorithm has been developed to isolate the gravity waves (GWs) of different scales from airglow images. Based on the discrete wavelet transform, the images are decomposed and then reconstructed in a series of mutually orthogonal spaces, each of which takes a Daubechies (db) wavelet of a certain scale as a basis vector. The GWs in the original airglow image are stripped to the peeled image reconstructed in each space, and the scale of wave patterns in a peeled image corresponds to the scale of the db wavelet as a basis vector. In each reconstructed image, the extracted GW is quasi-monochromatic. An adaptive band-pass filter is applied to enhance the GW structures. From an ensembled airglow image with a coverage of 2100 km × 1200 km using an all-sky airglow imager (ASAI) network, the quasi-monochromatic wave patterns are extracted using this algorithm. GWs range from ripples with short wavelength of 20 km to medium-scale GWs with a wavelength of 590 km. The images are denoised, and the propagating characteristics of GWs with different wavelengths are derived separately.
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Розанов, Н. Н. "Квазиоптическое уравнение в средах со слабым поглощением". Журнал технической физики 127, № 8 (2019): 283. http://dx.doi.org/10.21883/os.2019.08.48042.122-19.

Повний текст джерела
Анотація:
AbstractThe form of a quasi-optical equation for a beam of monochromatic radiation propagating through a layer of a weakly absorbing linear medium is analyzed. It is concluded that the standard form of this equation should be modified using an “effective diffusion coefficient.”
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Freimanis, Juris. "Polarized radiative transfer equation in some nontrivial coordinate systems." Proceedings of the International Astronomical Union 7, S283 (July 2011): 360–61. http://dx.doi.org/10.1017/s1743921312011428.

Повний текст джерела
Анотація:
AbstractExplicit expressions for the differential operator of stationary quasi-monochromatic polarized radiative transfer equation in Euclidean space with piecewise homogeneous real part of the effective refractive index are obtained in circular cylindrical, prolate spheroidal, elliptic conical, classic toroidal and simple toroidal coordinate system.
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Sugawa, Masao. "Nonlinear interaction of obliquely propagating Bernstein waves with electrons in a plasma." Journal of Plasma Physics 40, no. 1 (August 1988): 87–96. http://dx.doi.org/10.1017/s0022377800013131.

Повний текст джерела
Анотація:
We obtain analytical expression for the interaction of obliquely propagating Bernstein waves with electrons by using the monochromatic wave approximation for quasi-linear theory in a weakly turbulent plasma. A numerical analysis is also carried out. The waves show initially strong damping and irregular amplitude oscillation, and the electron velocity distribution shows a variation corresponding to one of the waves. These are results of the energy exchange between waves and electrons. Despite the use of the monochromatic wave approximation, strongly scattering electrons with a broad velocity spread about the resonant velocity by the wave is seen.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії