Добірка наукової літератури з теми "Quark gluon plasma phase transition"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Quark gluon plasma phase transition".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Quark gluon plasma phase transition"

1

Ghenam, L., A. Ait El Djoudi, and K. Mezouar. "Deconfining phase transition in a finite volume with massive particles: finite size and finite mass effects." Canadian Journal of Physics 94, no. 2 (February 2016): 180–87. http://dx.doi.org/10.1139/cjp-2015-0484.

Повний текст джерела
Анотація:
We study the deconfining phase transition from a hadronic gas phase consisting of massive pions to a quark–gluon plasma (QGP) phase containing gluons, massless up and down quarks, and massive strange quarks. The two phases are supposed to coexist in a finite volume, and the finite size effects are studied, in the two cases of thermally driven and density driven deconfining phase transitions. Finite-mass effects are also examined, then the color-singletness condition for the QGP is taken into account and finite size effects are investigated in this case also.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

ATAZADEH, K., A. M. GHEZELBASH, and H. R. SEPANGI. "QCD PHASE TRANSITION IN DGP BRANE COSMOLOGY." International Journal of Modern Physics D 21, no. 08 (August 2012): 1250069. http://dx.doi.org/10.1142/s0218271812500691.

Повний текст джерела
Анотація:
In the standard picture of cosmology it is predicted that a phase transition, associated with chiral symmetry breaking after the electroweak transition, has occurred at approximately 10μ seconds after the Big Bang to convert a plasma of free quarks and gluons into hadrons. We consider the quark-hadron phase transition in a Dvali, Gabadadze and Porrati (DGP) brane world scenario within an effective model of QCD. We study the evolution of the physical quantities useful for the study of the early universe, namely, the energy density, temperature and the scale factor before, during and after the phase transition. Also, due to the high energy density in the early universe, we consider the quadratic energy density term that appears in the Friedmann equation. In DGP brane models such a term corresponds to the negative branch (ϵ = -1) of the Friedmann equation when the Hubble radius is much smaller than the crossover length in 4D and 5D regimes. We show that for different values of the cosmological constant on a brane, λ, phase transition occurs and results in decreasing the effective temperature of the quark-gluon plasma and of the hadronic fluid. We then consider the quark-hadron transition in the smooth crossover regime at high and low temperatures and show that such a transition occurs along with decreasing the effective temperature of the quark-gluon plasma during the process of the phase transition.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

GEIST, W. M. "ULTRARELATIVISTIC NUCLEAR PHYSICS: FROM BECOMING TO BEING." International Journal of Modern Physics A 04, no. 15 (September 1989): 3717–57. http://dx.doi.org/10.1142/s0217751x89001497.

Повний текст джерела
Анотація:
Basic theoretical ideas on a phase transition in heavy ion collisions to a thermalized plasma of free quarks and gluons are outlined. Major experiments are then described which made use of oxygen and sulphur beams with moderate (BNL) or high (CERN) momenta. Representative results pertaining to both average event features and quark-gluon plasma properties are discussed in some detail. This review addresses also interested non-specialists.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mohanty, A. K., and S. K. Kataria. "Hadronization during quark-gluon plasma phase transition." Physical Review C 53, no. 2 (February 1, 1996): 887–95. http://dx.doi.org/10.1103/physrevc.53.887.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Mohanty, A. K., and S. K. Kataria. "Intermittency in Quark-Gluon-Plasma Phase Transition." Physical Review Letters 73, no. 20 (November 14, 1994): 2672–75. http://dx.doi.org/10.1103/physrevlett.73.2672.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

JACOBSEN, RAFAEL B., GUILHERME F. MARRANGHELLO, CÉSAR A. Z. VASCONCELLOS, and ALEXANDRE MESQUITA. "QUARK–GLUON PLASMA IN A BAG MODEL WITH A SOFT SURFACE." International Journal of Modern Physics D 13, no. 07 (August 2004): 1431–35. http://dx.doi.org/10.1142/s021827180400564x.

Повний текст джерела
Анотація:
We analyze the implications of quantum hadrodynamics (QHD) and quantum chromodynamics (QCD) to model, respectively, two distinct phases of nuclear matter, a baryon–meson phase and a quark–gluon phase. We develop an equation of state (EoS) in the framework of a quark–meson coupling model for the hadron–meson phase using a new version of the fuzzy bag model with scalar–isoscalar, vector–isoscalar and vector–isovector meson–quark couplings and leptonic degrees of freedom as well as the constrains from chemical equilibrium, baryon number and electric charge conservation. We model the EoS for the QGP phase for asymptotically free massless quarks and gluons using the MIT approach and a temperature and baryon chemical potential dependent bag constant, B(T,μ), which allows an isentropic equilibrium phase transition from a QGP to a hadron gas as determined by thermodynamics. Our predictions yield the EoS and static global properties of neutron stars and protoneutron stars at low and moderate values of temperature. Our results are slightly modified in comparison to predictions based on the standard MIT bag model with a constant bag pressure B.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tuan Anh, Nguyen. "Thermodynamic Hadron-Quark Phase Transition of Chiral Nuclear Matter to Quark-Gluon Plasma." Communications in Physics 27, no. 1 (March 9, 2017): 71. http://dx.doi.org/10.15625/0868-3166/27/1/9221.

Повний текст джерела
Анотація:
After receiving very interesting results from investigations of chiral nuclear matter based on the extended Nambu-Jona--Lasinio model (ENJL) included the scalar-vector eight-point interaction, a fundamental question of nuclear physics is what happens to chiral nuclear matter as it is compressed or heated. At very high density and temperature, quarks and gluons come into play and a transition is expected to happen from a phase of nuclear matter consisting of confined hadrons and mesons to a state of `liberated' quarks and gluons. In this paper, we investigate the hadron-quark (HQ) phase transition occurs beyond the chiral phase transition in the nuclear matter. The results show that there exits a quarkyonic-like phase, appeared just before deconfinement, when the chiral symmetry is restored but the elementary excitation modes are still nucleonic.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Spieles, C., H. Stöcker, and C. Greiner. "Phase transition of a finite quark-gluon plasma." Physical Review C 57, no. 2 (February 1, 1998): 908–15. http://dx.doi.org/10.1103/physrevc.57.908.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Topilskaya, Nataliya, and Alexey Kurepin. "Some proposed fixed target experiments with the LHC beams." EPJ Web of Conferences 204 (2019): 03002. http://dx.doi.org/10.1051/epjconf/201920403002.

Повний текст джерела
Анотація:
The physics opportunities offered by using the multi-TeV LHC beams for a fixed target experiment have been widely discussed in recent years. This mode is convenient to investigate rare processes of particle production and polarization phenomena because the expected luminosity exceeds the luminosity of the collider. The main physical goals of these experiments are: i) investigations of the large-x gluon, antiquark and heavy quark content in the nucleon and nucleus; ii) investigations of the dynamics and spin of quarks and gluons inside nucleus; iii) studies of the ion-ion collisions between SPS and RHIC energies towards large rapidities. With the LHC lead beam energy scan on a fixed target it would be possible to investigate the energy range up to 72 GeV to search for the critical point for the phase transition to the Quark Gluon Plasma (QGP).
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Andrew, Keith, Eric V. Steinfelds, and Kristopher A. Andrew. "Cold Quark–Gluon Plasma EOS Applied to a Magnetically Deformed Quark Star with an Anomalous Magnetic Moment." Universe 8, no. 7 (June 27, 2022): 353. http://dx.doi.org/10.3390/universe8070353.

Повний текст джерела
Анотація:
We consider a QCD cold-plasma-motivated Equation of State (EOS) to examine the impact of an Anomalous Magnetic Moment (AMM) coupling and small shape deformations on the static oblate and prolate core shapes of quark stars. Using the Fogaça QCD-motivated EOS, which shifts from the high-temperature, low-chemical-potential quark–gluon plasma environment to the low-temperature, high-chemical-potential quark stellar core environment, we consider the impact of an AMM coupling with a metric-induced shape deformation parameter in the Tolman–Oppenheimer–Volkov (TOV) equations. The AMM coupling includes a phenomenological scaling that accounts for the weak and strong field characteristics in dense matter. The EOS is developed using a hard gluon and soft gluon decomposition of the gluon field tensor and using a mean-field effective mass for the gluons. The AMM is considered using the Dirac spin tensor coupled to the EM field tensor with quark-flavor-based magnetic moments. The shape parameter is introduced in a metric ansatz that represents oblate and prolate static stellar cores for modified TOV equations. These equations are numerically solved for the final mass and radius states, representing the core collapse of a massive star with a phase transition leading to an unbound quark–gluon plasma. We find that the combined shape parameter and AMM effects can alter the coupled EOS–TOV equations, resulting in an increase in the final mass and a decrease in the final equatorial radius without collapsing the core into a black hole and without violating causality constraints; we find maximum mass values in the range 1.6 Mʘ < M < 2.5 Mʘ. These states are consistent with some astrophysical, high-mass magnetar/pulsar and gravity wave systems and may provide evidence for a core that has undergone a quark–gluon phase transition such as PSR 0943 + 10 and the secondary from the GW 190814 event.
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Quark gluon plasma phase transition"

1

Marty, Rudy. "Simulation de l'expansion et la transition de phase d'un plasma de quarks et d'antiquarks." Nantes, 2012. http://archive.bu.univ-nantes.fr/pollux/show.action?id=1e717997-f289-455a-ad6b-f9721bd98a45.

Повний текст джерела
Анотація:
L’étude du diagramme de phase de la matière nucléaire est souvent non triviale. Cette thèse tente de décrire la transition de phase créée dans les accélérateurs de particule, à haute température et faible densité baryonique. Si les accélérateurs de particules peuvent être vus comme les microscopes de la matière, on ne peut néanmoins pas observer directement la transition de phase. On va donc utiliser un modèle théorique pour reproduire ce phénomène. Les processus qui interviennent lors de la transition sont de basse énergie, là ou la théorie standard, la Chromodynamique Quantique (QCD) ne peut plus s’appliquer de manière perturbative. Je vais donc présenter et utiliser un modèle plus simplifie de cette théorie : le modèle de Nambu et Jona-Lasinio (NLJ). Ce modèle permet de décrire les particules fondamentales de la matière, puis ensuite leur hadronisation, via des sections efficaces ainsi que la construction de la masse des hadrons. Finalement on utilise les masses et sections efficaces de ce modèle dans un nouveau code de simulation base sur la dynamique moléculaire relativiste. La présentation de ce modèle passe d’abord par la justification de son aspect relativiste, puis par l’explication de ses algorithmes. Les résultats de ces simulations sont finalement analyses et compares aux données du RHIC. La phénoménologie des résultats non observables est également discutée
The study of the phase diagram of nuclear matter is often not trivial. This thesis attempts to describe the phase transition created in accelerators of particles, at hightemperature and low baryonic density. If accelerators of particles can be seen as the microscopes of the matter, nevertheless we can not directly observe the phase transition. So we will use a theoretical model to reproduce this phenomenon. The processes involved in the transition are of low energy, where the standard theory Quantum Chromodynamics (QCD)- can not be applied in a perturbative way. I will therefore present and use a more simplified model of this theory : the model of Nambu and Jona-Lasinio (NLJ). This model can describe the fundamental particles of matter and their subsequent hadronization via cross sections and the construction of the mass of hadrons. Finally we use the masses and cross sections of this model in a new simulation code based on relativistic molecular dynamics. The presentation of this model begins with the justification of its relativistic aspect, then the explanation of its algorithms. The results of these simulations are finally analyzed and compared with data from RHIC. The phenomenology of non-observable results is also discussed
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Goessens, Grégoire. "Étude de la transition entre le plasma de quarks et de gluons et la matière hadronique dans le cadre d'un modèle effectif de la QCD : le modèle Polyakov-Nambu-Jona-Lasinio." Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10118/document.

Повний текст джерела
Анотація:
Le plasma de quarks et de gluons (QGP) est un état de la matière observe lors de la collision d'ions lourds dans les accélérateurs tels que le LHC. Il est présent à haute température et/ou à haute densité, les quarks sont alors déconfinés : libres de se mouvoir et interagissant très peu entre eux. A basse température et basse densité, les quarks sont, au contraire, confines dans les hadrons formant la matière hadronique ordinaire. La présence d'une transition entre cette phase hadronique et le QGP a des conséquences importantes que ce soit 'a haute température (expériences RHIC et LHC) ou a haute densité (expérience CBM à FAIR, étude des étoiles compactes). Une première transition de phase est liée à la brisure de la symétrie chirale. Dans la matière hadronique, cette symétrie est brisée spontanément. Elle est restaurée en augmentant la température ou la densité. Au delà de la discussion habituelle sur la transition chirale, nous utiliserons un modèle, le modèle Polyakov Nambu Jona-Lasinio permettant de décrire une deuxième transition : la transition de deconfinement. Ceci permettra de séparer le diagramme Temperature-Densité en trois phases distinctes : la phase hadronique ou les quarks sont confines et o'u la symétrie chirale est brisée, la phase du QGP ou les quarks sont d'confines et o'u la symétrie chirale est restaurée et une phase hypothétique dite quarkyonique à basse température et haute densité ou les quarks sont encore confines mais ou la symétrie chirale est restaurée. On décrira, dans un premier temps les différentes transitions à l'aide des paramètres d'ordre suivant : le condensat de quark pour la transition chirale et la boucle de Polyakov pour le déconfinement. On verra ensuite comment l'évolution des fonctions spectrales des mésons sigma et pi peut nous renseigner sur le diagramme de phase. Le critère de transition chirale sera alors la différence entre les masses de ces mésons, la masse étant prise comme étant le maximum de la fonction spectrale. Le critère de transition de deconfinement sera, quant à lui, l'écart-type de la fonction spectrale. Enfin, nous verrons comment intégrer les mésons vecteurs au modèle, en particulier le méson rho, qui pourra jouer le rôle de sonde du plasma, ses propriétés étant modifiées suivant le milieu dans lequel il est émis
The quark and gluon plasma (QGP) is a state of matter observed in the collision of heavy ions in accelerators such as the LHC. It is formed at high temperature and / or high density, quarks are then deconfined : free to move and interacting very little with each other. At low temperature and low density, the quarks are, however, confined within hadrons forming the ordinary hadronic matter. The presence of the phase transition between hadronic matter and the QGP has observable consequences whatsoever at high temperature (RHIC and LHC experiments) or high density (FAIR experience, study of compact stars). A first phase transition is linked to the chiral symmetry breaking. In hadronic matter, this symmetry is spontaneously broken. It is restored by increasing the temperature or the density. Beyond the usual discussion on the chiral transition, we use a model called Polyakov Nambu Jona-Lasinio for describing a second transition, the deconfinement transition. This allows to separate the temperature-density diagram in three distinct phases : the hadronic phase where quarks are confined and where chiral symmetry is broken, the phase of the QGP where quarks are deconfined and chiral symmetry is restored and a hypothetical phase called quarkyonic at low temperature and high density in which quarks are confined but where chiral symmetry is still restored. We will describe, at first, the various transitions using the following order parameters : the quark condensate for the chiral transition and the Polyakov loop for the deconfinement one. Then we will see how the evolution of the spectral functions of sigma and pi mesons can provide information on the phase diagram. The chiral transition criterion will be the difference between the masses of these mesons, the mass being taken as the maximum of the spectral function. And the criterion for the deconfinement transition will be the standard deviation (also called variance) of the spectral function. Finally, we discuss how the vector mesons fit in the model, especially the meson, which can act as a probe of plasma properties which are modified by the environment from which it is issued
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Kestin, Gregory M. "A study using relativistic hydrodynamics for ultrarelativistic heavy-ion collisions the quark-gluon-plasma to hadron phase transition and LHC predictions /." Connect to resource, 2008. http://hdl.handle.net/1811/32027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Wang, Jian Gui. "A study of multiparticle production and phase transition in ultra-relativistic heavy-ion collisions." Thesis, The University of Sydney, 2000. https://hdl.handle.net/2123/27756.

Повний текст джерела
Анотація:
Ultra—Relativistic Heavy—Ion Collisions (URHIC) have provided us the opportunity to search for the signal of quark-gluon plasma (QGP) in the laboratory. Such collisions, “little bang”, can offer a very similar situation to “Big Bang” to produce very high energy density and temperature in a very small region. In this special region, quarks and gluons will not be confined and phase transition can occur in a very short time after collision. Theoretical research predicted that different signals (such as chiral symmetry, multiplicity fluctuation, heavy quarkonia suppression and HBT effect...) will be obtained from final particle produc— tion if quark-gluon plasma can be produced after a nucleus-nucleus collision. Experimental explorations in this direction started at the end of 1986 with fixed target experiments at SPS/CERN and AGS/BNL. A dozen experiments have been run over about one and half decades. Many exciting experimental results have been obtained in different measurements from different experimental groups who are running at the SP3 and AGS. However, no one has yet captured a clean and unambiguous signal of quark-gluon plasma formation.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Wunderlich, Falk. "Photoemissivity near a chiral critical point within the quark-meson model." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2018. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-233657.

Повний текст джерела
Анотація:
The interplay of thermodynamic properties of strongly interacting matter and its emission of photons is investigated. For this purpose the Lagrangian of the quark meson model (in the literature also dubbed "linear sigma model" or "linear sigma model with quarks") is extended by an electromagnetic sector. Based on this extended Lagrangian both the grand-canonical potential and the generating functional of correlation functions are calculated in a consistent manner. From the former, the phase structure and various thermodynamical properties are determined. Especially, the dependence of certain landmarks (critical point, intersections of the phase boundary with the coordinate axes, etc.) of the phase diagram with respect to the model parameters is investigated in detail. With the help of the generating functional in turn, the photon propagator can be computed whose imaginary part is connected to the emission rate of photons. The leading order of the result with respect to the number of participating particles and the power of the quark-meson coupling is expressed in terms of tree level diagrams, which are calculated likewise. On this basis, the photon emissivity with respect to temperature, chemical potential and photon frequency is calculated and analyzed addressing various questions. The dependence of the particle masses with respect to temperature and chemical potential leaves notable imprints on the emissivities of the individual production processes. Especially a first-order phase transition can easily be identified, since, there, the emissivity may jump - depending on the temperature - by a factor of about ten. Contrarily, within our analysis, we do not find signatures in the photon emissivities that specifically mark a critical end point. Moreover, it is investigated on which parameters the photon emission rate depends in the low- and high-frequency regions. With these results the behavior of the emissivity with respect to temperature and chemical potential can be understood and many peculiarities of the emissivities can be explained
Das Zusammenspiel der thermodynamischen Eigenschaften von stark wechselwirkender Materie und deren Emission von Photonen wird untersucht. Dazu wird die Lagrangedichte des Quark-Meson-Modells (auch: Linear-Sigma-Modell oder Linear-Sigma-Modell mit Quarks) um einen elektromagnetischen Sektor erweitert. Aus der so erweiterten Lagrangedichte werden auf konsistente Weise sowohl das großkanonische Potential als auch das erzeugende Funktional der Korrelationsfunktionen ermittelt. Aus ersterem werden die Phasenstruktur des Modells sowie zahlreiche thermodynamische Eigenschaften berechnet. Insbesondere wird die Abhänigkeit einiger Orientierungspunkte (kritischer Punkt, Schnittpunkte der Phasengrenze mit den Koordinatenachsen usw.) des Phasendiagramms von den Modellparametern detailiert untersucht. Mit Hilfe des erzeugenden Funktionals wiederum kann der Photonenpropagator bestimmt werden, dessen Imaginärteil mit der Emissionsrate von Photonen zusammenhängt. Die führende Ordnung in einer Entwicklung nach der Anzahl der beteiligten Teilchen und der Potenz der Quark-Meson-Kopplung lässt sich durch Baumgraphen-Diagramme darstellen, die ebenfalls berechnet werden. Auf dieser Basis wird die Photon-Emissivität in Abhängigkeit von Temperatur, chemischem Potential und Photon-Frequenz berechnet und unter verschiedenen Gesichtspunkten analysiert. Die Abhängigkeit der Teilchenmassen von Temperatur und chemischem Potential hinterlässt teilweise ausgeprägte Signaturen in den Emissivitäten der einzelnen sub-Prozesse. Insbesondere ein Phasenübergang erster Ordnung zeigt sich deutlich, da an diesem die Emissivität - abhänging von der Temperatur - um einen Faktor der Größenordnung zehn springen kann. Jedoch finden wir im Rahmen dieser Analyse keine spezifischen Signaturen in den Photonen-Emissivitäten, die einen kritischen Punkt auszeichnen. Des weiteren wird untersucht von welchen Parametern die Photonen-Emissionsrate in den Bereichen niedriger oder hoher Photonen-Frequenzen abhängt. Mit diesen Ergebnissen kann das Verhalten der Emissivität in Abhängigkeit von Temperatur und chemischem Potential gut verstanden und zahlreiche Auffälligkeiten in den Emissivitäten erklärt werden
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Dumonteil, Eric. "Etude des résonances de la famille du Upsilon dans les collisions d'ions lourds ultra-relativistes à 2.75 TeV/nucléon et par faisceau dans le cadre de l'expérience ALICE au CERN." Phd thesis, Université de Caen, 2004. http://tel.archives-ouvertes.fr/tel-00009493.

Повний текст джерела
Анотація:
La chromodynamique quantique prédit, à haute température et/ou densité d'énergie, une transition de phase entre la matière hadronique ordinaire et un nouvel état où les quarks et les gluons seraient déconfinés : le Plasma de Quarks et de Gluons. Durant les quinze dernières années s'est développé un large programme expérimental au CERN et à Brookhaven, ayant pour but d'identifier le PQG. ALICE est l'expérience du LHC dédiée à l'étude du plasma via les collisions d'ions lourds ultra-relativistes à 2.75 TeV/nucléon et par faisceau. La mesure de la suppression des résonances de la famille du Upsilon, signature potentielle de la formation d'un milieu coloré, à l'aide du spectromètre à muons de l'expérience ALICE est au centre de cette thèse. La première partie de ce travail est liée à l'étude des chambres multifils à cathodes segmentées du bras dimuon, utilisées par le système de trajectographie des muons issus de la décroissance des résonances lourdes. La seconde partie présente un algorithme d'alignement des détecteurs à l'aide de traces physiques à même de mesurer les positions réelles des différentes composantes du système de trajectographie avec de très bonnes résolutions spatiales. Finalement, la dernière partie propose une étude à mener à l'aide du spectromètre d'ALICE, impliquant la mesure de rapport des productions Upsilon et Upsilon' en fonction de l'impulsion transverse de la résonance. Il est montré que cette étude devrait permettre de statuer quand à la formation d'un état déconfiné et d'extraire certaines de ses propriétés.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ragoni, Simone. "Hadron spectra measurement in Xe--Xe collisions at $\sqrt{s_{\rm{NN}}}=5.44 \text{ TeV}$ with the ALICE experiment at the LHC." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/16383/.

Повний текст джерела
Анотація:
Nell'autunno del 2017 la Collaborazione ALICE ha registrato dati da collisioni Xe--Xe all'energia mai vista prima in collisioni nucleo-nucleo AA di (energia nel centro di massa per coppia di nucleoni) $\sqrt{s_{\rm{NN}}} = 5.44 \text{ TeV}$. Gli spettri in impulso trasverso a rapidità centrale ($|y| < 0.5$) di pioni, kaoni e protoni sono presentati. Tali spettri nella loro forma definitiva sono ottenuti combinando analisi indipendenti sui dati dell'Inner Tracking System (ITS), della Time Projection Chamber (TPC), e del Time-Of-Flight (TOF). Questa tesi si focalizza sull'analisi compiuta con il TOF e sulle prestazioni ottenute sulle speciali condizioni sperimentali in collisioni Xe--Xe. La peculiarità di questi dati deriva dalla presenza di un campo magnetico più basso del solito ($B = 0.2 \text{ T}$ contro i soliti $0.5 \text{ T}$); dunque ci si aspetta di poter esplorare una regione in $p_{\rm T}$ non raggiungibile prima. Un confronto tra gli spettri a differenti classi di centralità sarà pure fornito. In late 2017, the ALICE collaboration recorded data from Xe--Xe collisions at the unprecedented energy in nucleus-nucleus AA systems of (centre of mass energy per nucleon pair) $\sqrt{s_{\rm{NN}}} = 5.44$ TeV. The (transverse momentum) $p_{\rm T}$-spectra at mid-rapidity ($|y| < 0.5$) of pions, kaons and protons are presented. The final $p_{\rm T}$-spectra are obtained by combining independent analyses with the Inner Tracking System (ITS), the Time Projection Chamber (TPC), and the Time-Of-Flight (TOF) detectors. This thesis focuses on the analysis performed with TOF and on the performance of the special Xe--Xe run conditions. The peculiarity of these data comes also from the experimental setup: because of the lower magnetic field ($B = 0.2 \text{ T}$, lower than the usual $0.5 \text{ T}$) we expect to explore a $p_{\rm T}$ region unattainable before. A comparison between the yields at different centrality bins will also be provided.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Wu, Yang. "Azimuthal anisotropy in gold-gold collisions at 4.5 GeV center-of-mass energy per nucleon pair using fixed-target mode at the Relativistic Heavy-Ion Collider." Kent State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=kent1562355001935965.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Savatier, François. "Dynamique du modèle des sacs : application à la transition de phase de déconfinement." Montpellier 2, 1988. http://www.theses.fr/1988MON20205.

Повний текст джерела
Анотація:
Afin de permettre une description phenomenologique de la transition de phase de deconfinement, la mecanique statistique d'un gaz de sacs avec traitement des interactions a la van der waals est developpee. Une methode tres intuitive de prise en compte des fluctuations spheriques des volumes est ensuite rigoureusement justifiee par une reprise de la dynamique du modele des sacs. Le spectre asymptotique des hadrons dans le modele des sacs est ensuite calcule pour diverses contraintes de jauge et permet une etude phenomenologique du comportement critique de la matiere baryoniquement chargee. Des resultats sont obtenus qui encouragent l'exploitation de la methode de prise en compte des fluctuations de volume
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Goessens, Grégoire. "Etude de la transition entre le plasma de quarks et de gluons et la matière hadronique dans le cadre d'un modèle effectif de la QCD : le modèle Polyakov-Nambu-Jona-Lasinio." Phd thesis, Université Claude Bernard - Lyon I, 2012. http://tel.archives-ouvertes.fr/tel-00958242.

Повний текст джерела
Анотація:
Le plasma de quarks et de gluons (QGP) est un état de la matière observe lors de la collision d'ions lourds dans les accélérateurs tels que le LHC. Il est présent à haute température et/ou à haute densité, les quarks sont alors déconfinés : libres de se mouvoir et interagissant très peu entre eux. A basse température et basse densité, les quarks sont, au contraire, confines dans les hadrons formant la matière hadronique ordinaire. La présence d'une transition entre cette phase hadronique et le QGP a des conséquences importantes que ce soit 'a haute température (expériences RHIC et LHC) ou a haute densité (expérience CBM à FAIR, étude des étoiles compactes). Une première transition de phase est liée à la brisure de la symétrie chirale. Dans la matière hadronique, cette symétrie est brisée spontanément. Elle est restaurée en augmentant la température ou la densité. Au delà de la discussion habituelle sur la transition chirale, nous utiliserons un modèle, le modèle Polyakov Nambu Jona-Lasinio permettant de décrire une deuxième transition : la transition de deconfinement. Ceci permettra de séparer le diagramme Temperature-Densité en trois phases distinctes : la phase hadronique ou les quarks sont confines et o'u la symétrie chirale est brisée, la phase du QGP ou les quarks sont d'confines et o'u la symétrie chirale est restaurée et une phase hypothétique dite quarkyonique à basse température et haute densité ou les quarks sont encore confines mais ou la symétrie chirale est restaurée. On décrira, dans un premier temps les différentes transitions à l'aide des paramètres d'ordre suivant : le condensat de quark pour la transition chirale et la boucle de Polyakov pour le déconfinement. On verra ensuite comment l'évolution des fonctions spectrales des mésons sigma et pi peut nous renseigner sur le diagramme de phase. Le critère de transition chirale sera alors la différence entre les masses de ces mésons, la masse étant prise comme étant le maximum de la fonction spectrale. Le critère de transition de deconfinement sera, quant à lui, l'écart-type de la fonction spectrale. Enfin, nous verrons comment intégrer les mésons vecteurs au modèle, en particulier le méson rho, qui pourra jouer le rôle de sonde du plasma, ses propriétés étant modifiées suivant le milieu dans lequel il est émis.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Quark gluon plasma phase transition"

1

Workshop Nuclear Matter in Different Phases and Transitions (1998 Les Houches, France). Nuclear matter in different phases and transitions: Proceedings of the Workshop Nuclear Matter in Different Phases and Transitions, March 31-April 10, 1998, Les Houches, France. Dordrecht: Kluwer Academic Publishers, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Symposium on Nuclear Dynamics and Nuclear Disassembly (1989 Dallas, Texas). Nuclear dynamics and nuclear disassembly: Proceedings of the Symposium, Dallas, Texas, April, 1989. Singapore: World Scientific, 1989.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

(Editor), Jean-Paul Blaizot, Xavier Campi (Editor), and Marek Ploszajczak (Editor), eds. Nuclear Matter in Different Phases and Transitions (Fundamental Theories of Physics). Springer, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Quark gluon plasma phase transition"

1

Stock, Reinhard. "Relativistic Nucleus-Nucleus Collisions and the QCD Matter Phase Diagram." In Particle Physics Reference Library, 311–453. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38207-0_7.

Повний текст джерела
Анотація:
AbstractThis review will be concerned with our knowledge of extended matter under the governance of strong interaction, in short: QCD matter. Strictly speaking, the hadrons are representing the first layer of extended QCD architecture. In fact we encounter the characteristic phenomena of confinement as distances grow to the scale of 1 fm (i.e. hadron size): loss of the chiral symmetry property of the elementary QCD Lagrangian via non-perturbative generation of “massive” quark and gluon condensates, that replace the bare QCD vacuum. However, given such first experiences of transition from short range perturbative QCD phenomena (jet physics etc.), toward extended, non perturbative QCD hadron structure, we shall proceed here to systems with dimensions far exceeding the force range: matter in the interior of heavy nuclei, or in neutron stars, and primordial matter in the cosmological era from electro-weak decoupling (10−12 s) to hadron formation (0.5 ⋅ 10−5 s). This primordial matter, prior to hadronization, should be deconfined in its QCD sector, forming a plasma (i.e. color conducting) state of quarks and gluons: the Quark Gluon Plasma (QGP).
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kapusta, Joseph I. "Quark-Gluon Plasma in the Early Universe." In Phase Transitions in the Early Universe: Theory and Observations, 103–21. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0997-3_4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Gerschel, C. "The Phase Transition Between the Quark-Gluon Plasma and the Hadronic Matter: What Can We Learn from Vector Mesons?" In Nuclear Matter in Different Phases and Transitions, 277–92. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4556-5_21.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gaździcki, Marek. "Quark Gluon Plasma in A+A Collisions at Cern SPS." In Nuclear Matter in Different Phases and Transitions, 293–302. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4556-5_22.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Müller, Berndt. "A New Phase of Matter: Quark-Gluon Plasma Beyond the Hagedorn Critical Temperature." In Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN, 107–16. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-17545-4_14.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Hagedorn, Rolf. "On a Possible Phase Transition Between Hadron Matter and Quark-Gluon Matter: 1981." In Melting Hadrons, Boiling Quarks - From Hagedorn Temperature to Ultra-Relativistic Heavy-Ion Collisions at CERN, 271–86. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-17545-4_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

HWA, RUDOLPH C. "SCALING PROPERTIES OF QUARK-HADRON PHASE TRANSITION." In Quark-Gluon Plasma 2, 749–84. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812830661_0013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Shuryak, Edward. "THE QCD VACUUM, CHIRAL PHASE TRANSITION AND QUARK-GLUON PLASMA." In Quark-Gluon Plasma 2, 211–63. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812830661_0004.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

RAJAGOPAL, KRISHNA. "THE CHIRAL PHASE TRANSITION IN QCD: CRITICAL PHENOMENA AND LONG WAVELENGTH PION OSCILLATIONS." In Quark-Gluon Plasma 2, 484–554. WORLD SCIENTIFIC, 1995. http://dx.doi.org/10.1142/9789812830661_0009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kumar, Ashwini. "High Energy Physics." In Redefining Standard Model Particle Physics [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.107667.

Повний текст джерела
Анотація:
The creation of strongly interacting dense state of matter is expected in heavy-ion accelerators at relativistic energies, such as Relativistic Heavy Ion collider and Large Hadron Collider experiments. These experiments are believed to provide us the signature of the formation on quark-gluon plasma (QGP) and possible QCD phase transition. The charged particles directly and indirectly measured by detectors located near the collision point bear the signals of QGP and hint toward the occurrence of QCD phase transition going from hadronic phase to the QGP phase and vice versa. The observation of large particle density fluctuations in the JACEE experiment and its explanation by normalized factorial moments triggered investigations of multiplicity fluctuation patterns with decreasing domains of phase space (one-, two-, or three-dimensional phase space) invoked special interest to analyze such events. Fluctuations of dynamical origin are reflected in probability density as intermittency behavior and indicate toward the creation of QGP. Various fluctuation observables were proposed on theoretical basis, and their measurements became possible by the availability of detector facility in these modern and technologically rich experiments. A careful measurement and examination have been carried out over past years with many discoveries and are still in progress to address many new physics issues.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Quark gluon plasma phase transition"

1

Komarov, E. V., and Yu A. Simonov. "THEORY OF QUARK-GLUON PLASMA AND PHASE TRANSITION." In Proceedings of the Thirteenth Lomonosov Conference on Elementary Particle Physics. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812837592_0054.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

BLANCHARD, PHILIPPE, and DANIEL GANDOLFO. "RANDOM CLUSTER MODEL, PERCOLATION AND DECONFINEMENT TRANSITION IN QUARK GLUON PLASMA." In Proceedings of the SEWM2000 Meeting. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812799913_0016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Lévai, Péter, and Berndt Müller. "Transverse baryon flow as possible evidence for a quark-gluon plasma phase." In Intersections between particle and nuclear physics. AIP, 1992. http://dx.doi.org/10.1063/1.41566.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Senger, Peter. "Exploring the QCD phase diagram at neutron star densities: the CBM experiment at FAIR." In 7th International Conference on Physics and Astrophysics of Quark Gluon Plasma. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.242.0107.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Nasim, Md. "Probing the QCD phase diagram with the measurements of strange hadron elliptic flow in STAR." In 7th International Conference on Physics and Astrophysics of Quark Gluon Plasma. Trieste, Italy: Sissa Medialab, 2017. http://dx.doi.org/10.22323/1.242.0064.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

KARSCH, FRITHJOF. "CONFRONTING LATTICE RESULTS ON THE TRANSITION FROM THE HADRON GAS TO THE QUARK-GLUON PLASMA WITH HADRONIC RESONANCE GAS MODELS." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702845_0022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Звіти організацій з теми "Quark gluon plasma phase transition"

1

Scharenberg, R., A. Hirsch, and M. Tincknell. The study of the phase structure of hadronic matter by searching for the deconfined quark-gluon phase transition using 2 TeV {bar p}-p collisions; and by searching for critical phenomena in an exclusive study of multifragmentation using 1 GeV/nucleon heavy ion collisions. Progress report, January 1--December 31, 1993. Office of Scientific and Technical Information (OSTI), September 1993. http://dx.doi.org/10.2172/10173391.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Scharenberg, R. P., A. S. Hirsch, and M. L. Tincknell. The study of the phase structure of hadronic matter by searching for the deconfined quark-gluon phase transition using 2 TeV [bar p]p collisions; and by searching for critical phenomena in an exclusive study of multifragmentation using 1 GeV/nucleon heavy ion collisions. [Detect ionization of charged particles directly in Si]. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/7174440.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Scharenberg, R. P., A. S. Hirsch, and M. L. Tincknell. The study of the phase structure of hadronic matter by searching for the deconfined quark-gluon phase transition using 2 TeV {bar p}p collisions; and by searching for critical phenomena in an exclusive study of multifragmentation using 1 GeV/nucleon heavy ion collisions. Progress report, January 1, 1992--December 31, 1992. Office of Scientific and Technical Information (OSTI), September 1992. http://dx.doi.org/10.2172/10183408.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

The search for the deconfined quark-gluon phase transition using 2 TeV p p collisions; The search for critical phenomena in multifragmentation using 1 GeV/nucleon heavy ion collisions; The development of the solenoidal detector (STAR) for the Relativistic Heavy Ion Collider (RHIC). Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/6003472.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

The search for the deconfined quark-gluon phase transition using 2 TeV {bar p}p collisions; The search for critical phenomena in multifragmentation using 1 GeV/nucleon heavy ion collisions; The development of the solenoidal detector (STAR) for the Relativistic Heavy Ion Collider (RHIC). Progress report, January 1, 1991--December 31, 1991. Office of Scientific and Technical Information (OSTI), September 1991. http://dx.doi.org/10.2172/10112400.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії