Дисертації з теми "Quantum optics Measurement"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Quantum optics Measurement.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 дисертацій для дослідження на тему "Quantum optics Measurement".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте дисертації для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Cooper, Merlin Frederick Wilmot. "Measurement and manipulation of quantum states of travelling light fields." Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:79164748-ebb3-48e2-b4d4-1a4766d29217.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis is concerned with the generation of non-classical quantum states of light, the photon-level manipulation of quantum states and the accurate tomography of both quantum states and quantum processes. In optics, quantum information can be encoded and processed in both discrete and continuous variables. Hybrid approaches combining for example homodyne detection with conditional state preparation and manipulation are gaining increasing prominence. The development and characterization of a time-domain balanced homodyne detector (BHD) is presented. The detector has a bandwidth of 80 MHz, a signal-to-noise ratio of 14.5 dB and an efficiency of 86% making it well-suited to pulse-to-pulse measurement of quantum optical states. The BHD is employed to perform quantum state tomography (QST) of non-classical multi-photon Fock states generated by spontaneous parametric down-conversion. A detailed investigation of the mode-matching between the local oscillator used for homodyne detection and the generated Fock states is presented. The one-, two- and three-photon Fock states are reconstructed with a combined preparation and detection efficiency exceeding 50%. Fock states have a number of applications in quantum state engineering, where non-classical ancilla states and conditional measurements enable photon-level manipulation of quantum states. Fock state filtration (FSF) is investigated - an example of a post-selected beam splitter which is a basic building block for many quantum state engineering protocols. A model is developed incorporating the effect of experimental imperfections. An experimental implementation of a Fock state filter is fully characterized by means of coherent-state quantum process tomography (QPT). The reconstructed process is found to be consistent with the model. The filter preferentially removes the single-photon component from an arbitrary input quantum state. Calibration of optical detectors in the quantum regime is discussed. Quantum detector tomography (QDT) is reviewed and contrasted with a new technique for performing QST with a calibrated detector known as the fitting of data patterns (FDP). The first experimental characterization of a BHD is performed by probing the detector with phase-averaged coherent states. The FDP method is shown to be applicable to the estimation of quantum processes, where a detector response is not assumed - thus demonstrating the versatility of the FDP approach as a new method in the quantum tomography toolbox.
2

Pregnell, Kenneth Lyell, and n/a. "Retrodictive Quantum State Engineering." Griffith University. School of Science, 2004. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20041029.134933.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis is concerned with retrodiction and measurement in quantum optics. The latter of these two concepts is studied in particular form with a general optical multiport device, consisting of an arbitrary array of beam-splitters and phase-shifters. I show how such an apparatus generalizes the original projection synthesis technique, introduced as an in principle technique to measure the canonical phase distribution. Just as for the original projection synthesis, it is found that such a generalised device can synthesize any general projection onto a state in a finite dimensional Hilbert space. One of the important findings of this thesis is that, unlike the original projection synthesis technique, the general apparatus described here only requires a classical, that is a coherent, reference field at the input of the device. Such an apparatus lends itself much more readily to practical implementation and would find applications in measurement and predictive state engineering. If we relax the above condition to allow for just a single non-classical reference field, we show that the apparatus is capable of producing a single-shot measure of canonical phase. That is, the apparatus can project onto any one of an arbitrarily large subset of phase eigenstates, with a probability proportional to the overlap of the phase state and the input field. Unlike the original projection synthesis proposal, this proposal requires a binomial reference state as opposed to a reciprocal binomial state. We find that such a reference state can be obtained, to an excellent approximation, from a suitably squeezed state. The analysis of these measurement apparatuses is performed in the less usual, but completely rigorous, retrodictive formalism of quantum mechanics.
3

Kozlowski, Wojciech. "Competition between weak quantum measurement and many-body dynamics in ultracold bosonic gases." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:8da45dd9-27f9-42b6-8bae-8001d0154966.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Trapping ultracold atoms in optical lattices enabled the study of strongly correlated phenomena in an environment that is far more controllable and tunable than what was possible in condensed matter. Here, we consider coupling these systems to quantised light where the quantum nature of both the optical and matter fields play equally important roles in order to push the boundaries of what is possible in ultracold atomic systems. We show that light can serve as a nondestructive probe of the quantum state of matter. By considering a global measurement we show that it is possible to distinguish a highly delocalised phase like a superfluid from the Bose glass and Mott insulator. We also demonstrate that light scattering reveals not only density correlations, but also matter-field interference. By taking into account the effect of measurement backaction we show that the measurement can efficiently compete with the local atomic dynamics of the quantum gas. This can generate long-range correlations and entanglement which in turn leads to macroscopic multimode oscillations across the whole lattice when the measurement is weak and correlated tunnelling, as well as selective suppression and enhancement of dynamical processes beyond the projective limit of the quantum Zeno effect in the strong measurement regime. We also consider quantum measurement backaction due to the measurement of matter-phase-related variables such as global phase coherence. We show how this unconventional approach opens up new opportunities to affect system evolution and demonstrate how this can lead to a new class of measurement projections thus extending the measurement postulate for the case of strong competition with the system's own evolution.
4

Elouard, Cyril. "Thermodynamics of quantum open systems : applications in quantum optics and optomechanics." Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY046/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La thermodynamique a été développée au XIXe siècle pour décrire la physique des moteurs et autres machines thermiques macroscopiques. Depuis lors, le progrès des nanotechnologies a rendu nécessaire d'étendre ces lois, initialement pensées pour des systèmes classiques, aux systèmes obéissant à la mécanique quantique. Durant cette thèse, j'ai mis en place un formalisme pour étudier la thermodynamique stochastique des systèmes quantiques, dans lequel la mesure quantique occupe une place centrale: à l'instar du bain thermique de la thermodynamique statistique classique, la mesure est ici la source première d'aléatoire dans la dynamique. Dans un premier temps, j'ai étudié la mesure projective comme une transformation thermodynamique à part entière. J'ai montré que la mesure cause un changement incontrôlé de l'énergie du système quantique étudié, que j'ai appelé chaleur quantique, ainsi qu'une production d'entropie. Comme application de ces concepts, j'ai proposé un moteur qui extrait du travail à partir des fluctuations quantiques induites par la mesure. Ensuite, j'ai étudié les mesures généralisées, ce qui a permis de décrire des systèmes quantiques ouverts. J'ai défini les notions de travail, de chaleur, et de production d'entropie pour une réalisation unique d'une transformation thermodynamique, et retrouvé que ces quantités obéissent à des théorèmes de fluctuation. Ce formalisme m'a permis d'analyser le comportement thermodynamique de la situation canonique de l'optique quantique : un atome à deux niveaux en couplé à un laser et au vide électromagnétique. Enfin, j'ai étudié une plate-forme prometteuse pour tester la thermodynamique d'un Qubit : un système hybride optomécanique.Le formalisme développé dans cette thèse peut être d'un grand intérêt pour la communauté de thermodynamique quantique car il permet de caractériser les performances des machines thermiques quantiques et de les comparer à leurs analogues classiques. En outre, en caractérisant la mesure quantique comme un processus thermodynamique, il ouvre la voie à de nouveaux types de machines thermiques, exploitant d'une manière inédite les spécificités du monde quantique
Thermodynamics was developed in the XIXth century to provide a physical description to engines and other macroscopic thermal machines. Since then, progress in nanotechnologies urged to extend these formalism, initially designed for classical systems, to the quantum world. During this thesis, I have built a formalism to study the stochastic thermodynamics of quantum systems, in which quantum measurement plays a central role : like the thermal reservoir of standard stochastic thermodynamics, it is the primary source of randomness in the system's dynamics. I first studied projective measurement as a thermodynamic process. I evidenced that measurement is responsible for an uncontroled variation of the system's energy that I called quantum heat, and also a production of entropy. As a proof of concept, I proposed an engine extracting work from the measurement-induced quantum fluctuations. Then, I extended this formalism to generalized measurements, which allowed to describe open quantum systems (i.e. in contact with reservoirs). I defined work, heat and entropy production for single realizations of thermodynamic protocols, and retrieved that these quantities obey fluctuation theorems. I applied this formalism to the canonical situation of quantum optics, i.e. a Qubit coupled to a laser and a the vacuum. Finally, I studied a promising platform to test Qubit's thermodynamics: a hybrid optomechanical system.The formalism developed in this thesis could be of interest for the quantum thermodynamics community as it enables to characterize quantum heat engines and compare their performances to their classical analogs. Furthermore, as it sets quantum measurement as a thermodynamic process, it pave the ways to a new kind of thermodynamic machines, exploiting the specificities of quantum realm in an unprecedented way
5

Buchler, Benjamin Caird. "Electro-optic control of quantum measurements." View thesis entry in Australian Digital Theses Program, 2001. http://thesis.anu.edu.au/public/adt-ANU20020527.131758/index.html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Webb, James Engineering &amp Information Technology Australian Defence Force Academy UNSW. "The measurement, creation and manipulation of quantum optical states via photodetection." Awarded by:University of New South Wales - Australian Defence Force Academy. Engineering & Information Technology, 2009. http://handle.unsw.edu.au/1959.4/43686.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this thesis, we demonstrate an array of photodetection theory and techniques bridging the traditional discrete and continuous variable experimental domains. In quantum optics, the creation and measurement of states of light are intertwined and we present experimental architectures considering both aspects. We describe the measurement of mean photon numbers at optical sideband frequencies using homodyne detection. We use our technique to provide a direct comparison to photon-counting measurements and observe that our technique exhibits superior speed, dynamic range and mode selectivity compared to photon counters. Our analysis also rejects a semiclassical description of the vacuum state, with our observations supporting the quantum mechanical model. We create a new means of describing the detection ???signatures??? of multi-port networks of non-photon-number discriminating detectors. Our model includes the practical effects of loss and dark counts. We use this model to analyse the performance of the loopand balanced- time-division-multiplexed detector architectures in a projective measurement role. Our analysis leads us to describe a prescriptive recipe for the optimisation of each architecture. In light of contemporary technology, we conclude the balanced TDM detector is the better architecture. Our analysis is then extended to the tomographic reconstruction of an unknown optical state using multi-port photon-counting networks. Our new approach is successfully applied to the reconstruction of the photon statistics of weak coherent states and demonstrates reduced error and sensitivity to experimental parameter variations than established techniques. We report the development of a source of quadrature squeezed vacuum at 1550 nm, and characterise the squeezing observed at the first 3 free spectral ranges of the downconversion cavity. This is then used as a source of frequency-entangled photons for a projective photon subtraction operation described by our earlier theory. We propose a new hybrid time/frequency domain approach to homodyne detection and illustrate its application in characterising the prepared state. Our output state has a statistically significant single photon contribution and permits future experimentation in frequency basis quantum information.
7

Folland, Thomas. "Frequency control of terahertz quantum cascade lasers : theory and measurement." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/frequency-control-of-terahertz-quantum-cascade-lasers-theory-and-measurement(d4c55769-f053-4b79-aed3-e2fec575adde).html.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Terahertz (THz) technology stands to solve a number of problems in everyday life, from next generation wireless communication to spectroscopic identification and imaging. However it is technically challenging to make a high power, compact source for terahertz radiation. The Quantum Cascade Laser (QCL), which produces gain at THz frequencies by exploiting inter-sub-band transitions in quantum wells, offers one solution to this problem. However controlling and detecting the emission from such sources remains a major challenge. This thesis investigates the theory and measurement of emission frequencies from aperiodic lattice THz QCLs. Crucially, realising both frequency control and detection provides a complete system for coherent THz characterisation of devices at precise, user defined frequencies. The author starts by studying the emission frequencies and threshold of discretely tuned aperiodic lattice lasers. This is achieved using a numerical transfer matrix method (TMM), which allows the calculation of the aperiodic lattice threshold spectrum for the first time. Calculations reveal that the low threshold modes of aperiodic lattice lasers form at peaks in the electromagnetic density of modes. This shows that lasing in aperiodic lattices arises from slow light propagation induced by multiple photonic band gaps, leading to both band edge and defect laser modes. Frequency selective lasing is maintained even under the influence of external facet feedback, albeit at the cost of precise knowledge of the mode frequency. Importantly this framework allows the understanding of essentially any aperiodic lattice laser system. Most significantly, the TMM is exploited in order to understand how graphene can be used to control a THz laser. Graphene interacts strongly with THz waves, and can be easily integrated with semiconductor structures such as lasers and waveguides. Here, numerical calculations reveal that graphene can be introduced into the waveguide of a THz QCL, generating electrically tunable THz surface plasmons. Such surface plasmons couple into an aperiodic lattice to change the scattering strength of each individual grating element. The TMM reveals that this change in scattering strength controls the modal selectivity of an aperiodic lattice THz QCL. This hypothesis successfully explains both earlier experiments and those performed by the author. Crucially, this model was central to a publication in the journal Science. Finally, this thesis demonstrates a novel coherent detection system for the characterisation of THz QCL emission. The technique exploits non-linear up-conversion of THz waves to a telecoms frequency side-band, a process shown to be sensitive to THz waveguide dispersion. By mixing the up-converted THz wave with a near infra-red local oscillator laser, coherent detection of QCL emission using all fibre coupled components is demonstrated for the first time. This measurement allows for the characterisation of laser emission with high frequency and temporal resolution. Specifically sub-microsecond pulses of THz emission and transients can be detected. When taken as a whole, the work of this thesis constitutes a major step towards realising cost effective THz characterisation and spectroscopy using QCLs.
8

Arzani, Francesco. "Measurement based quantum information with optical frequency combs." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEE005/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce manuscrit porte sur l’étude théorique de techniques expérimentales récemment développées pour réaliser des protocoles d’information quantique en variables continues. Les états Gaussiens multi-modes produits par conversion paramétrique de peignes de fréquences optiques jouent un rôle centrale dans ce travail. Ce phénomène permet de générer de façon déterministe un grand nombre d’états Gaussiens de la lumière. L’état de sortie peut ensuite être de-Gaussifié par soustraction ou addition d’un photon dans une superposition cohérente de modes du champ, puis mesuré par détection homodyne. La thèse est organisée en trois projets principaux. Le premier concerne l’optimisation du spectre du laser de pompe pour manipuler l’état de sortie de la conversion paramétrique. Nous avons développé les outils mathématiques pour traiter des profils spectraux avec amplitude et phase spectrales arbitraires. On a ensuite utilisé un algorithme d’optimisation pour trouver les spectres maximisant des différentes propriétés de l’état de sortie. Une importance particulière est donnée à la production d’"états cluster" en variables continues. Les optimisations ont été développées pour prendre en compte les limitations expérimentales pour assurer la faisabilité des forme spectrales dans les expériences. Dans le deuxième projet nous avons étudié comment les états non-Gaussiens obtenus par soustraction d’un photon d’un état comprimé peuvent être utilisés pour le calcul quantique. Nous proposons un protocole inspiré par le paradigme de "calcul quantique basé sur la mesure" qui combine l’état de-Gaussifié et la mesure homodyne pour approximer des opérateurs unitaires non-Gaussiens. On montre que les mêmes résultats peuvent être obtenus avec des mesure projectives sur des états de photon unique. Finalement, le troisième projet porte sur le partage de secret quantique ("quantum secret sharing"). Dans les protocoles de partage de secret quantique un donneur veut distribuer de l’information codée dans un système quantique à plusieurs joueurs d’une façon qui oblige des sous-ensembles de joueurs à collaborer s’ils veulent retrouver l’information originale. Nous avons développé un protocole qui peut être transféré aux expériences de notre groupe et nous avons participé à la formulation d’une preuve de concept expérimentale. À partir de cela, nous avons dérivé des résultats généraux sur le partage et la reconstruction d’états arbitraires de la lumière en utilisant des ressources Gaussiennes
The present manuscript reports theoretical investigations about the use of recently developed experimental techniques in the realization of quantum information protocols with continuous variables. The focus of the work is on the multi-mode Gaussian states produced by spontaneous parametric down-conversion of optical frequency combs. Such setup allows to deterministicallyengineer many different Gaussian states of light. The output state can be de-Gaussified subtracting or adding a photon coherently on a superposition of modes and finally measured with pulse-shaped and wavelength-multiplexed homodyne detection. The thesis encompasses three projects. The first concerns the optimization of the spectrum of the pump laser field to engineer the Gaussian output state. We developed mathematical techniques to treat spectral profiles with arbitrary amplitude and spectral phase. We thenran an optimization algorithm to find the spectra maximizing several interesting properties of the state of the down-converted field. A particular emphasis was put on the production of continuous-variable cluster states. The optimizations were developed in such a way as to ensure the experimental feasibility of the optimized pump spectra. In the second project we studied how the non-Gaussian states produced subtracting a photon from a squeezed state can be used for quantum computation. We propose a protocol inspired by the measurement-based paradigm for quantum computation combining the photon subtracted states and homodyne detectionto approximate unitary non-Gaussian operations. We show that the same results can be obtained with projective measurements onsingle-photon states. Finally, the third project deals with quantum secret sharing. In quantum secret sharing schemes a dealer wants to share information encoded in some quantum system with a group of players in such a way that subsets of players need to collaborate if they want to retrieve the information. We devised a secret sharing protocol that could be mapped to the experimental setups developed in our group and participated in the formulation of an experimental proof of principle of such protocol. Starting from this we derived general results for sharing and reconstructing arbitrary quantum states using Gaussian resources
9

Thomas-Peter, Nicholas. "Quantum enhanced precision measurement and information processing with integrated photonics." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:7bd47582-d32f-4d07-9e90-4978c32cf14e.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Photons have proven to be an effective test-bed for the fundamental concepts and elements of quantum-enhanced technologies. As systems become increasingly complex, however, practical considerations make the traditional approach of bulk optics and free-space propagation progressively more difficult. The major obstacles are the physical space necessary to realise and operate such a complex system, its stability, and maintaining low losses. In order to address these issues, quantum optical technologies can take a cue from their classical counterparts and look towards an integrated architecture to provide miniaturisation, greatly enhanced stability, less alignment, and low loss interfaces between different system components. In this thesis the feasibility of chip-based waveguides as a platform for metrology and information processing will be explored. In Part I, the necessary criteria for a metrology system to out-perform its classical counterpart will be investigated. It will be found that loss is a major barrier to this aim and, critically, that it is unlikely to have been achieved to date by any experiment which consumes resources of a fixed photon number. The issue of loss will be addressed by developing a scalable heralded source of a class of entangled photonic states which are both robust to losses and practically feasible to prepare. A novel tomographic technique will be developed to characterize these states and it will be explicitly demonstrated how it is possible to beat some bounds on classical performance without being able to out-perform a comparable classical system. Finally, a proof of principle demonstration of a waveguide-based interferometer with an integrated phase-shifter will be undertaken. It will be shown that the device preserves quantum interference, making it suitable for use in quantum-enhanced metrology applications. In Part II, integrated optics in the context of information processing will be discussed. First, a novel characterization technique will be developed which enables the behaviour of complex circuits to be predicted. The technique is independent of loss in the device being characterized. A method of simulating these circuits will be outlined that takes advantage of the computational speed-up available from parallelisation and sparse matrix operations. A key increase in complexity for integrated photonic systems will be demonstrated by showing quantum interference of three photons from two separate sources in eight spatial modes. The resulting interference has a visibility which beats all possible classical interference visibilities for similar circuits. Finally, a fully integrated waveguide-coupled photon-number-resolving detector will be developed and demonstrated. This proof of concept demonstration will show good resolution of different photon number events. The device will be modelled and routes to high efficiency operation will be explored.
10

Mazzucchi, Gabriel. "Conditional many-body dynamics and quantum control of ultracold fermions and bosons in optical lattices coupled to quantized light." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:6c6eddac-41de-476d-851e-6630907965e6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
We study the atom-light interaction in the fully quantum regime, with the focus on off-resonant light scattering into a cavity from ultracold atoms trapped in an optical lattice. Because of the global coupling between the atoms and the light modes, observing the photons leaking from the cavity allows the quantum nondemolition (QND) measurement of quantum correlations of the atomic ensemble, distinguishing between different quantum states. Moreover, the detection of the photons perturbs the quantum state of the atoms via the so-called measurement backaction. This effect constitutes an unusual additional dynamical source in a many-body strongly correlated system and it is able to efficiently compete with its intrinsic short-range dynamics. This competition becomes possible due to the ability to change the spatial profile of a global measurement at a microscopic scale comparable to the lattice period, without the need of single site addressing. We demonstrate nontrivial dynamical effects such as large-scale multimode oscillations, breakup and protection of strongly interacting fermion pairs. We show that measurement backaction can be exploited for realizing quantum states with spatial modulations of the density and magnetization, thus overcoming usual requirement for a strong interatomic interactions. We propose detection schemes for implementing antiferromagnetic states and density waves and we demonstrate that such long-range correlations cannot be realized with local addressing. Finally, we describe how to stabilize these emerging phases with the aid of quantum feedback. Such a quantum optical approach introduces into many-body physics novel processes, objects, and methods of quantum engineering, including the design of many-body entangled environments for open systems and it is easily extendable to other systems promising for quantum technologies.
11

Cabart, Clément. "Measurement and control of electronic coherences." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN031/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ces dernières années, de considérables efforts expérimentaux ont été dévoués au développement d’outils de nanoélectronique quantique, dans le but d’atteindre un niveau de contrôle sur le transport électronique quantique à l’échelle de l’électron unique. Ces avancées ont poussé à un changement de paradigme dans le domaine du transport électronique cohérent et donné naissance à l’optique quantique électronique, domaine dans lequel cette thèse s’inscrit. Cette thèse est consacrée à deux problématiques. Tout d’abord, elle s’intéresse au problème des interactions Coulombiennes entre électrons, qui donnent lieu à un phénomène de décohérence qu’il est nécessaire de caractériser et de prédire au mieux afin de le contrôler. En utilisant une approche analytique et numérique, il a été possible de prédire l’effet de ces interactions sur un système expérimentalement accessible, prédiction qui a ensuite été confirmée par l’expérience. Dans la foulée de ce résultat, cette thèse présente des possibilités de contrôle de ces interactions, et propose un moyen de les mettre en œuvre qui devrait pouvoir être testé dans une expérience. Je me suis également confronté à la problématique de la caractérisation d’états quantiques complexes. En particulier, suite à la démonstration expérimentale d’un protocole de tomographie pour des états mono-électroniques, je me suis tourné vers l’extension de ce protocole à des états plus complexes, pouvant exhiber des propriétés de cohérence à deux électrons, voire plus. Ces états étant également sensibles aux interactions de Coulomb, une extension au cas multi-électronique des outils utilisés pour traiter ces interactions est proposée dans cette thèse
Over the last few years, extensive experimental efforts have been devoted to thedevelopment of quantum nanoelectronics tools aiming at controlling electronic trans-port down to the single electron level. These advances led to a paradigm shift inthe domain of coherent electronic transport, giving birth to electron quantum optics,which is the domain of this work.This manuscript is devoted to two problems. The first of these is the one ofCoulomb interactions between electrons, which lead to a decoherence phenomenonthat must be characterized and predicted in order to be controlled. Using an analyt-ical and numerical approach, it became possible to predict the effect of interactionson an experimentally relevant system, a prediction that was then confirmed in the ex-periment. After this result, this manuscript displays some ideas aiming at controllinginteractions and proposes some ways to test them experimentally.In this work, I also took on the problem of characterizing complex quantum states.In particular, following the experimental demonstration of a tomography protocol forfirst order coherences, I tried to extend this protocol to more complex states thatcould exhibit two-electron coherences, or more. These states being also sensitive to Coulomb interactions, an extension of the tools used to treat interactions to thismulti-electronic state is also presented in this work
12

Jeffery, Arvi Denbigh 1960. "MEASUREMENT AND MODELING OF THE NONLINEAR ABSORPTION AND REFRACTIVE INDEX OF BULK GALLIUM-ARSENIDE AND GALLIUM-ARSENIDE/ALUMINUM-GALLIUM - ARSENIDE MULTIPLE-QUANTUM-WELLS." Thesis, The University of Arizona, 1987. http://hdl.handle.net/10150/276435.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Harvey, Tyler. "Electron Orbital Angular Momentum| Preparation, Application and Measurement." Thesis, University of Oregon, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10599464.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

The electron microscope is an ideal tool to prepare an electron into a specified quantum state, entangle that state with states in a specimen of interest, and measure the electron final state to indirectly gain information about the specimen. There currently exist excellent technologies to prepare both momentum eigenstates (transmission electron microscopy) and position eigenstates (scanning transmission electron microscopy) in a narrow band of energy eigenstates. Similarly, measurement of the momentum and position final states is straightforward with post-specimen lenses and pixelated detectors. Measurement of final energy eigenstates is possible with magnetic electron energy loss spectrometers. In 2010 and 2011, several groups independently showed that it was straightforward to prepare electrons into orbital angular momentum eigenstates. This disseratation represents my contributions to the toolset we have to control these eigenstates: preparation, application (interaction with specimen states), and measurement. My collaborators and I showed that phase diffraction gratings efficiently produce electron orbital angular momentum eigenstates; that control of orbital angular momentum can be used to probe chirality and local magnetic fields; and that there are several routes toward efficient measurement.

14

Lolli, Jared. "Quantum Measurement and Feedback Control of highly nonclassical Photonic States." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC223/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ces dernières années, les progrès réalisés dans le contrôle de l'interaction lumière-matière au niveau quantique ont conduit à de nombreuses avancées en optique quantique, en particulier dans l'étude de phénomènes quantiques fondamentaux, dans la conception de systèmes quantiques artificiels et dans les applications en information quantique. Il a notamment été possible d'augmenter considérablement l'intensité de l'interaction lumière-matière et de contrôler le couplage de systèmes quantiques à leur environnement, afin d'obtenir des états non conventionnels et fortement non classiques. Cependant, pour exploiter ces états quantiques en vue d'applications technologiques, il est crucial de pouvoir mesurer et contrôler ces systèmes avec précision. Dans ce contexte, ce travail de thèse est consacré à l'étude de nouveaux protocoles pour la mesure et le contrôle de systèmes quantiques dans lesquels des fortes interactions et des symétries particuliers conduisent à la génération d'états fortement non classiques. Nous nous intéressons dans un premier temps au régime de couplage ultra-fort de l'électrodynamique quantique en cavité (et de circuit). Plus précisément, l'état de fondamental n'est plus le vide standard, car il devient énergiquement favorable qu'il contienne des photons.Dans ce régime on peut même obtenir des chat de Schrödinger comme état fondamental.En revanche, pour assurer la conservation de l'énergie, les photons contenus dans ce vide exotique sont liés à la cavité et ne peuvent pas s'échapper dans l'environnement. Cela signifie qu'ils ne peuvent être mesurés par simple photodétection. Nous proposons dans ce travail un protocole spécialement conçu pour surmonter cette difficulté. Nous montrons qu'il est possible de déduire les propriétés photoniques de l'état fondamental à partir du déplacement de Lamb d'un système à deux niveaux auxiliaire.Les résonateurs optiques à paires de photons constituent une autre classe de systèmes dans lesquels la symétrie de parité conduit à des états quantiques non conventionnels. Grâce à "l'ingénierie de réservoir", il est aujourd'hui possible de contrôler l'interaction d'un système avec son environnement, de façon à le stabiliser dans des états quantiques particulièrement intéressants. En particulier, quand un résonateur (une cavité optique) est couplé à l'environnement par échange de paires de photons, il est possible de créer de chats de Schrödinger optiques dans la dynamique transitoire du système. Les corrélations quantiques de ces états sont par contre rapidement perdues en raison de la présence inévitable de dissipation à un photon. Protéger le système contre cette perturbation est le but du protocole de feedback basé sur la parité que nous présentons dans cette thèse
In recent years, the field of quantum optics has thrived thanks to the possibility of controlling light-matter interaction at the quantum level.This is relevant for the study of fundamental quantum phenomena, the generation of artificial quantum systems, and for quantum information applications.In particular, it has been possible to considerably increase the intensity of light-matter interaction and to shape the coupling of quantum systems to the environment, so to realise unconventional and highly nonclassical states.However, in order to exploit these quantum states for technological applications, the question of how to measure and control these systems is crucial.Our work is focused on proposing and exploring new protocols for the measurement and the control of quantum systems, in which strong interactions and peculiar symmetries lead to the generation of highly nonclassical states.The first situation that we consider is the ultrastrong coupling regime in cavity (circuit) quantum electrodynamics.In this regime, it becomes energetically favourable to have photons and atomic excitations in the ground state, that is no more represented by the standard vacuum.In particular, in case of parity symmetry, the ground state is given by a light-matter Schrödinger cat state.However, according to energy conservation, the photons contained in these exotic vacua are bound to the cavity, and cannot be emitted into the environment.This means that we can not explore and control them by simple photodetection.In our work we propose a protocol that is especially designed to overcome this issue.We show that we can infer the photonic properties of the ground state from the Lamb shift of an ancillary two-level system.Another class of systems in which the fundamental parity symmetry leads to very unconventional quantum states is given by two-photon driven-dissipative resonators.Thanks to the reservoir engineering, it is today possible to shape the interaction with the environment to stabilize the system in particularly interesting quantum states.When a resonator (an optical cavity) exchanges with the environment by pairs of photons, it has been possible to observe the presence of optical Schrödinger cat states in the transient dynamics of the system.However, the quantum correlations of these states quickly decays due to the unavoidable presence of one-photon dissipation.Protecting the system against this perturbation is the goal of the parity triggered feedback protocol that we present in this thesis
15

Leary, Cody Collin 1981. "Measurement and control of transverse photonic degrees of freedom via parity sorting and spin-orbit interaction." Thesis, University of Oregon, 2010. http://hdl.handle.net/1794/10910.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
xv, 215 p. : ill. (some col.) A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number.
In this dissertation, several new methods for the measurement and control of transverse photonic degrees of freedom are developed. We demonstrate a mode sorter for two-dimensional (2-D) parity of transverse spatial states of light based on an out-of-plane Sagnac interferometer. The first experimental 2-D parity sorting measurements of Hermite-Gauss transverse spatial modes are presented. Due to the inherent phase stability of this type of interferometer, it provides a promising tool for the manipulation of higher order transverse spatial modes for the purposes of quantum information processing. We propose two such applications: the production of both spatial-mode entangled Bell states and heralded single photons, tailored to cover the entire Poincaré sphere of first-order transverse modes. In addition to the aforementioned transverse spatial manipulation based on free-space parity sorting, we introduce several more such techniques involving photons propagating in optical fibers. We show that when a photon propagates in a cylindrically symmetric waveguide, its spin angular momentum and its orbital angular momentum (OAM) interact. This spin-orbit interaction (SOI) leads to the prediction of several novel rotational effects: the spatial or time evolution of the photonic polarization vector is controlled by its OAM quantum number or, conversely, its spatial wave function is controlled by its spin. We demonstrate how these phenomena can be used to reversibly transfer entanglement between the spin and OAM degrees of freedom of two-particle states. In order to provide a deeper insight into the cause of the SOI for photons, we also investigate an analogous interaction for electrons in a cylindrical waveguide and find that each of the SOI effects mentioned above remain manifest for the electron case. We show that the SOI dynamics are quantitatively described by a single expression applying to both electrons and photons and explain their common origin in terms of a universal geometric phase associated with the interplay between either particle's spin and OAM. This implies that these SOI-based effects occur for any particle with spin and thereby exist independently of whether or not the particle has mass, charge, or magnetic moment.
Committee in charge: Daniel Steck, Chairperson, Physics; Michael Raymer, Member, Physics; Jens Noeckel, Member, Physics; Steven van Enk, Member, Physics; Andrew Marcus, Outside Member, Chemistry
16

Schröder, Tim. "Integrated photonic systems for single photon generation and quantum applications." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2013. http://dx.doi.org/10.18452/16723.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Im Rahmen der vorliegenden Dissertation wurden neuartige integrierte Einzelphotonenquellen (EPQ) und ihre Anwendung für die Quanteninformationsverarbeitung entwickelt und untersucht. Die Erzeugung von Einzelphotonen basiert auf einzelnen Defektzentren in nanometergroßen Diamantkristallen mit einzigartigen optischen Eigenschaften: Stabilität bei Zimmertemperatur ohne optisches Blinken. Diamantkristalle mit Größen bis unter 20nm wurden mit neuartigen „pick-and-place“ Techniken (z.B. mit einem Atomkraftmikroskop) in komplexe photonische Strukturen integriert. Zwei unterschiedliche Ansätze für die Realisierung der neuartigen EPQ wurden verfolgt. Beim ersten werden fluoreszierende Diamantkristalle in nano- und mikrometergroße Faser-basierte oder resonante Strukturen in einem „bottom-up“ Ansatz integriert, dadurch werden zusätzliche optische Komponenten überflüssig und das Gesamtsystem ultra-stabil und wartungsfrei. Der zweite Ansatz beruht auf einem Festkörperimmersionsmikroskop (FIM). Seine Festkörperimmersionslinse wirkt wie eine dielektrische Antenne für die Emission der Defektzentren. Es ermöglicht die höchsten bisher erreichten Photonenzählraten von Stickstoff-Fehlstellen von bis zu 2.4Mcts/s und Einsammeleffizienzen von bis zu 4.2%. Durch Anwendung des FIM bei cryogenen Temperaturen wurden neuartige Anwendungen und fundamentale Untersuchungen möglich, weil Photonenraten signifikant erhöht wurden. Die Bestimmung der spektralen Diffusionszeit eines einzelnen Defektzentrums (2.2µs) gab neue Erkenntnisse über die Ursachen von spektraler Diffusion. Spektrale Diffusion ist eine limitierende Eigenschaft für die Realisierung von Quanteninformationsanwendungen. Das Tisch-basierte FIM wurde außerdem als kompakte mobile EPQ mit Ausmaßen von nur 7x19x23cm^3 realisiert. Es wurde für ein Quantenkryptographie-Experiment implementiert, zum ersten Mal mit Siliziumdefektzentren. Des Weiteren wurde ein neues Konzept für die Erzeugung von infraroten EPQ entwickelt und realisiert.
The presented thesis covers the development and investigation of novel integrated single photon (SP) sources and their application for quantum information schemes. SP generation was based on single defect centers in diamond nanocrystals. Such defect centers offer unique optical properties as they are room temperature stable, non-blinking, and do not photo-bleach over time. The fluorescent nanocrystals are mechanically stable, their size down to 20nm enabled the development of novel nano-manipulation pick-and-place techniques, e.g., with an atomic force microscope, for integration into photonic structures. Two different approaches were pursued to realize novel SP sources. First, fluorescent diamond nanocrystals were integrated into nano- and micrometer scaled fiber devices and resonators, making them ultra-stable and maintenance free. Secondly, a solid immersion microscope (SIM) was developed. Its solid immersion lens acts as a dielectric antenna for the emission of defect centers, enabling the highest photon rates of up to 2.4Mcts/s and collection efficiencies of up to 4.2% from nitrogen vacancy defect centers achieved to date. Implementation of the SIM at cryogenic temperatures enabled novel applications and fundamental investigations due to increased photon rates. The determination of the spectral diffusion time of a single nitrogen vacancy defect center (2.2µs) gave new insights about the mechanisms causing spectral diffusion. Spectral diffusion is a limiting property for quantum information applications. The table-top SIM was integrated into a compact mobile SP system with dimension of only 7x19x23cm^3 while still maintaining record-high stable SP rates. This makes it interesting for various SP applications. First, a quantum key distribution scheme based on the BB84 protocol was implemented, for the first time also with silicon vacancy defect centers. Secondly, a conceptually novel scheme for the generation of infrared SPs was introduced and realized.
17

Tan, Eng Kiang. "Retrodiction and continuous measurements in quantum optics." Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417325.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Buchler, Benjamin Caird, and ben buchler@anu edu au. "Electro-optic control of quantum measurements." The Australian National University. Faculty of Science, 2002. http://thesis.anu.edu.au./public/adt-ANU20020527.131758.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The performance of optical measurement systems is ultimately limited by the quantum nature of light. In this thesis, two techniques for circumventing the standard quantum measurement limits are modelled and tested experimentally. These techniques are electro-optic control and the use of squeezed light. An optical parametric amplifier is used to generate squeezing at 1064nm. The parametric amplifier is pumped by the output of a second harmonic generation cavity, which in turn is pumped by a Nd:YAG laser. By using various frequency locking techniques, the quadrature phase of the squeezing is stabilised, therefore making our squeezed source suitable for long term measurements. The best recorded squeezing is 5.5dB (or 70\%) below the standard quantum limit. The stability of our experiment makes it possible to perform a time domain measurement of photocurrent correlations due to squeezing. This technique allows direct visualisation of the quantum correlations caused by squeezed light. On the road to developing our squeezed source, methods of frequency locking optical cavities are investigated. In particular, the tilt locking method is tested on the second harmonic generation cavity used in the squeezing experiment. The standard method for locking this cavity involves the use of modulation sidebands, therefore leading to a noisy second harmonic wave. The modulation free tilt-locking method, which is based on spatial mode interference, is shown to be a reliable alternative. In some cases, electro-optic control may be used to suppress quantum measurement noise. Electro-optic feedback is investigated as a method for suppressing radiation pressure noise in an optical cavity. Modelling shows that the `squashed' light inside a feedback loop can reduce radiation pressure noise by a factor of two below the standard quantum limit. This result in then applied to a thermal noise detection system. The reduction in radiation pressure noise is shown to give improved thermal noise sensitivity, therefore proving that the modified noise properties of light inside a feedback loop can be used to reduce quantum measurement noise. Another method of electro-optic control is electro-optic feedforward. This is also investigated as a technique for manipulating quantum measurements. It is used to achieve noiseless amplification of a phase quadrature signal. The results clearly show that a feedforward loop is a phase sensitive amplifier that breaks the quantum limit for phase insensitive amplification. This experiment is the first demonstration of noiseless phase quadrature amplification. Finally, feedforward is explored as a tool for improving the performance of quantum nondemolition measurements. Modelling shows that feedforward is an effective method of increasing signal transfer efficiency. Feedforward is also shown to work well in conjunction with meter squeezing. Together, meter squeezing and feedforward provide a comprehensive quantum nondemolition enhancement package. Using the squeezed light from our optical parametric amplifier, an experimental demonstration of the enhancement scheme is shown to achieve record signal transfer efficiency of $T_{s}+T_{m}=1.81$.
19

Menzies, David. "Procrustean entanglement concentration, weak measurements and optimized state preparation for continuous-variable quantum optics." Thesis, St Andrews, 2009. http://hdl.handle.net/10023/739.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

Schilling, Uwe [Verfasser], and Joachim von [Akademischer Betreuer] Zanthier. "Measurements in Quantum Optics / Uwe Schilling. Betreuer: Joachim von Zanthier." Erlangen : Universitätsbibliothek der Universität Erlangen-Nürnberg, 2011. http://d-nb.info/1015475051/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Mehta, Karan K. (Karan Kartik). "Integrated optical quantum manipulation and measurement of trapped ions." Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108849.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 2017.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages [165]-183).
Individual atomic ions confined in designed electromagnetic potentials and manipulated via lasers are strong candidates as physical bases for quantum information processing (QIP). This is in large part due to their long coherence times, in distinguishability, and strong Coulomb interactions. Much work in recent years has utilized these properties to implement increasingly precise quantum operations essential for QIP, as well as to conduct increasingly sophisticated experiments on few-ion systems. Many questions remain however regarding how to implement the significant classical apparatus required to control and measure many ions (and indeed any physical qubit under study) in a scalable way that furthermore does not compromise qubit quality. This work draws on techniques in integrated optics to address this question. Planar-fabricated waveguides and gratings integrated with planar ion traps are demonstrated to allow optical addressing of individual 88Sr+ions 50 [mu]m above the chip surface with distraction-limited focused beams, with advantages in stability and scalability. Motivated by the requirement for low crosstalk in qubit addressing, we show also that intuitively designed devices can generate precisely tailored intensity profiles at the ion locations, with distraction-limited side lobe intensities characterized to the 5x10-6 level in relative intensity up to 25 [mu]m from the focus. Such devices can be implemented alongside complex systems in complementary metal-oxide-semiconductor (CMOS) processes. We show in addition that the multiple patternable metal layers present in CMOS processes can be used to create complex planar ion traps with performance comparable to simple single-layer traps, and that CMOS silicon avalanche photodiodes may be employed for scalable quantum state readout. Finally we show initial results on integrated electro-optic modulators for visible light. These results open possibilities for experiments with trapped ions in the short term, and indicate routes to achieving large-scale systems of thousands or more ions in the future. Though ion qubits may seem isolated from scalable solid-state technologies, it appears this apparent isolation may uniquely allow a cooperation with complex planar-fabricated optical and electronic systems without introducing additional decoherence.
by Karan K. Mehta.
Ph. D.
22

Smith, Gregory A. "Continuous Optical Measurement of Cold Atomic Spins." Diss., The University of Arizona, 2006. http://hdl.handle.net/10150/194781.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Quantum measurement is one of the most important features of quantum theory. Although mathematical predictions have been verified in great detail, practical implementation has lagged behind. Only recently have people begun to take advantage of quantum measurement properties to produce new technologies. This research helps fill that technological gap by experimental examination of a continuous, optical measurement for an ensemble of cold atomic spins. The essential physics reduces to the interaction between an atomic ensemble and a weak optical field, which has many well known results. While this work demonstrates many novel applications of the interaction, it also shows that the whole can be more than the sum of the individual parts. Starting with basic characterization of the measurement system using laser-cooled cæsium atoms, the mean value of a spin component is obtained in real time. In essence, the angular momentum of the atomic spins creates a Faraday-like rotation in the polarization of a laser probe beam. With slight modifications, additional spin components are also observed, and are shown to be in good agreement with predictions. In measuring spin dynamics, it is important to account for effects of the probe on the spin states as well. Capitalizing on this as a resource, the probe-induced ac-Stark shift is used to transform a quasi-classical spin-coherent state into a highly quantum Schrödinger cat type of superposition between two spin states. Finally, this work combines all the previous results to demonstrate how a continuous measurement of the spin with a carefully crafted evolution created in part by the probe, allows for nearly real-time determination of the complete spin density matrix. In a single 1.5 millisecond run, a spin density matrix is determined with fidelities ranging from about 85% to 90% across a wide spectrum of test states.
23

Arrighi, Everton. "Time-resolved measurements of collective effects in quantum conductors." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La dynamique d'un système quantique est très sensible à la dimensionnalité. Alors que les systèmes électroniques à deux dimensions forment les liquides de Fermi, les systèmes à une dimension - les liquides de Tomonaga – Luttinger - sont décrits par des excitations purement bosoniques, même s’ils sont initialement constitués de fermions. Avec l'avènement de sources cohérentes à un seul électron, la dynamique quantique d'un tel liquide est maintenant accessible au niveau d'un seul électron.Dans ce travail de thèse, nous étudions le cas le plus général où le système peut être réglé en continu d’un liquide à un canal Tomonaga – Luttinger à un liquide de Fermi à plusieurs canaux dans un système non chiral. Nous utilisons des techniques de mesure résolues en temps pour déterminer le temps de vol d'un pulse électronique à un seul électron et extraire la vitesse d'excitation de la charge collective.L'analyse de la vitesse de propagation permet de révéler les effets collectifs qui régissent la physique dans notre système quasi unidimensionnel. Notre modélisation détaillée de l'électrostatique de l'échantillon nous permet de construire et de comprendre les excitations du système dans une théorie sans paramètres. Nous montrons que nos calculs auto-cohérent explique bien les mesures et valident la construction des modes collectifs bosoniques à partir des degrés de liberté fermioniques.Le contrôle temporel présenté des impulsions à un seul électron au niveau de la picoseconde sera également important pour la mise en œuvre d'architectures de guide d'ondes pour les qubits volants utilisant un seul électron. L’intégration d’une source de leviton dans un interféromètre à guide d’ondes permettrait de réaliser des architectures de qubits volants à un électron similaires à celles utilisées en optique quantique linéaire. De plus, nos études ouvrent la voie à l’étude de la dynamique en temps réel d’un dispositif nanoélectronique quantique, telle que la mesure de l’étalement temporel ou de la dynamique de fractionnement de la charge du paquet d’ondes électroniques pendant la propagation
Quantum dynamics is very sensitive to dimensionality. While two-dimensional electronic systems form Fermi liquids, one-dimensional systems—Tomonaga–Luttinger liquids—are described by purely bosonic excitations, even though they are initially made of fermions. With the advent of coherent single-electron sources, the quantum dynamics of such a liquid is now accessible at the single-electron level.In this PhD work, we study the most general case where the system can be tuned continuously from a clean one-channel Tomonaga– Luttinger liquid to a multi-channel Fermi liquid in a non-chiral system. We use time-resolved measurement techniques to determine the time of flight of a single-electron voltage pulse and extract the collective charge excitation velocity. Analysing the propagation velocity allows to reveal the collective effects that govern the physics in our quasi one-dimensional system. Our detailed modelling of the electrostatics of the sample allows us to construct and understand the excitations of the system in a parameter-free theory. We show that our self-consistent calculations capture well the results of the measurements, validating the construction of the bosonic collective modes from the fermionic degrees of freedom.The presented time control of single-electron pulses at the picosecond level will also be important for the implementation of wave-guide architectures for flying qubits using single electrons. Integrating a leviton source into a wave-guide interferometer would allow to realise single-electron flying qubit architectures similar to those employed in linear quantum optics. Furthermore, our studies pave the way for studying real-time dynamics of a quantum nanoelectronic device such as the measurement of the time spreading or the charge fractionalisation dynamics of the electron wave packet during propagation
24

Vidrighin, Mihai-Dorian. "Quantum optical measurements for practical estimation and information thermodynamics." Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/45048.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The implementation of optical quantum technologies requires precise and complete characterisation tools for multi-mode nonclassical states of light. In this thesis, we propose and we implement experimentally three applications of optical quantum measurements, which combine aspects of light that are described by both discrete and continuous variables. In the rst part of this thesis, we present a new scheme for interferometric phase estimation, which uses double homodyne measurements as an alternative to photon counting. We show that, without requiring a phase reference, this scheme can achieve the optimum phase estimation precision for all path-symmetric probe states with a de ned number of photons. Furthermore, the estimation procedure is robust against state preparation imperfections, and naturally yields the same precision for all values of the estimated phase. We implement the proposed scheme experimentally, using a polarisation interferometer probed by a single-photon signal, and temporally multiplexing a single homodyne detector. We repeat the experiment with classical probe states. For both cases, we demonstrate the accuracy and precision of the proposed method, our implementation deviating by 5% from the fundamental precision bound. We demonstrate that, in our scheme, single-photon probe states can provide better precision than weak coherent ones. These results indicate that hybrid quantum resources, which combine tools from the discrete and continuous-variable paradigms, can play a signi cant role in practical sensing scenarios. In the second part of this thesis, we present an application in the eld of information thermodynamics, reporting an experimental realisation, in a photonic setup, of Maxwell's demon. We show that a measurement at the few-photons level, followed by a feed-forward operation, allows the extraction of work from intense thermal light into an electric circuit. The interpretation of the experiment leads us to the derivation of an equality relating work extraction to information acquired by measurement. We prove a bound using this relation, and show that it is in agreement with the experimental results. Our work puts forward photonic systems as a platform for experiments in the eld of information thermodynamics. In the third part of this thesis, we present a new method for the characterisation of broadband parametric down-conversion, based on stimulated frequency generation. In particular, we analyse the information contained in the frequency generation produced in the same mode as a seeding beam, for a type-II down-conversion process. We derive a model for this signal and argue that its detection can provide a useful characterisation tool in the high-gain regime, allowing for a self-referenced estimation of squeezing gain. We propose a method for measuring this signal and present an experimental realisation, based on a wave-guided source, at telecommunication wavelengths. Our experimental results demonstrate that the proposed measurement is an e ective experimental handle for discerning the intricate structure of broadband parametric down-conversion.
25

Burton, William Cody. "Ultracold bosons in optical lattices for quantum measurement and simulation." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/123353.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Physics, 2019
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 131-139).
Ultracold atoms provide a platform that allows for pristine control of a physical system, and have found uses in both the fields of quantum measurement and quantum simulation. Optical lattices, created by the AC Stark shift of a coherent laser beam, are a versatile tool to control ultracold atoms and implement novel Hamiltonians. In this thesis, I report on three experiments using the bosonic species Rubidium-87 trapped in optical lattices. I first discuss our work in simulating the Harper-Hofstadter Hamiltonian, which describes charged particles in high magnetic fields, and has connections to topological physics. To simulate the charged particles, we use laser-assisted tunneling to add a complex phase to tunneling in the optical lattice. For the first time, we have condensed bosons into the ground state of the Harper-Hofstadter Hamiltonian.
In addition, we have demonstrated that we can add strong on-site interactions to the effective Hamiltonian, opening the door to studies of interesting states near the Mott insulator transition. Next, I present a novel technique to preserve phase coherence between separated quantum systems, called superfluid shielding. Phase coherence is important for both quantum measurement and simulation, and is fundamentally limited by projection noise. When an interacting quantum system is split, frozen-in number fluctuations lead to fluctuations of the relative phase between separated subsystems. We cancel the effect of these fluctuations by immersing the separated subsystems in a common superfluid bath, and demonstrate that we can increase coherence lifetime beyond the projection noise limit. Finally, I discuss our efforts in simulating magnetic ordering in the spin-1 Heisen- berg Hamiltonian.
It is hard to adiabatically ramp into magnetically ordered ground states, because they often have gapless excitations. Instead, we use a spin-dependent lattice to modify interspin interactions, allowing us to ramp into the spin Mott insulator, which has a gap and can therefore act as a cold starting point for exploration of the rest of the phase diagram. We have achieved a cold spin temperature in the spin Mott insulator, and I discuss plans to also achieve a cold charge temperature and then ramp to the the xy-ferromagnet, which has spin-charge separation.
by William Cody Burton.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Physics
26

Dreiser, Jan. "Optical study, preparation and measurement of a single quantum-dot spin." kostenfreifrei, 2007. http://e-collection.ethbib.ethz.ch/view/eth:29799.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Amponsah, Sylvester. "Optical Characterization of Nitrogen-vacancy Centers andResonance Analysis of CVD Grown Diamond MEMS Devices." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1528479091207253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Ogawa, Kazuhisa. "Optical Interferometric Measurements Inspired by Time-Reversal Symmetry of Quantum Mechanics." 京都大学 (Kyoto University), 2015. http://hdl.handle.net/2433/202718.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Coroy, Trenton. "Wavelength measurement systems for Bragg fiber optic sensors based on quantum well electroabsorption photodetectors." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0022/NQ50030.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Norris, David J. (David James). "Measurement and assignment of the size-dependent optical spectrum in cadmium selenide (CdSe) quantum dots." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/11129.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Leslie, Nathaniel. "Maximal LELM Distinguishability of Qubit and Qutrit Bell States using Projective and Non-Projective Measurements." Scholarship @ Claremont, 2017. http://scholarship.claremont.edu/hmc_theses/108.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Many quantum information tasks require measurements to distinguish between different quantum-mechanically entangled states (Bell states) of a particle pair. In practice, measurements are often limited to linear evolution and local measurement (LELM) of the particles. We investigate LELM distinguishability of the Bell states of two qubits (two-state particles) and qutrits (three-state particles), via standard projective measurement and via generalized measurement, which allows detection channels beyond the number of orthogonal single-particle states. Projective LELM can only distinguish 3 of 4 qubit Bell states; we show that generalized measurement does no better. We show that projective LELM can distinguish only 3 of 9 qutrit Bell states that generalized LELM allows at most 5 of 9. We have also made progress on distinguishing qubit $\times$ qutrit hyperentangled Bell states, which are made up of tensor products of the qubit Bell states and the qutrit Bell states, showing that the maximum number distinguishable with projective LELM measurements is between 9 and 11.
32

Chowdhury, Sanchari. "Application of Luminescence Sensors in Oxygen Diffusion Measurement and Study of Luminescence Enhancement/Quenching by Metallic Nanoparticles." Scholar Commons, 2010. https://scholarcommons.usf.edu/etd/1599.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The first part of this dissertation deals with the application of a luminescence quenching method to measure diffusion and permeation coefficients of oxygen in polymers. Most luminescence oxygen sensors do not follow linearity of the Stern-Volmer (SV) equation due to heterogeneity of luminophore in the polymer matrix, thus the complexity of data analysis is increased. To circumvent this limitation, inverted fluorescence microscopy is utilized in this work to investigate the SV response of the sensors at the micron-scale. In these diffusion experiments, oxygen concentration is measured by luminescence changes in regions with high SV constants and good linearity. Thus, we avoid numerical complexity of combining nonlinear SV equation with a diffusion model. This technique allows us to measure oxygen diffusion properties in different type of polymers like transparent, opaque, free-standing polymers and polymers that cannot be cast into free standing films and polymer composites. In the second part of this thesis, we have explored the effect of Ag-Cu alloy nanoparticles on the emission intensity of luminophores at their close proximity. Alloy nanoparticles offer additional degrees of freedom for tuning their optical properties by altering atomic composition and atomic arrangement and thus can be an attractive option for manipulating signal of a wide range of luminophores. In this work, surface plasmon resonance spectrum of Ag-Cu alloy nanoparticles deposited by sputtering was easily tuned in wide wavelength range by varying one experimental condition- annealing temperature. Large metal enhanced luminescence for different luminophores viz Alexa Fluor 594 and Alexa Fluor 488 were achieved at the vicinity of Ag-Cu nanoparticles when maximum spectral overlap between SPR spectra of Ag-Cu nanoparticles and the emission and absorption spectra of the luminophores occur. We also studied the effect of composition of Ag-Cu nanoparticles synthesized by the polyol process on the luminescence of low quantum yield dye Cy3. In the third part of this thesis, quenching effect of Cu nanoparticles on CdSe/ZnS nanocrystal quantum dots has been explored. As Cu nanoparticles have comparable dielectric properties with gold nanoparticles, they are expected to show similar quenching effects. It was found that Cu is an efficient quencher of fluorescence from CdSe/ZnS quantum dots and the quenching effect is due to resonance energy transfer from quantum dots to Cu nanoparticles.
33

Thota, Venkata Ramana Kumar. "Tunable Optical Phenomena and Carrier Recombination Dynamics in III-V Semiconductor Nanostructures." Ohio University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1451807323.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Pal, Singh Amrit [Verfasser], and Roman [Akademischer Betreuer] Schnabel. "Intensity-dependent phase shifts in optical materials for quantum state preparation and absorption measurements in thin film coatings and bulk material / Amrit Pal Singh ; Betreuer: Roman Schnabel." Hamburg : Staats- und Universitätsbibliothek Hamburg, 2018. http://d-nb.info/1161530266/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Tran, Dang Bao An. "Widely tunable and SI-traceable frequency-comb-stabilised mid-infrared quantum cascade laser : application to high precision spectroscopic measurements of polyatomic molecules." Thesis, Sorbonne Paris Cité, 2019. http://www.theses.fr/2019USPCD060.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce manuscrit présente le développement d’un spectromètre dans le moyen infra-rouge qui combine très haute résolution, accordabilité, sensibilité de détection et contrôle de la fréquence absolue. Un laser à cascade quantique (QCL) émettant à 10.3 μm est asservi en phase sur un peigne de fréquences optique lui-même stabilisé sur un laser ultrastable à 1.55 μm transmis par lien optique fibré à partir du LNE-SYRTE, où cette référence de fréquence est contrôlée par rapport aux étalons primaires. On obtient ainsi un QCL de largeur ~ 0.1 Hz, avec une stabilité meilleure que 10⁻¹⁵ à 1 s, et une incertitude de 4 × 10⁻¹⁴ sur sa fréquence absolue. De plus, le QCL peut être balayé largement sur 1.4 GHz sans dégradation de la stabilité et du contrôle absolu de la fréquence. Ce QCL a permis de sonder plusieurs molécules par absorption saturée dans une cellule multipassage. Nous avons démontré une incertitude statistique sur la mesure des fréquences d’absorption au niveau du kHz et une incertitude systématique inférieure à 10 kHz. Nous avons enregistré de nombreuses raies du méthanol, dont plusieurs doublets et des raies très peu intenses, dont certaines n’avaient jamais été observées. La mesure de quelques dizaines de raies du trioxane nous a permis d’en déterminer les paramètres spectroscopiques avec précision. Nous avons également enregistré la structure hyperfine d’une raie de l’ammoniac jusqu’ici non résolue. Ce dispositif est essentiel pour le projet en cours au LPL d’observer la violation de parité dans les molécules. Il permettra également de nombreuses applications de la physique atmosphérique ou interstellaire aux tests de physique fondamentale au-delà du modèle standard
The thesis consists in developing a high-resolution mid-infrared spectrometer traceable to primary frequency standards and providing a unique combination of resolution, tunability, detection sensitivity and frequency control. A quantum cascade laser (QCL) emitting at 10.3 µm is phase locked to an optical frequency comb stabilized to a remote 1.55 µm ultra-stable reference developed at LNE-SYRTE, monitored against primary frequency standards and transferred to LPL via an active noise compensated fibre link. This results in a 0.1 Hz QCL linewidth, a stability below 10⁻¹⁵ at 1 s and an uncertainty on its absolute frequency below 4 × 10⁻¹⁴. Moreover, the setup allows the QCL to be widely scanned over 1.4 GHz while maintaining the highest stabilities and precision. This QCL was used to carry out saturated absorption spectroscopy of several molecules in a compact multipass cell. We demonstrated statistical uncertaintyon line-center frequencies at the kHz level and sub-10 kHz systematic uncertainty. We have recorded several singular K-doublets and many rovibrational transitions of methanol, in particular weak transitions and weak doublets - unreported so far. Precise parameters modelling trioxaneh ave been determined with only a few tens of rovibrational transitions recorded at unprecedented accuracy. The quadrupole hyperfine structure of an ammonia transition has been resolved for thefirst time. This setup constitutes a key element for the project aiming at the first observation of parity violation in molecules currently held at LPL, and, more generally, for various fields of physics, from atmospheric and interstellar physics to fundamental physics beyond the standard model
36

Prouvé, Claire. "Measurement of the CP-even fraction of the D⁰→2π⁺2π⁻ decay using quantum correlated DD̄ pairs at CLEO-c, and real-time alignment of the LHCb RICH optical systems". Thesis, University of Bristol, 2017. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761238.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Hoang, Vu Dinh. "Charge transport study of InGaAs two-color QWIPs." Thesis, Monterey California. Naval Postgraduate School, 2004. http://hdl.handle.net/10945/1574.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Approved for public release, distribution is unlimited
In this thesis, a series of experiments were performed to characterize the material properties of InGaAs/GaAs for use in a two-color quantum-well IR photodetector (QWIP) design. Results from room temperature studies using cathodoluminescence and photoluminescence indicated light emission at 858 nm and 1019 nm from GaAs and InGaAs, respectively. Using a direct transport imaging technique, an edge dislocation pattern was observed and shown to be confined to the InGaAs layer of the material. A dislocation density measurement was performed and was shown to be less than 2000 lines/cm. Quantitative intensity level measurements indicated fluctuation in the region of dislocations to be less than 30% of the signal to background level. Finally, a spot mode study using the direct transport imaging method was performed to evaluate the feasibility of using this technique for contact-less diffusion length measurements.
Civilian, Department of Air Force
38

Vanderbruggen, Thomas. "Détection non-destructive pour l’interférométrie atomique et Condensation de Bose-Einstein dans une cavité optique de haute finesse." Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112067/document.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Ce mémoire de thèse étudie diverses méthodes d'amélioration des interféromètres atomiques. Dans la première partie du manuscrit, nous analysons comment une détection non-destructive, au sens où elle préserve la cohérence entre les états internes de l'ensemble atomique, permet d'améliorer la sensibilité des interféromètres. Nous montrons tout d'abord, grâce à une étude théorique, que la projection du vecteur d'onde engendrée par la mesure permet de préparer des états comprimés de spin. Nous présentons ensuite la mise en œuvre de cette méthode à l'aide d'une détection reposant sur la spectroscopie par modulation de fréquence. Finalement, nous exposons quelques premières applications de cette détection non-destructive, plus précisément nous présentons la réalisation du rétroaction quantique qui protège l'état atomique contre la décohérence induite par un basculement du spin collectif, nous montrons aussi comment réaliser une boucle à verrouillage de phase où les atomes servent de référence de phase. Dans la seconde partie du manuscrit, nous présentons la réalisation tout-optique d'un condensat de Bose-Einstein dans une cavité de haute finesse, exploitant les technologies développées pour les télécommunications optiques. Nous commençons par une analyse du résonateur et des méthodes d'asservissement, nous introduisons notamment une méthode d'asservissement originale exploitant la modulation serrodyne. Enfin, nous montrons comment un condensat est obtenu par évaporation dans le mode optique de la cavité
In this thesis, we study several methods to improve atom interferometers. In the first part of the manuscript, we analyze how a nondestructive detection, that preserves the coherence between the internal degrees of freedom in an atomic ensemble, can be used to increase the sensitivity of interferometers. We first theoretically show how the projection of the wave-function induced by the measurement prepares spin-squeezed states. We then present the implementation of this method with a detection based on the frequency modulation spectroscopy. Finally, some first applications are described, more explicitly we show how to implement a quantum feedback that preserve the atomic state against the decoherence induced by a random collective flip, we also introduce a phase-locked loop where the atomic sample is used as the phase reference. In the second part of the manuscript, we present the all-optical realization of a Bose-Einstein condensate in a high-finesse cavity using a laser system based on standard telecoms technologies. We first describe the resonator and the frequency lock of the laser on the resonance, in particular, we introduce a new stabilization method based of the serrodyne modulation. Finally, we show how the condensate is obtained from the evaporation in the cavity mode
39

Hadjar, Yassine. "Etude du couplage optomécanique dans une cavité de grande finesse; observation du mouvement Brownien d'un miroir." Phd thesis, Université Pierre et Marie Curie - Paris VI, 1998. http://tel.archives-ouvertes.fr/tel-00004675.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Nous étudions théoriquement et expérimentalement le couplage optomécanique induit par la pression de radiation entre un faisceau lumineux et un objet macroscopique tel qu'un miroir. Nous présentons une étude théorique des effets quantiques induits par la pression de radiation dans une cavité optique dont un miroir est mobile. Le miroir peut se déplacer sous l'effet de la pression de radiation et ce mouvement change la phase du champ réfléchi par la cavité. Ce couplage optomécanique induit un déphasage du champ équivalent à un effet Kerr optique. Un tel dispositif peut être utilisé pour produire des états comprimés ou réaliser une mesure quantique non destructive.
Nous présentons les résultats obtenus dans notre expérience où un faisceau laser est envoyé dans une cavité à une seule entrée-sortie, dont le miroir mobile est déposé sur un résonateur mécanique. Nous avons observé le mouvement Brownien du miroir. Nous avons aussi utilisé un second faisceau modulé en intensité afin d'exciter les modes acoustiques du résonateur. Ceci permet de caractériser la réponse mécanique du résonateur et le couplage entre la lumière et les modes acoustiques. Nous avons enfin démontré l'efficacité de notre dispositif pour la mesure de petits déplacements du miroir. Le plus petit déplacement observable est égale à 2x10^(-19) m/Hz(1/2), en bon accord avec la prédiction théorique.
40

(11199132), Xin Chen. "Temporal mode structure and its measurement of entangled fields in continuous and discrete variables." Thesis, 2021.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Field-orthogonal temporal mode analysis of optical fields was recently developed to form a new framework of quantum information science. But so far, the exact profiles of the temporal modes are not known, which makes it difficult to achieve mode selection and de-multiplexing. A novel feedback-iteration method which, combined with the stimulated emission method, can give rise to the exact forms of the temporal mode structure of pulse-pumped spontaneous parametric processes both for high gain parametric process, which gives rise to quantum entanglement in continuous variables, and for the low gain case, which produces a two-photon entangled state for discrete variables.

For the temporal mode analysis in high gain situations, the common treatment of parametric interaction Hamiltonian does not consider the issue of time ordering problem of interaction Hamiltonian and thus leads to the inaccurate conclusion that the mode structure and the temporal mode functions do not change as the gain increases. We use an approach that is usually employed for treating nonlinear interferometers and avoids the time ordering issue. This allows us to derive an evolution equation in differential-integral form. Numerical solutions for high gain situations indicate a gain-dependent mode structure that has its mode distributions changed and mode functions broadened as the gain increases. This will enable us to have a complete picture of the mode structure of parametric processes and produce high quality quantum sources for a variety of applications of quantum technology.

To verify the feedback-iteration method which measures temporal mode structure directly, we measure the joint spectral density of photon pairs produced with the spontaneous parametric down-conversion process of a pulse-pumped PPKTP crystal. The measurement method is based on a stimulated emission process which significantly improves the measurement time and accuracy compared with old spectrally resolved photon coincidence measurement. With the measured joint spectral density, the amplitude of the temporal modes can be obtained with the mathematical tool of singular value decomposition and compared with those measured directly with the feedback-iteration method.

Because the parametric amplifier is in essence a linear four-port device, it couples and linearly mixes two inputs before amplifying and sending them to two output ports. We show that for quadrature phase amplitudes, a parametric amplifier can replace beam splitters to play the role of mixer. We apply this idea to a continuous-variable quantum state teleportation scheme in which a parametric amplifier replaces a beam splitter in the Bell measurement. We show that this scheme is loss-tolerant in the Bell measurement process and thus demonstrate the advantage of parametric amplifiers over beam splitter in the applications in quantum measurement.
41

Biggerstaff, Devon. "Experiments with Generalized Quantum Measurements and Entangled Photon Pairs." Thesis, 2009. http://hdl.handle.net/10012/4841.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
This thesis describes a linear-optical device for performing generalized quantum measurements on quantum bits (qubits) encoded in photon polarization, the implementation of said device, and its use in two diff erent but related experiments. The device works by coupling the polarization degree of freedom of a single photon to a `mode' or `path' degree of freedom, and performing a projective measurement in this enlarged state space in order to implement a tunable four-outcome positive operator-valued measure (POVM) on the initial quantum bit. In both experiments, this POVM is performed on one photon from a two-photon entangled state created through spontaneous parametric down-conversion. In the fi rst experiment, this entangled state is viewed as a two-qubit photonic cluster state, and the POVM as a means of increasing the computational power of a given resource state in the cluster-state model of quantum computing. This model traditionally achieves deterministic outputs to quantum computations via successive projective measurements, along with classical feedforward to choose measurement bases, on qubits in a highly entangled resource called a cluster state; we show that `virtual qubits' can be appended to a given cluster by replacing some projective measurements with POVMs. Our experimental demonstration fully realizes an arbitrary three-qubit cluster computation by implementing the POVM, as well as fast active feed-forward, on our two-qubit photonic cluster state. Over 206 diff erent computations, the average output delity is 0.9832 +/- 0.0002; furthermore the error contribution from our POVM device and feedforward is only of order 10^-3, less than some recent thresholds for fault-tolerant cluster computing. In the second experiment, the POVM device is used to implement a deterministic protocol for remote state preparation (RSP) of arbitrary photon polarization qubits. RSP is the act of preparing a quantum state at a remote location without actually transmitting the state itself. We are able to remotely prepare 178 diff erent pure and mixed qubit states with an average delity of 0.995. Furthermore, we study the the fidelity achievable by RSP protocols permitting only classical communication, without shared entanglement, and compare the resulting benchmarks for average fidelity against our experimental results. Our experimentally-achieved average fi delities surpass the classical thresholds whenever classical communication alone does not trivially allow for perfect RSP.
42

Mow-Lowry, Conor Malcolm. "Thermal noise and optical cooling." Phd thesis, 2011. http://hdl.handle.net/1885/150253.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Thermal noise and optical quantum noise place fundamental limits on the displacement sensitivity of interferometric gravitational wave detectors. Projects such as Advanced LIGO employ a wide range of techniques to reduce thermal noise and use very high optical powers to reduce quantum noise. Thermal noise is Brownian motion caused by the thermal energy in each mode of oscillation. It is fundamentally linked with mechanical loss via the fluctuation-dissipation theorem. The thermal energy of, for example, the fundamental resonance of the suspension of a mirror can be concentrated into the resonant peak by using a very high-Q oscillator. This reduces the spectral density of the fluctuations away from resonance. The shape of the thermal noise spectrum depends on the mechanical loss mechanisms, and can have important implications for interferometer design This thesis presents, to the best of my knowledge, the first off-resonance thermal noise measurement of a high-Q suspension which includes both above-and below-resonance regions. The measurements do not conform to the accepted 'structural' damping model, but rather seem to suit a model with both structural and viscous damping. A number of potentially spurious loss mechanisms were investigated, but none were found to substantially alter the spectral shape of the measured noise. A lower quality factor suspension material was then employed to see if structural damping was dominant, but again a mixed damping model fitted the data better than structural damping. A coating-free mirror was designed and experimentally characterised. Removing the optical coating removes a significant source of mechanical loss from the mirror, potentially improving thermal noise. The combination of high optical powers and high-Q oscillators can lead to strong opto-mechanical interactions. The light inside an optical resonator can act as a complex spring, modifying both rigidity and damping. For a very low-loss mechanical system, a small amount of optical anti-damping can lead to instability. Conversely, it is possible to optically damp, or 'cool', an oscillator by extracting thermal energy. Results are presented showing optical cooling of the fundamental mode of a mirror suspension down to an effective temperature of 70 mK. This cooling is measured by the direct observation of the thermal noise spectrum. The measured traces are in agreement with a prediction of the thermal noise spectrum based on the input laser power, optical configuration, and feedback control system used. Results from the suspended gravitational wave detector prototype, the Caltech 40m interferometer, show how a strong optical spring creates an opto-mechancial resonance which alters the frequency response of the interferometer.
43

Schumaker, Bonny Laura. "Theoretical Investigations in Nonlinear Quantum Optics, Theory of Measurement, and Pulsations of General Relativistic Models of Neutron Stars." Thesis, 1985. https://thesis.library.caltech.edu/10414/8/Schumaker_BL_1985.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:

This thesis is a collection of six papers. The first four constitute the heart of the thesis; they are concerned with quantum mechanical properties of certain harmonic-oscillator states. The first paper is a discourse on single-mode and two-mode Gaussian pure states (GPS), states produced when harmonic oscillators in their ground states are exposed to potentials that are linear or quadratic in oscillator position and moment um variables (creation and annihilation operators). The second and third papers develop a formalism for analyzing two-photon devices (e.g., parametric amplifiers and phase-conjugate mirrors), in which photons in the ouput modes arise from two-photon transitions, i.e., are created or destroyed two at a time. The states produced by such devices are single-mode and two-mode "squeezed states", special kinds of GPS whose low-noise properties make them attractive for applications in such fields as optical communications and gravitational wave detection. The fourth paper is an analysis of the noise in homodyne detection, a phase-sensitive detection scheme in which the special properties of (single-mode) squeezed states are revealed as an improved signal-to-noise ratio relative to that obtained with coherent states (the states produced, e.g., by a laser).

The fifth and sixth papers deal with problems of a different nature from that of the previous papers. The fifth paper considers the validity of the "standard quantum limit" (SQL) for measurements which monitor the posi­tion of a free mass. It shows specifically that when the pre-measurement wave functions of the free mass and the measuring apparatus(es) are Gaus­sian (in the general sense, which includes so-called "contractive states"), measurements described by linear couplings to the position or to both the position and momentum are limited by the SQL. The sixth paper develops the mathematical theory of torsional (toroidal) oscillations in fully general relativistic, nonrotating, spherical stellar models, and of the gravitational waves they emit.

44

Buchler, Benjamin. "Electro-optic control of quantum measurements." Phd thesis, 2001. http://hdl.handle.net/1885/46232.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The performance of optical measurement systems is ultimately limited by the quantum nature of light. In this thesis, two techniques for circumventing the standard quantum measurement limits are modelled and tested experimentally. These techniques are electro-optic control and the use of squeezed light. ...
45

Beaudry, Normand James. "Squashing Models for Optical Measurements in Quantum Communication." Thesis, 2009. http://hdl.handle.net/10012/4800.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Many protocols and experiments in quantum information science are described in terms of simple measurements on qubits. However, in an experimental implementation, the exact description of the measurement is usually more complicated. If there is a claim made from the results of an experiment by using the simplified measurement description, then do the claims still hold when the more realistic description is taken into account? We present a "squashing" model that decomposes the realistic measurement description into first a map, followed by a simplified measurement. The squashing model then provides a connection between a realistic measurement and an ideal measurement. If the squashing model exists for a given measurement, then all claims made about a measurement using the simplified description also apply to the complicated one. We give necessary and sufficient conditions to determine when this model exists. We show how it can be applied to quantum key distribution, entanglement verification, and other quantum communication protocols. We also consider several examples of detectors commonly used in quantum communication to determine if they have squashing models.
46

Wade, Andrew. "Quantum limited measurements in gravitational wave detectors." Phd thesis, 2016. http://hdl.handle.net/1885/110016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Gravitational waves manifest as a time varying straining of space: they arise from the accelerating motions of large bodies of mass and propagate across the universe at the speed of light as ripples in the fabric of space-time, a fleetingly weak effect so far eluding direct detection. The detection of gravitation waves is expected to yield a rich vein to observational astronomy, complementing existing electromagnetic surveys and revealing a hitherto unexplored range of phenomena. First generation interferometric gravitational wave detectors, notably Enhanced LIGO, achieved strain sensitivities of one part in ten to power twenty-one per square-root-Hertz at 100 Hz with an expected detection rate of 2-3 events per year. Commissioning of a new generation of Advanced LIGO interferometric detectors has concluded recently with a resultant ten-fold sensitivity improvement. Overall their potential event detection space has increased by a factor of 1000. The quantum nature of light within these detectors now limits their sensitivity over most of their frequency range. This quantum noise limit is driven by the vacuum quadrature fluctuations propagated through their open detection ports and represents a fundamental noise floor to their strain sensitivity. This thesis addresses two distinct approaches to quantum noise improvement for future upgrades to advanced detectors. The first addresses the issue of quantum noise by adopting a quantum non-demolition approach to detector readout variables, the so-called `speed-meter’ design. Such a modified instrument samples test mass momentum, a quantity for which time separated measurements commute and are therefore not bound by Heisenberg-like limits. A novel polarisation-folded sloshing cavity type speed-meter is proposed where readout fields are stored and delayed in the orthogonal polarisation of the interferometer’s arms cavities. Here frequency dependence is selected to cancel position like measurements so that only test mass momentum information remains. A quantum noise propagation model is developed and a sensitivity performance is demonstrated that beats the standard quantum limit below 100 Hz over a broad range of frequencies. A second approach to achieve quantum noise enhancement in advanced detectors involves injection of quadrature-squeezed states in the place of vacuum. This dissertation details the development of a prototype squeezed vacuum source suitable to the demanding enhancement requirements for an Advanced LIGO squeezing installation. The construction of a doubly resonant, bow-tie cavity source is presented. This employs a novel monolithic all-glass cavity construction and is vacuum compatible. This design demonstrates the viability of building a cavity using optical contacting as a construction technique for attaching mounting prisms to highly polished fused-silica breadboards. Such a design can be expected to have excellent length noise stability, provide low intrinsic phase noise and would be suitable to mount on seismic isolation stages within the LIGO vacuum envelope. Further, the travelling wave cavity design should provide excellent 50 dB intrinsic backscatter isolation. We demonstrate the first operation of such a complex non-linear device under vacuum, producing 8.6 dB of measured vacuum squeezing down to 10 Hz across the advanced LIGO ‘audio-band’ detection range.
47

"Nonlinear optical measurement of Berry curvature in time-reversal-invariant insulators." 2012. http://library.cuhk.edu.hk/record=b5549156.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
當絶熱地改變哈密頓量的參數時,波函數會獲得一個幾何相位,既 Berry相。它可以表示為參數空間內一個局域的規範場,叫作 Berry曲率。Berry曲率在凝聚態物理的許多領域的研究中起著至關重要的作用,例如量子霍爾效應以及拓撲絶緣體。因此它已成為固體的最基本的性質之一。在量子霍爾效應中,霍爾電導可以表示為 Berry曲率在布里淵區上的積分。這個積分是一個量子化的 Chern數,並且反映了系統的拓撲結構。然而由於時間反演對稱性,拓撲絶緣體的霍爾電導等於零。因此對時間反演不變絶緣體的 Berry曲率的直接以及非破壞性的測量已經成為凝聚態物理中的重要問題。
在這篇論文中,我們提出標準的非線性光譜學可以用來探測時間反演不變絶緣體的性質,而且非線性光譜學的實驗比直流實驗更可控。通過計算,我們發現當遠紅外光和 THz光入射到樣品上時,系統的三階光學響應不為零,這與輸運實驗的結果相比形成了鮮明的對比。更重要的是響應函數正比於能帶的非阿貝爾 Berry曲率。這個結果提供了直接測量時間反演不變系統的 Berry曲率的可能性。
對具有(近似的 )空間旋轉對稱性的時間反演不變絶緣體,我們發現三階光學響應與等能球面的 Berry曲率通量直接相關。由於 Berry曲率通量給出了能帶簡併點處的奇異單子的拓撲電荷,因此人們可以利用這種方法直接測量能帶的拓撲結構。作為一個例子,這個方法被應用於 III-V族化合物半導體的八帶模型,並給出了一個拓撲電荷為 3的非線性響應。
Berry phase, a geometric phase acquired by a wave function by adiabatically varying the parameters of the Hamiltonian, can be expressed in terms of a local gauge field in parameter space, called Berry curvature. The Berry curvature plays an essential role in many fields of condensed matter physics, such as the quantum Hall eect and in the study of Topological insulators (TI) and hence it has become one of the most fundamental properties of solids. In Quantum Hall eect, the Hall conductance can be expressed as an integral of the Berry curvature over the Brillouin zone, which is a quantized Chern number and reflects the topology of the system. However in TI, the Hall conductance is equal to zero as a result of the time-reversal (TR) symmetry. Thus, the direct and nondestructive measurement of the Berry curvature of a TR invariant insulator is an important issue in condensed matter physics.
In this thesis, we show that the standard nonlinear optical spectroscopy, being more experimentally controllable than DC experiments, can be used to detect the bulk properties of TR invariant insulators. Through a general calculation, we nd that, when optical and terahertz light fields are employed, the third order optical eect is nonzero compared with the transport method. And the susceptibility is exactly proportional to the non-Abelian Berry curva-ture of the energy band, which provides the possibility of determining Berry curvature directly.
For the TR invariant insulator with (approximate) rotational symmetry, the third order optical susceptibility is related to the the Berry curvature flux through the iso-energy sphere, which gives the topological charge of the monopole at the degeneracy point. Hence it enables one to measure the topo¬logical property of the energy band explicitly. As an example, the method is applied to the eight-band model of III-V compound semiconductors and gives a quantized susceptibility with topological charge equal to 3.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Detailed summary in vernacular field only.
Yang, Fan = 時間反演不變絶緣體的Berry曲率的非線性光學測量 / 楊帆.
Thesis (M.Phil.)--Chinese University of Hong Kong, 2012.
Includes bibliographical references (leaves 77-[80]).
Abstracts also in Chinese.
Yang, Fan = Shi jian fan yan bu bian jue yuan ti de Berry qu lu de fei xian xing guang xue ce liang / Yang Fan.
Chapter 1 --- Introduction --- p.1
Chapter 1.1 --- Introduction of Berry phase --- p.1
Chapter 1.1.1 --- Basic concepts of the Berry phase and Berry curvature --- p.2
Chapter 1.1.2 --- Degeneracy and monopole --- p.5
Chapter 1.1.3 --- Berry phase in Bloch bands --- p.7
Chapter 1.1.4 --- Non-Abelian Berry curvature --- p.8
Chapter 1.2 --- Quantum Hall effect and topological insulator --- p.10
Chapter 1.2.1 --- Anomalous velocity and Quantum Hall effect --- p.11
Chapter 1.2.2 --- Topological insulator --- p.14
Chapter 1.3 --- Introduction of nonlinear optics --- p.16
Chapter 1.3.1 --- Nonlinear optical susceptibilities --- p.16
Chapter 1.3.2 --- Density matrix formalism --- p.19
Chapter 1.3.3 --- Diagrammatic analysis of nonlinear optical processes --- p.21
Chapter 1.4 --- Polarization operator of band electrons --- p.24
Chapter 1.5 --- Outline of this thesis --- p.26
Chapter 2 --- Third-order Optical Response of a General Insulator --- p.28
Chapter 2.1 --- Introduction --- p.28
Chapter 2.2 --- Microscopic mechanism --- p.30
Chapter 2.3 --- Third-order nonlinear susceptibility --- p.31
Chapter 2.3.1 --- A general model --- p.31
Chapter 2.3.2 --- Perturbative calculation I --- p.35
Chapter 2.3.3 --- Perturbative calculation II --- p.40
Chapter 2.3.4 --- Total response --- p.43
Chapter 2.4 --- Diagrammatic calculation of the third-order response --- p.45
Chapter 2.5 --- Application to topological insulators --- p.56
Chapter 2.6 --- Summary --- p.59
Chapter 3 --- Nonlinear Optical Measurement of Topological Charge --- p.61
Chapter 3.1 --- Introduction --- p.61
Chapter 3.2 --- Third-order response with resonant interband transitions --- p.62
Chapter 3.3 --- Third-order response and topological charge in a rotationally symmetric insulator --- p.66
Chapter 3.4 --- Quantized susceptibility of III-V compound semiconductors --- p.70
Chapter 3.5 --- Summary --- p.74
Chapter 4 --- Summary and Conclusions --- p.75
Bibliography --- p.77
Chapter A --- Calculation of equation (2.32) --- p.81
Chapter B --- Proof of formula (3.20) --- p.89
Chapter C --- Third-order response with multiple conduction and valence bands --- p.92
48

Yu, Chih-Hao, and 余治浩. "Measurement and Analysis of Optical Gain and Loss of Quantum-Dot and Quantum-Well Structures." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/70762928024284971976.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立臺灣大學
光電工程學研究所
93
Gain spectrum measurement plays an important role in analysis of semiconductor electro-optic devices. Traditionally, the Hakki-Paoli method is used to measure the modulation depth of the Fabry–Perot mode spectrum of lasers below threshold. In this study, we introduce a variable-stripe-length method with current injection and a multi-section device method to demonstrate the gain spectrum measurement of quantum-dot and quantum-well structures. In this thesis, we discuss the modal gain in ground states and excited states of quantum-dot and quantum-well samples. We can observe the modal gain in ground and excited states at the same time, which is hardly observed by using Hakki-Paoli method due to the limited wavelength range. Furthermore, we measure the modal absorption of quantum-dot and quantum-well structures by multi-section devices and the internal loss (αi) can be extracted from modal absorption spectrum. Based on the results in our measurement and analysis, the contribution of excited states to the gain spectra, especially under higher excitation, will be demonstrated. This will cause lasing emission wavelength to shift from ground states to excited states. The internal loss obtained from modal absorption is the quite same as that from traditional method used by different cavity lengths. These results demonstrate the reliability of the multi-section method.
49

Shen, I.-Chia, and 沈宜佳. "Measurement of Quantum Efficiency of Silicate phosphors for Precise Optical Modeling." Thesis, 2009. http://ndltd.ncl.edu.tw/handle/65865967486559199367.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立中央大學
光電科學研究所
97
As well known, in addition to the ways of packaging, the conversion efficiency of the various applied phosphors also has greatly effect on the luminous efficiency in the phosphor-based white light LEDs. In such a way, it has become a very important issue that how to evaluate the quantum efficiency of phosphors. In this thesis, we has proposed an improved measuring setup for obtain the precise quantum efficiency of phosphors. The accuracy of the measurement has much enhanced in analysis. Besides, we also study the optical model to precisely describe the spatial and the chromatic distribution of the lights emitted from blue LEDs covered with silicate phosphors.
50

Chen, Chien-An, and 陳建安. "Fabrication and Optical Measurements of Microdisks Embedded with InGaAs Quantum Dots." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/52760767011424970145.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
碩士
國立臺灣大學
光電工程學研究所
95
Owing to the geometrical symmetry of microdisk (MD) cavities, they support whispering gallery modes (WGMs) in which light circulates around the periphery of the structure and is confined by total internal reflections at both the sidewall and the top and bottom surfaces of the MD. Being cladded symmetrically by the air at both surfaces, light is well confined inside the MD due to the large refractive index difference. With the InGaAs quantum dots (QDs) as the active region in the MD, the much broader gain spectrum allows more resonant WGMs to be observed due to the inhomogeneous broadening of size-dispersed QDs. By e-beam lithography, we defined MDs of 2 μm and 5 μm in radius, respectively. After carefully applying both dry and wet etching processes, we successfully fabricated both single-layer and double-layer MDs. We performed micro-photoluminescence experiments at both room temperature (RT) and 77K. At RT, we observed radial modes in both sizes of MDs. The mode spacing for 2 μm and 5 μm MDs is 30 nm and 12.7 nm, respectively. As the temperature is reduced to 77K, we observed several WGMs with the mode spacing 9~11nm and 3~4 nm on average for 2 μm and 5 μm MDs, which agree very well with our simulation results of 11.1 nm and 4.4 nm, respectively. Limited by the resolution of the spectrometer, the minimum full width at half maximum (FWHM) of 70 pm was obtained, which corresponds to a high Q-factor of 14000. The real Q-factor will be even larger. By varying the pumping power at low temperature, we observed the lasing behavior in 5-μm MD with the lasing threshold of 394 μW and 417 μW for single and double-layer MDs, respectively.

До бібліографії