Добірка наукової літератури з теми "Quantum Vacuum Friction"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Quantum Vacuum Friction".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Quantum Vacuum Friction"

1

Davies, P. C. W. "Quantum vacuum friction." Journal of Optics B: Quantum and Semiclassical Optics 7, no. 3 (March 1, 2005): S40—S46. http://dx.doi.org/10.1088/1464-4266/7/3/006.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Eberlein, Claudia. "Quantum friction across the vacuum." Physics World 11, no. 2 (February 1998): 27–28. http://dx.doi.org/10.1088/2058-7058/11/2/28.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Pendry, J. B. "Shearing the vacuum - quantum friction." Journal of Physics: Condensed Matter 9, no. 47 (November 24, 1997): 10301–20. http://dx.doi.org/10.1088/0953-8984/9/47/001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Xiong, Xue-Yu, Chun-Yuan Gao, and Ren-Xin Xu. "Spindown of magnetars: quantum vacuum friction?" Research in Astronomy and Astrophysics 16, no. 1 (January 2016): 009. http://dx.doi.org/10.1088/1674-4527/16/1/009.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Xu, Zhujing, Zubin Jacob, and Tongcang Li. "Enhancement of rotational vacuum friction by surface photon tunneling." Nanophotonics 10, no. 1 (September 18, 2020): 537–43. http://dx.doi.org/10.1515/nanoph-2020-0391.

Повний текст джерела
Анотація:
AbstractWhen a neutral sphere is rotating near a surface in vacuum, it will experience a frictional torque due to quantum and thermal electromagnetic fluctuations. Such vacuum friction has attracted many interests but has been too weak to be observed. Here we investigate the vacuum frictional torque on a barium strontium titanate (BST) nanosphere near a BST surface. BST is a perovskite ferroelectric ceramic that can have large dielectric responses at GHz frequencies. At resonant rotating frequencies, the mechanical energy of motion can be converted to electromagnetic energy through resonant photon tunneling, leading to a large enhancement of the vacuum friction. The calculated vacuum frictional torques at resonances at sub-GHz and GHz frequencies are several orders larger than the minimum torque measured by an optically levitated nanorotor recently, and are thus promising to be observed experimentally. Moreover, we calculate the vacuum friction on a rotating sphere near a layered surface for the first time. By optimizing the thickness of the thin-film coating, the frictional torque can be further enhanced by several times.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reiche, D., F. Intravaia, and K. Busch. "Wading through the void: Exploring quantum friction and nonequilibrium fluctuations." APL Photonics 7, no. 3 (March 1, 2022): 030902. http://dx.doi.org/10.1063/5.0083067.

Повний текст джерела
Анотація:
When two or more objects move relative to one another in vacuum, they experience a drag force, which, at zero temperature, usually goes under the name of quantum friction. This contactless non-conservative interaction is mediated by the fluctuations of the material-modified quantum electrodynamic vacuum and, hence, is purely quantum in nature. Numerous investigations have revealed the richness of the mechanisms at work, thereby stimulating novel theoretical and experimental approaches and identifying challenges and opportunities. In this Perspective, we provide an overview of the physics surrounding quantum friction and a perspective on recent developments.
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Coelho, Jaziel G., Jonas P. Pereira, and José C. N. de Araujo. "THE INFLUENCE OF QUANTUM VACUUM FRICTION ON PULSARS." Astrophysical Journal 823, no. 2 (May 26, 2016): 97. http://dx.doi.org/10.3847/0004-637x/823/2/97.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Dupays, A., C. Rizzo, D. Bakalov, and G. F. Bignami. "Quantum Vacuum Friction in highly magnetized neutron stars." EPL (Europhysics Letters) 82, no. 6 (June 2008): 69002. http://dx.doi.org/10.1209/0295-5075/82/69002.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Lombardo, Fernando C., Ricardo S. Decca, Ludmila Viotti, and Paula I. Villar. "Detectable Signature of Quantum Friction on a Sliding Particle in Vacuum." Advanced Quantum Technologies 4, no. 5 (March 31, 2021): 2000155. http://dx.doi.org/10.1002/qute.202000155.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Calogeracos, A., and G. E. Volovik. "Rotational quantum friction in superfluids: Radiation from object rotating in superfluid vacuum." Journal of Experimental and Theoretical Physics Letters 69, no. 4 (February 1999): 281–87. http://dx.doi.org/10.1134/1.568024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Quantum Vacuum Friction"

1

Bugler-Lamb, Samuel Lloyd. "The quantum vacuum near time-dependent dielectrics." Thesis, University of Exeter, 2017. http://hdl.handle.net/10871/29879.

Повний текст джерела
Анотація:
The vacuum, as described by Quantum Field Theory, is not as empty as classical physics once led us to believe. In fact, it is characterised by an infinite energy stored in the ground state of its constituent fields. This infinite energy has real, tangible effects on the macroscopic clusters of matter that make up our universe. Moreover, the configuration of these clusters of matter within the vacuum in turn influences the form of the vacuum itself and so forth. In this work, we shall consider the changes to the quantum vacuum brought about by the presence of time-dependent dielectrics. Such changes are thought to be responsible for phenomena such as the simple and dynamical Casimir effects and Quantum Friction. After introducing the physical and mathematical descriptions of the electromagnetic quantum vacuum, we will begin by discussing some of the basic quasi-static effects that stem directly from the existence of an electromagnetic ground state energy, known as the \textit{zero-point energy}. These effects include the famous Hawking radiation and Unruh effect amongst others. We will then use a scenario similar to that which exhibits Cherenkov radiation in order to de-mystify the 'negative frequency' modes of light that often occur due to a Doppler shift in the presence of media moving at a constant velocity by showing that they are an artefact of the approximation of the degrees of freedom of matter to a macroscopic permittivity function. Here, absorption and dissipation of electromagnetic energy will be ignored for simplicity. The dynamics of an oscillator placed within this moving medium will then be considered and we will show that when the motion exceeds the speed of light in the dielectric, the oscillator will begin to absorb energy from the medium. It will be shown that this is due to the reversal of the 'radiation damping' present for lower velocity of stationary cases. We will then consider how the infinite vacuum energy changes in the vicinity, but outside, of this medium moving with a constant velocity and show that the presence of matter removes certain symmetries present in empty space leading to transfers of energy between moving bodies mediated by the electromagnetic field. Following on from this, we will then extend our considerations by including the dissipation and dispersion of electromagnetic energy within magneto-dielectrics by using a canonically quantised model referred to as 'Macroscopic QED'. We will analyse the change to the vacuum state of the electromagnetic field brought about by the presence of media with an arbitrary time dependence. It will be shown that this leads to the creation of particles tantamount to exciting the degrees of freedom of both the medium and the electromagnetic field. We will also consider the effect these time-dependencies have on the two point functions of the field amplitudes using the example of the electric field. Finally, we will begin the application of the macroscopic QED model to the path integral methods of quantum field theory with the purpose of making use of the full range of perturbative techniques that this entails, leaving the remainder of this adaptation for future work.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Quantum Vacuum Friction"

1

Pendharker, Sarang, Yu Guo, Farhad Khosravi, and Zubin Jacob. "Giant vacuum friction: PT symmetric spectral singularity and negative frequency resonance (Conference Presentation)." In Quantum Nanophotonics, edited by Mark Lawrence and Jennifer A. Dionne. SPIE, 2017. http://dx.doi.org/10.1117/12.2274573.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Khoshnoud, Farbod, Houman Owhadi, and Clarence W. de Silva. "Stochastic Simulation of a Casimir Oscillator." In ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39746.

Повний текст джерела
Анотація:
Stochastic simulation of a Casimir Oscillator is presented in this paper. This oscillator is composed of a flat boundary of semiconducting oscillator parallel to a fixed plate separated by vacuum. In this system the oscillating surface is attracted to the fixed plate by the Casimir effect, due to quantum fluctuations in the zero point electromagnetic field. Motion of the oscillating boundary is opposed by a spring. The stored potential energy in the spring is converted into kinetic energy when the spring force exceeds the Casimir force, which generates an oscillatory motion of the moving plate. Casimir Oscillators are used as micro-mechanical switches, sensors and actuators. In the present paper, a stochastic simulation of a Casimir oscillator is presented for the first time. In this simulation, Stochastic Variational Integrators using a Langevin equation, which describes Brownian motion, is considered. Formulations for Symplectic Euler, Constrained Symplectic Euler, Stormer-Verlet and RATTLE integrators are obtained and the Symplectic Euler case is solved numerically. When the moving parts in a micro/nano system travel in the vicinity of 10 nanometers to 1 micrometer range relative to other parts of the system, the Casimir phenomenon is in effect and should be considered in analysis and design of such system. The simulation in this paper considers modeling such uncertainties as friction, effect of surface roughness on the Casimir force, and change in environmental conditions such as ambient temperature. In this manner the paper explores a realistic model of the Casimir Oscillator. Furthermore, the presented study of this system provides a deeper understanding of the nature of the Casimir force.
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії