Статті в журналах з теми "Quasi-LPV Systems"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Quasi-LPV Systems.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Quasi-LPV Systems".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Pérez-Estrada, A. J., G. L. Osorio-Gordillo, M. Darouach, and V. H. Olivares-Peregrino. "Generalized dynamic observer design for quasi-LPV systems." at - Automatisierungstechnik 66, no. 3 (March 26, 2018): 225–33. http://dx.doi.org/10.1515/auto-2017-0060.

Повний текст джерела
Анотація:
Abstract This paper presents a new generalized dynamic observer (GDO) for quasi-linear parameter varying (LPV) systems. It generalises the structures of the proportional observer (PO) and proportional integral observer (PIO). The design of the GDO is derived from the solution of linear matrix inequalities (LMIs) and the solution of the algebraic constraints obtained from the estimation error analysis. The efficiency of the proposed approach is illustrated by a numerical example.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Lu, Yaohui, and Yaman Arkun. "Quasi-Min-Max MPC algorithms for LPV systems." Automatica 36, no. 4 (April 2000): 527–40. http://dx.doi.org/10.1016/s0005-1098(99)00176-4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Grimble, M. J., Pawel Majecki, and M. R. Katebi. "Extended NGMV Predictive Control of Quasi-LPV Systems." IFAC-PapersOnLine 50, no. 1 (July 2017): 4101–7. http://dx.doi.org/10.1016/j.ifacol.2017.08.795.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Robles, Ruben, Antonio Sala, and Miguel Bernal. "Performance-oriented quasi-LPV modeling of nonlinear systems." International Journal of Robust and Nonlinear Control 29, no. 5 (December 21, 2018): 1230–48. http://dx.doi.org/10.1002/rnc.4444.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wang, Xiao Ming, Alois Steiner, and Jan Fiala. "Linear Parameter-Varying Modeling of Electric Vehicle Air Conditioning System." Applied Mechanics and Materials 148-149 (December 2011): 318–25. http://dx.doi.org/10.4028/www.scientific.net/amm.148-149.318.

Повний текст джерела
Анотація:
This article presents the approach of quasi LPV (Linear Parameter-Varying) modeling techniques for an air conditioning system of an electric vehicle. Vehicle air conditioning systems are strongly non-linear systems and it is a challenging task to get a precise real time model for control purposes. Therefore, an LPV method is first introduced to estimate the air conditioning system. Experimental results show that the LPV model delivers a very high accuracy for the COP (Coefficient Of Performance) estimation, that can’t be reached by traditional identification methods. Some discussion about the model structure and its application are presented and a non-linear LPV model structure similar to the Hammerstein structure is proposed.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Polat, İ., İ. E. Köse, and E. Eşkinat. "Dynamic output feedback control of quasi-LPV mechanical systems." IET Control Theory & Applications 1, no. 4 (July 1, 2007): 1114–21. http://dx.doi.org/10.1049/iet-cta:20060326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Oehlschlägel, Thimo, Christian Heise, Stephan Theil, and Thomas Steffen. "Stability Analysis of Closed Loops of non-linear Systems and LPV Controllers designed using approximated Quasi-LPV Systems." IFAC Proceedings Volumes 45, no. 13 (2012): 349–54. http://dx.doi.org/10.3182/20120620-3-dk-2025.00165.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Coutinho, Pedro H. S., Márcia L. C. Peixoto, Miguel Bernal, Anh-Tu Nguyen, and Reinaldo M. Palhares. "Local Sampled-Data Gain-Scheduling Control of quasi-LPV Systems." IFAC-PapersOnLine 54, no. 4 (2021): 86–91. http://dx.doi.org/10.1016/j.ifacol.2021.10.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Huang, Hua, De Feng He, and Qiu Xia Chen. "Quasi-min-max dynamic output feedback MPC for LPV systems." International Journal of System Control and Information Processing 1, no. 3 (2014): 233. http://dx.doi.org/10.1504/ijscip.2014.059675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Arezki, H., A. Alessandri, and A. Zemouche. "Robust Moving-Horizon Estimation for Quasi-LPV Discrete-Time Systems*." IFAC-PapersOnLine 56, no. 2 (2023): 6771–76. http://dx.doi.org/10.1016/j.ifacol.2023.10.384.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Machala, Dawid, Simona Dobre, Marie Albisser, Floriane Collin, and Marion Gilson. "Quasi-LPV modelling of a projectile’s behaviour in flight." IFAC-PapersOnLine 51, no. 15 (2018): 1080–85. http://dx.doi.org/10.1016/j.ifacol.2018.09.050.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Ding, Baocang, Xubin Ping, and Hongguang Pan. "On dynamic output feedback robust MPC for constrained quasi-LPV systems." International Journal of Control 86, no. 12 (December 2013): 2215–27. http://dx.doi.org/10.1080/00207179.2013.809796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Pérez-Estrada, A. J., G. L. Osorio-Gordillo, M. Darouach, M. Alma, and V. H. Olivares-Peregrino. "Generalized dynamic observers for quasi-LPV systems with unmeasurable scheduling functions." International Journal of Robust and Nonlinear Control 28, no. 17 (August 27, 2018): 5262–78. http://dx.doi.org/10.1002/rnc.4309.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Grimble, Mike J., and Pawel Majecki. "Observer Based Restricted Structure Generalized Predictive Control for quasi-LPV Nonlinear Systems." IFAC-PapersOnLine 53, no. 2 (2020): 4264–71. http://dx.doi.org/10.1016/j.ifacol.2020.12.2480.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Alessandri, A., M. Zasadzinski, and A. Zemouche. "Optimistic vs Pessimistic Moving-Horizon Estimation for Quasi–LPV Discrete-Time Systems." IFAC-PapersOnLine 53, no. 2 (2020): 5004–9. http://dx.doi.org/10.1016/j.ifacol.2020.12.1096.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Meng Zhao, Canchen Jiang, Xiaoming Tang, and Minghong She. "Interpolation Model Predictive Control of Nonlinear Systems Described by Quasi-LPV Model." Automatic Control and Computer Sciences 52, no. 5 (September 2018): 354–64. http://dx.doi.org/10.3103/s0146411618050085.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Coutinho, Pedro H. S., Márcia L. C. Peixoto, Iury Bessa, and Reinaldo Martinez Palhares. "Dynamic event-triggered gain-scheduling control of discrete-time quasi-LPV systems." Automatica 141 (July 2022): 110292. http://dx.doi.org/10.1016/j.automatica.2022.110292.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Dehak, Amine, Anh-Tu Nguyen, Antoine Dequidt, Laurent Vermeiren, and Michel Dambrine. "A Reduced-Complexity Polytopic Control Approach for Uncertain quasi-LPV Descriptor Systems." IFAC-PapersOnLine 56, no. 2 (2023): 2176–81. http://dx.doi.org/10.1016/j.ifacol.2023.10.1124.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

López-Estrada, Francisco-Ronay, Damiano Rotondo, and Guillermo Valencia-Palomo. "A Review of Convex Approaches for Control, Observation and Safety of Linear Parameter Varying and Takagi-Sugeno Systems." Processes 7, no. 11 (November 4, 2019): 814. http://dx.doi.org/10.3390/pr7110814.

Повний текст джерела
Анотація:
This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Cisneros, Pablo S. G., Adwait Datar, Patrick Göttsch, and Herbert Werner. "Data-Driven quasi-LPV Model Predictive Control Using Koopman Operator Techniques." IFAC-PapersOnLine 53, no. 2 (2020): 6062–68. http://dx.doi.org/10.1016/j.ifacol.2020.12.1676.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Cisneros, Pablo S. G., and Herbert Werner. "Wide Range Stabilization of a Pendubot using quasi-LPV Predictive Control." IFAC-PapersOnLine 52, no. 28 (2019): 164–69. http://dx.doi.org/10.1016/j.ifacol.2019.12.367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
22

Cisneros, Pablo S. G., Aadithyan Sridharan, and Herbert Werner. "Constrained Predictive Control of a Robotic Manipulator using quasi-LPV Representations." IFAC-PapersOnLine 51, no. 26 (2018): 118–23. http://dx.doi.org/10.1016/j.ifacol.2018.11.158.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Ping, Xubin, and Ning Sun. "Dynamic Output Feedback Robust Model Predictive Control via Zonotopic Set-Membership Estimation for Constrained Quasi-LPV Systems." Journal of Applied Mathematics 2015 (2015): 1–12. http://dx.doi.org/10.1155/2015/875850.

Повний текст джерела
Анотація:
For the quasi-linear parameter varying (quasi-LPV) system with bounded disturbance, a synthesis approach of dynamic output feedback robust model predictive control (OFRMPC) is investigated. The estimation error set is represented by a zonotope and refreshed by the zonotopic set-membership estimation method. By properly refreshing the estimation error set online, the bounds of true state at the next sampling time can be obtained. Furthermore, the feasibility of the main optimization problem at the next sampling time can be determined at the current time. A numerical example is given to illustrate the effectiveness of the approach.
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Degtyarev, G. L., R. N. Faizutdinov, and I. O. Spiridonov. "Multiobjective Robust Controller Synthesis for Nonlinear Mechanical System." Mekhatronika, Avtomatizatsiya, Upravlenie 19, no. 11 (November 8, 2018): 691–98. http://dx.doi.org/10.17587/mau.19.691-698.

Повний текст джерела
Анотація:
In the paper multiobjective robust controller synthesis problem for nonlinear mechanical system described by Lagrange’s equations of the second kind is considered. Such tasks have numerous practical applications, for example in controller design of robotic systems and gyro-stabilized platforms. In practice, we often have to use uncertain mathematical plant models in controller design. Therefore, ensuring robustness in presence of parameters perturbations and unknown external disturbances is an important requirement for designed systems. Much of modern robust control theory is linear. When the actual system exhibits nonlinear behavior, nonlinearities are usually included in the uncertainty set of the plant. A disadvantage of this approach is that resulting controllers may be too conservative especially when nonlinearities are significant. The nonlinear H∞ optimal control theory developed on the basis of differential game theory is a natural extension of the linear robust control theory. Nonlinear theory methods ensure robust stability of designed control systems. However, to determine nonlinear H∞-control law, the partial differential equation have to be solved which is a rather complicated task. In addition, it is difficult to ensure robust performance of controlled processes when using this method. In this paper, methods of linear parameter-varying (LPV) systems are used to synthesize robust control law. It is shown, that Lagrange system may be adequately represented in the form of quasi-LPV model. From the computational point of view, the synthesis procedure is reduced to convex optimization techniques under constraints expressed in the form of linear matrix inequalities (LMIs). Measured parameters are incorporated in the control law, thus ensuring continuous adjustment of the controller parameters to the current plant dynamics and better performance of control processes in comparison with H∞-regulators. Furthermore, the use of the LMIs allows to take into account the transient performance requirements in the controller synthesis. Since the quasi-LPV system depends continuously on the parameter vector, the LMI system is infinite-dimensional. This infinitedimensional system is reduced to a finite set of LMIs by introducing a polytopic LPV representation. The example of multiobjective robust control synthesis for electro-optical device’s line of sight pointing and stabilization system suspended in two-axes inertially stabilized platform is given.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Coutinho, Pedro Henrique Silva, and Reinaldo Martínez Palhares. "Dynamic periodic event-triggered gain-scheduling control co-design for quasi-LPV systems." Nonlinear Analysis: Hybrid Systems 41 (August 2021): 101044. http://dx.doi.org/10.1016/j.nahs.2021.101044.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Rahmanian, Farnoosh, and Mohammad Hassan Asemani. "Quasi-LPV positive observer-based control of closed-loop deep brain stimulation systems." Biomedical Signal Processing and Control 86 (September 2023): 105238. http://dx.doi.org/10.1016/j.bspc.2023.105238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Goyal, Jitendra Kumar, Shubham Aggarwal, Sandip Ghosh, Shyam Kamal, and Pawel Dworak. "Quasi‐LPV PI control of TRMS subject to actuator saturation." IET Control Theory & Applications 14, no. 19 (December 2020): 3157–67. http://dx.doi.org/10.1049/iet-cta.2020.0361.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Kim, Tae-Hyoung, and Ho-Woon Lee. "Quasi-min-max output-feedback model predictive control for LPV systems with input saturation." International Journal of Control, Automation and Systems 15, no. 3 (May 22, 2017): 1069–76. http://dx.doi.org/10.1007/s12555-016-0378-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Bianchi, F. D., R. J. Mantz, and C. F. Christiansen. "Gain scheduling control of variable-speed wind energy conversion systems using quasi-LPV models." Control Engineering Practice 13, no. 2 (February 2005): 247–55. http://dx.doi.org/10.1016/j.conengprac.2004.03.006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Park, Jee-Hun, Tae-Hyoung Kim, and Toshiharu Sugie. "Output feedback model predictive control for LPV systems based on quasi-min–max algorithm." Automatica 47, no. 9 (September 2011): 2052–58. http://dx.doi.org/10.1016/j.automatica.2011.06.015.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Cisneros, Pablo Gonzalez, and Herbert Werner. "Fast Nonlinear MPC for Reference Tracking Subject to Nonlinear Constraints via Quasi-LPV Representations." IFAC-PapersOnLine 50, no. 1 (July 2017): 11601–6. http://dx.doi.org/10.1016/j.ifacol.2017.08.1650.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Hu, Jianchen, and Baocang Ding. "An off-line output feedback MPC strategy for nonlinear systems represented by quasi-LPV model." IFAC-PapersOnLine 51, no. 20 (2018): 66–71. http://dx.doi.org/10.1016/j.ifacol.2018.10.176.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Rotondo, Damiano, Fatiha Nejjari, and Vicenç Puig. "Quasi-LPV modeling, identification and control of a twin rotor MIMO system." Control Engineering Practice 21, no. 6 (June 2013): 829–46. http://dx.doi.org/10.1016/j.conengprac.2013.02.004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Xiong, Junfeng, Decai Li, Yuqing He, Feng Gu, and Jianda Han. "Active Quasi-LPV Modeling and Identification for a Water-Jet Propulsion USV: An Experimental Study." IFAC-PapersOnLine 48, no. 28 (2015): 1359–64. http://dx.doi.org/10.1016/j.ifacol.2015.12.321.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Su, Yang, and Kok Kiong Tan. "Comments on “Output feedback model predictive control for LPV systems based on quasi-min–max algorithm”." Automatica 48, no. 9 (September 2012): 2385. http://dx.doi.org/10.1016/j.automatica.2012.06.100.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Fouka, Majda, Chouki Sentouh, and Jean-Christophe Popieul. "Quasi-LPV Interconnected Observer Design for Full Vehicle Dynamics Estimation With Hardware Experiments." IEEE/ASME Transactions on Mechatronics 26, no. 4 (August 2021): 1763–72. http://dx.doi.org/10.1109/tmech.2021.3074743.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Rotondo, Damiano, Fatiha Nejjari, and Vicenç Puig. "Robust Quasi–LPV Model Reference FTC of a Quadrotor Uav Subject to Actuator Faults." International Journal of Applied Mathematics and Computer Science 25, no. 1 (March 1, 2015): 7–22. http://dx.doi.org/10.1515/amcs-2015-0001.

Повний текст джерела
Анотація:
Abstract A solution for fault tolerant control (FTC) of a quadrotor unmanned aerial vehicle (UAV) is proposed. It relies on model reference-based control, where a reference model generates the desired trajectory. Depending on the type of reference model used for generating the reference trajectory, and on the assumptions about the availability and uncertainty of fault estimation, different error models are obtained. These error models are suitable for passive FTC, active FTC and hybrid FTC, the latter being able to merge the benefits of active and passive FTC while reducing their respective drawbacks. The controller is generated using results from the robust linear parameter varying (LPV) polytopic framework, where the vector of varying parameters is used to schedule between uncertain linear time invariant (LTI) systems. The design procedure relies on solving a set of linear matrix inequalities (LMIs) in order to achieve regional pole placement and H∞ norm bounding constraints. Simulation results are used to compare the different FTC strategies.
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Gómez-Peñate, S., F. R. López-Estrada, G. Valencia-Palomo, D. Rotondo, and J. Enríquez-Zárate. "Actuator and sensor fault estimation based on a proportional-integral quasi-LPV observer with inexact scheduling parameters." IFAC-PapersOnLine 52, no. 28 (2019): 100–105. http://dx.doi.org/10.1016/j.ifacol.2019.12.355.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Ping, Xubin, Bo Qian, and Ning Sun. "Dynamic Output Feedback Robust MPC with Input Saturation Based on Zonotopic Set-Membership Estimation." Mathematical Problems in Engineering 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/5292375.

Повний текст джерела
Анотація:
For quasi-linear parameter varying (quasi-LPV) systems with bounded disturbance, a synthesis approach of dynamic output feedback robust model predictive control (OFRMPC) with the consideration of input saturation is investigated. The saturated dynamic output feedback controller is represented by a convex hull involving the actual dynamic output controller and an introduced auxiliary controller. By taking both the actual output feedback controller and the auxiliary controller with a parameter-dependent form, the main optimization problem can be formulated as convex optimization. The consideration of input saturation in the main optimization problem reduces the conservatism of dynamic output feedback controller design. The estimation error set and bounded disturbance are represented by zonotopes and refreshed by zonotopic set-membership estimation. Compared with the previous results, the proposed algorithm can not only guarantee the recursive feasibility of the optimization problem, but also improve the control performance at the cost of higher computational burden. A nonlinear continuous stirred tank reactor (CSTR) example is given to illustrate the effectiveness of the approach.
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Yassuda, Julio Yuzo, Cristiano Marcos Agulhari, and Emerson Ravazzi Pires da Silva. "Sampled-data robust control of a 2-DoF helicopter modeled using a quasi-LPV framework." Control Engineering Practice 145 (April 2024): 105870. http://dx.doi.org/10.1016/j.conengprac.2024.105870.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Srinivasarengan, Krishnan, José Ragot, Christophe Aubrun, and Didier Maquin. "An adaptive observer design approach for a class of discrete-time nonlinear systems." International Journal of Applied Mathematics and Computer Science 28, no. 1 (March 1, 2018): 55–67. http://dx.doi.org/10.2478/amcs-2018-0004.

Повний текст джерела
Анотація:
AbstractWe consider the problem of joint estimation of states and some constant parameters for a class of nonlinear discrete-time systems. This class contains systems that could be transformed into a quasi-LPV (linear parameter varying) polytopic model in the Takagi-Sugeno (T-S) form. Such systems could have unmeasured premise variables, a case usually overlooked in the observer design literature. We assert that, for such systems in discrete-time, the current literature lacks design strategies for joint state and parameter estimation. To this end, we adapt the existing literature on continuous-time linear systems for joint state and time-varying parameter estimation. We first develop the discrete-time version of this result for linear systems. A Lyapunov approach is used to illustrate stability, and bounds for the estimation error are obtained via the bounded real lemma. We use this result to achieve our objective for a design procedure for a class of nonlinear systems with constant parameters. This results in less conservative conditions and a simplified design procedure. A basic waste water treatment plant simulation example is discussed to illustrate the design procedure.
Стилі APA, Harvard, Vancouver, ISO та ін.
42

Mattei, Massimiliano. "An LPV approach to the robust control of a class of quasi-linear propagation processes." Journal of Process Control 14, no. 6 (September 2004): 651–60. http://dx.doi.org/10.1016/j.jprocont.2004.01.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Wei, Xiukun, and Luigi Del Re. "ON PERSISTENT EXCITATION FOR PARAMETER ESTIMATION OF QUASI-LPV SYSTEMS AND ITS APPLICATION IN MODELING OF DIESEL ENGINE TORQUE." IFAC Proceedings Volumes 39, no. 1 (2006): 517–22. http://dx.doi.org/10.3182/20060329-3-au-2901.00079.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Inoue, Roberto S., Adriano A. G. Siqueira, and Marco H. Terra. "Experimental results on the nonlinear∞control via quasi-LPV representation and game theory for wheeled mobile robots." Robotica 27, no. 4 (July 2009): 547–53. http://dx.doi.org/10.1017/s0263574708004931.

Повний текст джерела
Анотація:
SUMMARYIn this paper, nonlinear dynamic equations of a wheeled mobile robot are described in the state-space form where the parameters are part of the state (angular velocities of the wheels). This representation, known as quasi-linear parameter varying, is useful for control designs based on nonlinear∞approaches. Two nonlinear∞controllers that guarantee induced2-norm, between input (disturbances) and output signals, bounded by an attenuation level γ, are used to control a wheeled mobile robot. These controllers are solved via linear matrix inequalities and algebraic Riccati equation. Experimental results are presented, with a comparative study among these robust control strategies and the standard computed torque, plus proportional-derivative, controller.
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Cao, Yong-Yan, and Anke Xue. "Comments on “Quasi-min–max MPC algorithm for LPV systems” by Y. Lu and Y. Arkun, Automatica 36 (2000) 527–540." Automatica 40, no. 7 (July 2004): 1281–82. http://dx.doi.org/10.1016/j.automatica.2003.10.026.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

CAO, Y. "Comments on ?Quasi-min?max MPC algorithm for LPV systems? by Y. Lu and Y. Arkun, Automatica 36 (2000) 527$ndash;540." Automatica 40, no. 7 (July 2004): 1281–82. http://dx.doi.org/10.1016/s0005-1098(04)00065-2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Su, Yang, Kok Kiong Tan, and Tong Heng Lee. "Tube based Quasi-min-max Output Feedback MPC for LPV Systems1." IFAC Proceedings Volumes 45, no. 15 (2012): 186–91. http://dx.doi.org/10.3182/20120710-4-sg-2026.00010.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Lim, Jihoon, Patrick Kirchen, and Ryozo Nagamune. "LPV Controller Design for Diesel Engine SCR Aftertreatment Systems based on Quasi-LPV Models." IEEE Control Systems Letters, 2020, 1. http://dx.doi.org/10.1109/lcsys.2020.3046447.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Coutinho, Pedro H. S., Luciano G. Moreira, and Reinaldo M. Palhares. "Event‐triggered control of quasi‐LPV systems with communication delays." International Journal of Robust and Nonlinear Control, July 27, 2022. http://dx.doi.org/10.1002/rnc.6304.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Palmeira, Alessandra H. K., João M. Gomes da Silva, and Jeferson V. Flores. "Regional stabilization of nonlinear sampled-data control systems: A quasi-LPV approach." European Journal of Control, November 2020. http://dx.doi.org/10.1016/j.ejcon.2020.11.001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії