Добірка наукової літератури з теми "Quarks orbital angular momentum"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Quarks orbital angular momentum".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Quarks orbital angular momentum"
Momeni-Feili, Maryam, Firooz Arash, Fatemeh Taghavi-Shahri, and Abolfazl Shahveh. "Contribution of orbital angular momentum to the nucleon spin." International Journal of Modern Physics A 32, no. 06n07 (March 8, 2017): 1750036. http://dx.doi.org/10.1142/s0217751x17500361.
Повний текст джерелаMukherjee, Asmita, Sreeraj Nair, and Vikash Kumar Ojha. "Wigner Distributions and Orbital Angular Momentum of Quarks." International Journal of Modern Physics: Conference Series 37 (January 2015): 1560040. http://dx.doi.org/10.1142/s201019451560040x.
Повний текст джерелаSONG, XIAOTONG. "QUARK ORBITAL ANGULAR MOMENTUM IN THE BARYON." International Journal of Modern Physics A 16, no. 22 (September 10, 2001): 3673–97. http://dx.doi.org/10.1142/s0217751x01005018.
Повний текст джерелаLORCÉ, CÉDRIC, and BARBARA PASQUINI. "WIGNER DISTRIBUTIONS AND QUARK ORBITAL ANGULAR MOMENTUM." International Journal of Modern Physics: Conference Series 20 (January 2012): 84–91. http://dx.doi.org/10.1142/s2010194512009129.
Повний текст джерелаBURKARDT, MATTHIAS. "GPDs AND TMDs." International Journal of Modern Physics: Conference Series 20 (January 2012): 75–83. http://dx.doi.org/10.1142/s2010194512009117.
Повний текст джерелаKlein, Andi. "Measuring the Sea Quark Sivers Asymmetry: The E1039 Experiment at Fermilab." International Journal of Modern Physics: Conference Series 37 (January 2015): 1560064. http://dx.doi.org/10.1142/s2010194515600642.
Повний текст джерелаMukherjee, Asmita, Sreeraj Nair, and Vikash Kumar Ojha. "Wigner Distributions of Quark." International Journal of Modern Physics: Conference Series 40 (January 2016): 1660055. http://dx.doi.org/10.1142/s2010194516600557.
Повний текст джерелаLiuti, Simonetta, Aurore Courtoy, Gary R. Goldstein, J. Osvaldo Gonzalez Hernandez, and Abha Rajan. "Observables for Quarks and Gluons Orbital Angular Momentum Distributions." International Journal of Modern Physics: Conference Series 37 (January 2015): 1560039. http://dx.doi.org/10.1142/s2010194515600393.
Повний текст джерелаDIEHL, M. "ON THE DISTRIBUTION OF PARTONS IN THE TRANSVERSE PLANE." International Journal of Modern Physics A 21, no. 04 (February 10, 2006): 938–41. http://dx.doi.org/10.1142/s0217751x06032368.
Повний текст джерелаTHOMAS, ANTHONY W. "SPIN AND ORBITAL ANGULAR MOMENTUM IN THE PROTON." International Journal of Modern Physics E 18, no. 05n06 (June 2009): 1116–34. http://dx.doi.org/10.1142/s0218301309013403.
Повний текст джерелаДисертації з теми "Quarks orbital angular momentum"
Riberdy, Michael. "Continuum QCD approaches to the 3D structure of the nucleon." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASP043.
Повний текст джерелаThis PhD thesis encompasses two distinct yet interrelated aspects that contribute to the understanding of quark dynamics within the nucleon structure.First Aspect: GPD Modeling via LFWFsThe study improves ways to find quark helicity projection nucleon fluctuations. It uses a representation of Generalized Parton Distributions (GPDs) with definite quark orbital angular momentum Light Front Wave Functions (LFWFs). These LFWFs are important in Fock expansions of hadronic states, and are projections of three-quark amplitudes . The 3D light cone projections of such amplitudes are used to restore a probabilistic interpretation. The three-quark nucleon amplitudes to be projected, in turn, are wave functions defined through off-diagonal nucleon matrix elements, leading to the derivation of nucleon LFWFs of various definite orbital angular momenta (OAM).With these definite quark helicity LFWFs, the study calculates GPDs as combinations of their overlaps. This approach facilitates isolation of definite OAM contributions to nucleon GPDs, Parton Distribution Functions (PDFs), Electromagnetic Form Factors (FFs), and the electric nucleon radius. The significance of this work lies in its potential to map the contributions of distinct quark OAM states to nucleon structure.Second Aspect: Bayesian Reweighting of GPD Replicas Using Mock Lattice DataA systematic study is presented to demonstrate the impact of lattice QCD data on the extraction of GPDs. To achieve this, a previously developed set of GPD models based on machine learning techniques is employed. The underlying modeling adheres to theoretical requirements, including polynomiality, a form of positivity constraint, and known limits. Special attention is given to estimate uncertainty arising from the challenging connection between GPDs and experimental processes, notably deeply virtual Compton scattering (DVCS).Mock lattice QCD data inputs are strategically included in a Bayesian framework, reducing the uncertainty associated with the models. Emphasis is placed on assessing the impact of precision, correlation, and kinematic coverage of lattice data on uncertainty reduction, particularly at moderate skewness. This allows for a connection between lattice QCD practitioners and GPD modeling by investigating the constraints on lattice data necessary for the greatest reduction of uncertainty on the modeling side of nucleon GPD physics.In summary, this PhD thesis presents a dual-focused exploration of quark dynamics within the nucleon structure. The first aspect refines GPD modeling through LFWFs, isolating quark helicity projection nucleon fluctuations and delineating the multidimensional structure of the nucleon. Complementing this, the second aspect conducts an impact study, incorporating mock lattice data to constrain prior GPD modeling by colleagues of the candidate. Utilizing a Bayesian framework, the study refines uncertainties resulting from a prior model based on Goloskov and Kroll's phenomenological approach, and in doing so elucidates possible uses of directed lattice QCD studies intended to feed GPD modeling in combination and complement to current and future experimental data
Romero, Mary Jacquiline Romero. "Orbital angular momentum entanglement." Thesis, University of Glasgow, 2012. http://theses.gla.ac.uk/3812/.
Повний текст джерелаPelegrí, Andrés Gerard. "Ultracold atoms carrying orbital angular momentum." Doctoral thesis, Universitat Autònoma de Barcelona, 2020. http://hdl.handle.net/10803/670113.
Повний текст джерелаDebido a la gran flexibilidad que ofrecen en su manipulación y control, los sistemas de átomos ultrafríos son ideales para simular un amplio abanico de modelos de materia condensada y constituyen una plataforma muy prometedora para la implementación de nuevas tecnologías cuánticas. En este contexto, la atomtrónica se ha establecido recientemente como un nuevo campo de investigación cuyo objetivo es crear circuitos de ondas de materia con átomos ultrafríos manipulados mediante micro trampas ópticas versátiles, con el doble propósito de explorar nuevos fenómenos físicos y de construir dispositivos cuánticos como sensores u ordenadores. Los circuitos atomtrónicos más sencillos están formados por potenciales en forma de anillo, los cuales proporcionan caminos cerrados para los átomos que admiten de manera natural estados con Momento Angular Orbital (MAO). Inspirados por estos avances, en esta tesis investigamos diversos sistemas que comparten la característica de estar formados por átomos ultrafríos con carga de MAO en potenciales con simetría cilíndrica. Nuestro interés se centra en tres aspectos de los estados con MAO: su potencial para fabricar sensores, sus aplicaciones en la simulación de modelos de magnetismo cuántico, y las posibilidades que ofrecen para obtener estados topológicos. Empezamos considerando un condensado de Bose-Einstein (CBE) atrapado en un único potencial en forma de anillo y preparado en una superposición de estados con MAO que rotan en direcciones opuestas. El perfil de esta superposición muestra una línea de mínima densidad que gira debido a la interacción no lineal entre los átomos. Después de deducir una expresión que relaciona la frecuencia de esta rotación con la fuerza de las interacciones, proponemos protocolos que permiten utilizar el sistema como un sensor de interacciones a dos cuerpos, campos magnéticos y rotaciones. A continuación, estudiamos diferentes configuraciones de potenciales acoplados lateralmente en las que los átomos ultrafríos experimentan una dinámica de efecto túnel gobernada por amplitudes complejas con fases que se pueden variar modificando la geometría del sistema. En primer lugar, exploramos una red en forma de cadena de diamante llena con átomos no interactuantes en estados con MAO. En este sistema, las fases de las amplitudes de efecto túnel complejas dan lugar a una estructura de bandas topológica con sus correspondientes estados de borde. Además, ajustando de forma adecuada las amplitudes de efecto túnel, se puede obtener un espectro de energías compuesto únicamente de bandas planas. En este caso, el sistema muestra confinamiento de Aharonov-Bohm. En segundo lugar, analizamos una familia de sistemas consistente en distribuciones de potenciales de anillo con una geometría flexible llenas con bosones fuertemente correlacionados en estados de MAO. Nos centramos en el régimen de aislante de Mott con un átomo por trampa, en el que se puede establecer una correspondencia entre estados con MAO y de espín-1/2. Mostramos que, ordenando las trampas de manera adecuada, estos sistemas pueden simular diferentes modelos de espín de interés relacionados con un modelo de Heisenberg general. Seguidamente nos volvemos a fijar en la cadena de diamante para investigar la física de dos bosones con interacción atractiva en el límite en el que todas las bandas son planas. En esta situación, la energía cinética no juega ningún papel y las propiedades del sistema vienen determinadas únicamente por las interacciones. Mostramos que el sector de baja energía del espectro de estados de dos bosones se puede describir en términos de modelos efectivos de una sola partícula que son topológicamente no triviales. Finalmente, estudiamos una red cuadrada en dos dimensiones con diferentes separaciones fuera y dentro de la celda unidad. Demostramos que este sistema constituye un ejemplo de aislante topológico de segundo orden, presentando un momento cuadrupolar finito y estados de esquina protegidos.
Due to their high degree of tunability and controllability, ultracold atom systems constitute an ideal playground for simulating a wide variety of condensed matter models and are one of the most promising platforms for the implementation of novel quantum technologies. In this context, the emerging field of atomtronics aims at realizing matter-wave circuits with ultracold atoms in versatile optical micro-traps. These efforts have a two-fold purpose: exploring new fundamental physics and constructing quantum devices such as sensors or computers. The simplest atomtronic circuits are formed by ring-shaped potentials, which provide closed loops for the atoms that naturally support Orbital Angular Momentum (OAM) states. Motivated by these advances, in this thesis we investigate different systems that have the common characteristic of being formed by ultracold atoms carrying OAM in cylindrically symmetric potentials. Our interest is focused on three aspects of OAM states: their potential use for sensing purposes, their applications as quantum simulators of models of quantum magnetism, and the possibilities that they offer for realizing topological phases of matter. We start by considering a Bose Einstein Condensate (BEC) trapped in a single ring potential and prepared in a superposition of counter-rotating OAM states. The density profile of this state has a minimal line that rotates due to the non-linear interaction between the atoms. After deriving an expression that relates the frequency of this rotation with the strength of the interactions, we propose protocols to use the system as a device for sensing two-body interactions, magnetic fields and rotations. Next, we explore several configurations of side-coupled potentials where ultracold atoms in OAM states experience tunnelling dynamics that are governed by complex amplitudes with phases that can be tuned by modifying the geometry of the system. First, we study a lattice with a diamond chain shape filled with non-interacting ultracold atoms carrying OAM. In this system, the phases in the tunnelling rates give rise to a topological band structure with its corresponding protected edge states. Furthermore, a proper tuning of the tunneling parameters may lead to an energy spectrum composed entirely of flat bands. In this scenario, the system exhibits Aharonov-Bohm caging. We then analyse a family of systems consisting of arrays of ring potentials with a flexible geometry filled with strongly correlated bosons in OAM states. We focus on the Mott insulator regime at unit filling, for which one can establish a correspondence between OAM and spin-1/2 states. We demonstrate that by properly arranging the traps, these systems can realize different spin models of interest related to a general Heisenberg model. Then, we turn our attention back to the diamond chain to examine the physics of two attractively interacting bosons in the limit when all bands are flat. In this situation, the kinetic energy is frozen and the properties of the system are solely determined by the interactions. We show that the low-energy sector of the two-boson spectrum can be described in terms of effective single-particle models that are topologically non-trivial. Finally, we investigate a two-dimensional square lattice with different intra- and inter-cell spacings in the non-interacting limit. We show that this system constitutes an example of a second-order topological insulator, displaying a finite quadrupole moment and protected corner states.
Lavery, Martin P. J. "Measurement of light's orbital angular momentum." Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4716/.
Повний текст джерелаLloyd, Sophia M. "Electron beams with orbital angular momentum." Thesis, University of York, 2013. http://etheses.whiterose.ac.uk/4643/.
Повний текст джерелаBožinović, Nenad. "Orbital angular momentum in optical fibers." Thesis, Boston University, 2013. https://hdl.handle.net/2144/10943.
Повний текст джерелаInternet data traffic capacity is rapidly reaching limits imposed by nonlinear effects of single mode fibers currently used in optical communications. Having almost exhausted available degrees of freedom to orthogonally multiplex data in optical fibers, researchers are now exploring the possibility of using the spatial dimension of fibers, via multicore and multimode fibers, to address the forthcoming capacity crunch. While multicore fibers require complex manufacturing, conventional multimode fibers suffer from mode coupling, caused by random perturbations in fibers and modal (de)multiplexers. Methods that have been developed to address the problem of mode coupling so far, have been dependent on computationally intensive digital signal processing algorithms using adaptive optics feedback or complex multiple-input multiple-output algorithms. Here we study the possibility of using the orbital angular momentum (OAM), or helicity, of light, as a means of increasing capacity of future optical fiber communication links. We first introduce a class of specialty fibers designed to minimize mode coupling and show their potential for OAM mode generation in fibers using numerical analysis. We then experimentally confirm the existence of OAM states in these fibers using methods based on fiber gratings and spatial light modulators. In order to quantify the purity of created OAM states, we developed two methods based on mode-image analysis, showing purity of OAM states to be 90% after 1km in these fibers. Finally, in order to demonstrate data transmission using OAM states, we developed a 4-mode multiplexing and demultiplexing systems based on free-space optics and spatial light modulators. Using simple coherent detection methods, we successfully transmit data at 400Gbit/s using four OAM modes at a single wavelength, over 1.1 km of fiber. Furthermore, we achieve data transmission at 1.6Tbit/s using 10 wavelengths and two OAM modes. Our study indicates that OAM light can exist, and be long lived, in a special class of fibers and our data transmission demonstrations show that OAM could be considered an additional degree of freedom for data multiplexing in future optical fiber communication links. Our studies open the doors for other applications such as micro-endoscopy and nanoscale imaging which require fiber based remote delivery of OAM light.
Spinello, Fabio. "Radio communications using Orbital Angular Momentum." Doctoral thesis, Università degli studi di Padova, 2016. http://hdl.handle.net/11577/3424248.
Повний текст джерелаIl momento angolare orbitale, normalmente identificato con l’acronimo inglese OAM (Orbital Angular Momentum), é una proprietá fondamentale dei campi elettromagnetici legata alla loro distribuzione; campi con OAM diverso da zero sono infatti caratterizzati da intensitá a forma di ciambella e da fronti d’onda che si avvolgono a spirale. Al pari della frequenza, anche l’OAM rappresenta un grado di libertá di un’onda elettromagnetica e puó essere utilizzato per la sua identificazione. Infatti, due campi aventi la stessa frequenza ma diverso valore di OAM possono essere distinti quando i loro fronti d’onda vengono ricevuti interamente. Questa caratteristica fa sí che i campi elettromagnetici con OAM formino una base ortogonale e che possano essere distinti direttamente a livello fisico, senza il bisogno di post processing digitale. Le onde con OAM sono quindi particolarmente interessanti per lo sviluppo di nuovi sistemi radio multiplexing sia su lunga che su breve distanza, argomento esaminato sia teoricamente che sperimentalmente nella presente tesi. Lo studio inizia con l’esame dello stato dell’arte sulle onde radio con OAM per individuarne caratteristiche ed applicazioni legate alle telecomunicazioni. Viene quindi studiato un particolare tipo di antenne paraboliche, dette anche “conformate”, in grado di generare e di riconoscere onde radio con diversi valori di OAM. Usando queste antenne, viene quindi condotto uno studio sperimentale per valutare un prototipo di sistema multiplexing su lunga distanza, composto da tre canali isofrequenziali. L’esperimento evidenzia le difficoltá, precedentemente individuate nella fase di studio, riguardanti l’implementazione di un simile sistema. Durante la propagazione, infatti, i fronti d’onda si espandono a causa della diffrazione e risulta complicato riceverli interamente senza l’impiego di antenne ingombranti. Questo comporta una notevole difficoltá nello sfruttamento dell’ortogonalitá fra onde radio con OAM su lunghe distanze e costituisce un forte limite all’implementazione di un sistema multiplexing. Per ovviare a questo problema la tesi esamina tre possibili soluzioni. Nella prima considera un metodo per concentrare la distribuzione di un campo elettromagnetico con OAM mediante la sovrapposizione di modi interi e consecutivi. Nella seconda, studia la generazione di campi con OAM detti “di ordine superiore”, (higher order vortex beams), caratterizzati da una distribuzione di intensitá piú compatta. Nella terza, infine, esamina la possibilitá di distinguere due onde radio con diverso OAM mediante una ricezione parziale del loro campo elettromagnetico. Quest’ultima soluzione, analizzata mediante il formalismo dei sistemi MIMO e di modelli teorici sulla propagazione delle onde con OAM, consente anche di operare un confronto generale fra sistemi multiplexing basati sulle odierne tecniche MIMO e quelli basati su onde radio con OAM. Lo studio di sistemi a lunga distanza si conclude quindi esaminando le sovrapposizioni di campi elettromagnetici con valori opposti di OAM. Queste infatti, essendo caratterizzate da una distribuzione semplice e regolare, possono costituire un’interessante opzione per semplificare la struttura di sistemi di comunicazione basati su onde con OAM. Infine, nell’ultima parte, la tesi esamina sistemi multiplexing su breve distanza dove i campi elettromagnetici con OAM vengono utilizzati non solo per implementare un multiplexing ma anche per aumentare, direttamente a livello fisico, la sicurezza della comunicazione.
Schemmel, Peter. "Generation of millimetre-wavelength orbital angular momentum." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/generation-of-millimetrewavelength-orbital-angular-momentum(47efa2f9-bc20-41b3-93ad-b9206eaa0a9f).html.
Повний текст джерелаMcLaren, Melanie. "Tailoring quantum entanglement of orbital angular momentum." Thesis, Stellenbosch : Stellenbosch University, 2014. http://hdl.handle.net/10019.1/95868.
Повний текст джерелаENGLISH ABSTRACT: High-dimensional quantum entanglement offers an increase in information capacity per photon; a highly desirable property for quantum information processes such as quantum communication, computation and teleportation. As the orbital angular momentum (OAM) modes of light span an infinite-dimensional Hilbert space, they have become frontrunners in achieving entanglement in higher dimensions. In light of this, we investigate the potential of OAM entanglement of photons by controlling the parameters in both the generation and measurement systems. We show the experimental procedures and apparatus involved in generating and measuring entangled photons in two-dimensions. We verify important quantum tests such as the Einstein, Podolsky and Rosen (EPR) paradox using OAM and angle correlations, as well as a violation of a Bell-type inequality. By performing a full state tomography, we characterise our quantum state and show we have a pure, highly entangled quantum state. We demonstrate that this method can be extended to higher dimensions. The experimental techniques used to generate and measure OAM entanglement place an upper bound on the number of accessible OAM modes. As such, we investigate new methods in which to increase the spiral bandwidth of our generated quantum state. We alter the shape of the pump beam in spontaneous parametric down-conversion and demonstrate an effect on both OAM and angle correlations. We also made changes to the measurement scheme by projecting the photon pairs into the Bessel-Gaussian (BG) basis and demonstrate entanglement in this basis. We show that this method allows the measured spiral bandwidth to be optimised by simply varying the continuous radial parameter of the BG modes. We demonstrate that BG modes can be entangled in higher dimensions compared with the commonly used helical modes by calculating and comparing the linear entropy and fidelity for both modes. We also show that quantum entanglement can be accurately simulated using classical light using back-projection, which allows the study of projective measurements and predicts the strength of the coincidence correlations in an entanglement experiment. Finally, we make use of each of the techniques to demonstrate the effect of a perturbation on OAM entanglement measured in the BG basis. We investigate the self-healing property of BG beams and show that the classical property is translated to the quantum regime. By calculating the concurrence, we see that measured entanglement recovers after encountering an obstruction.
AFRIKAANSE OPSOMMING: Hoë-dimensionele kwantumverstrengeldheid bied ’n toename in inligtingskapasiteit per foton. Hierdie is ’n hoogs wenslike eienskap vir kwantum inligting prosesse soos kwantum kommunikasie, berekening en teleportasie. Omdat die orbitale hoekmomentum (OAM) modusse van lig ’n oneindig dimensionele Hilbertruimte beslaan, het dit voorlopers geword in die verkryging van verstrengeling in hoër dimensies. In die lig hiervan, ondersoek ons die potensiaal van OAM verstrengeling van fotone deur die parameters in beide die generering en meting stelsels te beheer. Ons toon die eksperimentele prosedures en apparaat wat betrokke is by die generering en die meet van verstrengelde fotone in twee dimensies. Ons verifieer kwantumtoetse, soos die Einstein, Podolsky en Rosen (EPR) paradoks vir OAM en die hoekkorrelasies, sowel as ’n skending van ’n Bell-tipe ongelykheid. Deur middel van ’n volledige toestand tomografie, karakteriseer ons die kwantum toestand en wys ons dat dit ’n suiwer, hoogs verstrengel kwantum toestand is. Ons toon ook dat hierdie metode uitgebrei kan word na hoër dimensies. Die eksperimentele tegnieke wat tydens die generasie en meet van OAM verstrengeling gebruik is, plaas ’n bogrens op die aantal toeganklik OAM modusse. Dus ondersoek ons nuwe metodes om die spiraal bandwydte van ons gegenereerde kwantum toestand te verhoog. Ons verander die vorm van die pomp bundel in spontane parametriese af-omskakeling en demonstreer die uitwerking daarvan op beide OAM en die hoekkorrelasies. Ons het ook veranderinge aan die meting skema gemaak deur die foton pare op die Bessel-Gauss (BG) basis te projekteer. Ons wys dat hierdie metode die gemeetde spiraal bandwydte kan optimeer deur eenvoudig die kontinue radiale parameter van die BG modes te verander. Ons demonstreer dat BG modusse verstrengel kan word in hoër dimensies as die heliese modusse, wat algemeen gebruik word, deur berekeninge te maak en te vergelyk met lineêre entropie en vir beide modusse. Ons wys ook dat kwantumverstrengling akkuraat nageboots kan word, met behulp van die klassieke lig terug-projeksie, wat die studie van projeksie metings toelaat en voorspel die krag van die saamval korrelasies in ’n verstrengeling eksperiment. Ten slotte, gebruik ons elk van die tegnieke om die effek van ’n storing op OAM verstrengling wat in die BG basis gemeet is, te demonstreer. Ons ondersoek die self-genesingseienskap van BG bundels en wys dat die klassieke eienskap vertaal na die kwantum-gebied. Deur die berekening van die konkurrensie (concurrence), sien ons dat die gemeetde verstrengeling herstel word nadat ’n obstruksie ondervind is.
Giovannini, Daniel. "Orbital angular momentum entanglement in high dimensions." Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5720/.
Повний текст джерелаКниги з теми "Quarks orbital angular momentum"
Evans, Myron W. Pump laser induced net angular momentum: Orbital angular polarisability, induced electric polarization, and the inverse Faraday effect. Ithaca, N.Y: Cornell Theory Center, Cornell University, 1990.
Знайти повний текст джерелаL, Pan H., and United States. National Aeronautics and Space Administration., eds. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаL, Pan H., and United States. National Aeronautics and Space Administration., eds. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity. [Washington, D.C: National Aeronautics and Space Administration, 1995.
Знайти повний текст джерелаKHARE, Lochab. Orbital Angular Momentum States Light Hb: Orbital Angular Momentum States of Light, Second Edition. Institute of Physics Publishing, 2024.
Знайти повний текст джерелаKhare, Professor Kedar. Orbital Angular Momentum States of Light. IOP Publishing Ltd, 2020. http://dx.doi.org/10.1088/978-0-7503-2280-5.
Повний текст джерелаTorres, Juan P., and Lluis Torner. Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley & Sons, Incorporated, John, 2011.
Знайти повний текст джерелаTorres, Juan P., and Lluis Torner. Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley & Sons, Limited, John, 2011.
Знайти повний текст джерелаTorres, Juan P., and Lluis Torner. Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley & Sons, Incorporated, John, 2011.
Знайти повний текст джерелаTorres, Juan P., and Lluis Torner. Twisted Photons: Applications of Light with Orbital Angular Momentum. Wiley & Sons, Incorporated, John, 2011.
Знайти повний текст джерелаTwisted photons: Applications of light with orbital angular momentum. Weinheim, Germany: Wiley-VCH, 2011.
Знайти повний текст джерелаЧастини книг з теми "Quarks orbital angular momentum"
Burkardt, Matthias. "Quark Orbital Angular Momentum." In Light Cone 2015, 15–19. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_4.
Повний текст джерелаLorcé, Cédric, and Keh-Fei Liu. "Quark and Gluon Orbital Angular Momentum: Where Are We?" In Light Cone 2015, 9–14. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_3.
Повний текст джерелаPisano, Silvia. "Precise Measurements of DVCS at JLab and Quark Orbital Angular Momentum." In Light Cone 2015, 353–58. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50699-9_55.
Повний текст джерелаWisniewski-Barker, Emma, and Miles J. Padgett. "Orbital Angular Momentum." In Photonics, 321–40. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119009719.ch10.
Повний текст джерелаSchwabl, Franz. "Orbital Angular Momentum and Spin." In Advanced Texts in Physics, 155–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05418-5_7.
Повний текст джерелаDai, Yanan. "Plasmon Orbital Angular Momentum Generation." In Imaging Light with Photoelectrons on the Nano-Femto Scale, 79–95. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52836-2_6.
Повний текст джерелаSchwabl, Franz. "Orbital Angular Momentum and Spin." In Advanced Texts in Physics, 155–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03929-8_7.
Повний текст джерелаBurkardt, Matthias. "GPDs and Orbital Angular Momentum." In Light Cone 2016, 21–28. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65732-5_4.
Повний текст джерелаHecht, K. T. "Spherical Harmonics, Orbital Angular Momentum." In Quantum Mechanics, 92–95. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-1272-0_8.
Повний текст джерелаKe, Xizheng. "Orbital Angular Momentum Beam Techniques." In Handbook of Optical Wireless Communication, 1755–827. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1522-0_48.
Повний текст джерелаТези доповідей конференцій з теми "Quarks orbital angular momentum"
Lorce, Cédric, and Barbara Pasquini. "Quark phase-space distributions and orbital angular momentum." In Sixth International Conference on Quarks and Nuclear Physics. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.157.0050.
Повний текст джерелаBurkardt, Matthias. "Quark Orbital Angular Momentum." In QCD Evolution 2015. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.249.0039.
Повний текст джерелаMukherjee, Asmita. "Wigner Distributions and Orbital Angular Momentum of Quarks and Gluons." In QCD Evolution 2015. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.249.0013.
Повний текст джерелаBurkardt, Matthias. "Aspects of Quark Orbital Angular Momentum." In INT Program INT-18-3. WORLD SCIENTIFIC, 2020. http://dx.doi.org/10.1142/9789811214950_0051.
Повний текст джерелаEllinghaus, F. "Quark Orbital Angular Momentum and Exclusive Processes at HERMES." In INTERSECTIONS OF PARTICLE AND NUCLEAR PHYSICS: 9th Conference CIPAN2006. AIP, 2006. http://dx.doi.org/10.1063/1.2402714.
Повний текст джерелаLorcé, Cédric, and Barbara Pasquini. "Accessing the quark orbital angular momentum with Wigner distributions." In DIFFRACTION 2012: International Workshop on Diffraction in High Energy Physics. AIP, 2013. http://dx.doi.org/10.1063/1.4802141.
Повний текст джерелаLi, Bing An. "Quark spin and quark orbital angular momentum content of the proton." In The 11th International symposium on high energy spin physics. AIP, 1995. http://dx.doi.org/10.1063/1.48961.
Повний текст джерелаEngelhardt, Michael. "Quark orbital dynamics in the nucleon - from Ji to Jaffe-Manohar orbital angular momentum." In 34th annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.256.0138.
Повний текст джерелаLiuti, Simonetta. "Towards a Direct Measurement of the Quark Orbital Angular Momentum Distribution." In XXIII International Workshop on Deep-Inelastic Scattering. Trieste, Italy: Sissa Medialab, 2016. http://dx.doi.org/10.22323/1.247.0204.
Повний текст джерелаEngelhardt, Michael, Jeremy Green, Nesreen Hasan, Stefan Krieg, Stefan Meinel, John Negele, Andrew Pochinsky, and Sergey Syritsyn. "Quark orbital angular momentum in the proton evaluated using a direct derivative method." In The 36th Annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.334.0115.
Повний текст джерелаЗвіти організацій з теми "Quarks orbital angular momentum"
Liu, K. F. Quark orbital angular momentum from lattice QCD. Office of Scientific and Technical Information (OSTI), January 2000. http://dx.doi.org/10.2172/753265.
Повний текст джерелаVoelz, David. Novel Detection of Optical Orbital Angular Momentum. Fort Belvoir, VA: Defense Technical Information Center, November 2014. http://dx.doi.org/10.21236/ada616749.
Повний текст джерелаDaldorff, L. K., S. M. Mohammadi, J. E. Bergman, B. Isham, M. K. Al-Nuaimi, K. Forozesh, and T. D. Carozzi. Coherent Detection of Orbital Angular Momentum in Radio. Fort Belvoir, VA: Defense Technical Information Center, July 2014. http://dx.doi.org/10.21236/ada627259.
Повний текст джерелаBrodsky, Stanley J. Orbital Angular Momentum on the Light-Front and QCD Observables. Office of Scientific and Technical Information (OSTI), March 2006. http://dx.doi.org/10.2172/877429.
Повний текст джерелаScott, Ryan P., Roberto Proietti, Binbin Guan, and S. J. Yoo. Integrated Photonic Orbital Angular Momentum Multiplexing and Demultiplexing on Chip. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada622577.
Повний текст джерелаMahanta, Monisha K. Experimentation of Fiber-Optic Transmission of Light with Orbital Angular Momentum. Fort Belvoir, VA: Defense Technical Information Center, May 2006. http://dx.doi.org/10.21236/ada451409.
Повний текст джерелаBrodsky, S. J. Light-cone representation of the spin and orbital angular momentum of relativistic composite systems. Office of Scientific and Technical Information (OSTI), March 2000. http://dx.doi.org/10.2172/753316.
Повний текст джерелаOh, S. Y. SUGGEL: A Program Suggesting the Orbital Angular Momentum of a Neutron Resonance from the Magnitude of its Neutron Width. Office of Scientific and Technical Information (OSTI), February 2001. http://dx.doi.org/10.2172/777661.
Повний текст джерела