Добірка наукової літератури з теми "Quantum mixture"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Quantum mixture".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Quantum mixture"
Magann, Alicia B., Gerard McCaul, Herschel A. Rabitz, and Denys I. Bondar. "Sequential optical response suppression for chemical mixture characterization." Quantum 6 (January 20, 2022): 626. http://dx.doi.org/10.22331/q-2022-01-20-626.
Повний текст джерелаSAARELA, MIKKO, and TAUNO TAIPALEENMÄKI. "QUANTUM FLUID MIXTURES IN DIFFERENT PHASES." International Journal of Modern Physics B 17, no. 28 (November 10, 2003): 5227–42. http://dx.doi.org/10.1142/s0217979203020375.
Повний текст джерелаSundaram S, Vasanthi T, Jayaprakash T, Balasubramanian V, and Vijayakumar V N. "Optical and thermal studies on binary liquid crystal mixture." Nanoscale Reports 4, no. 1 (April 30, 2021): 40–51. http://dx.doi.org/10.26524/nr.4.7.
Повний текст джерелаROGERS, CAROLINE, and RAJAGOPAL NAGARAJAN. "LOSSLESS QUANTUM DATA COMPRESSION AND QUANTUM KOLMOGOROV COMPLEXITY." International Journal of Quantum Information 09, no. 02 (March 2011): 637–50. http://dx.doi.org/10.1142/s0219749911007848.
Повний текст джерелаWichert, Andreas. "Quantum-like Gaussian mixture model." Soft Computing 25, no. 15 (June 11, 2021): 10067–81. http://dx.doi.org/10.1007/s00500-021-05941-9.
Повний текст джерелаSusumu, Kimihiro, H. Tetsuo Uyeda, Igor L. Medintz, and Hedi Mattoussi. "Design of Biotin-Functionalized Luminescent Quantum Dots." Journal of Biomedicine and Biotechnology 2007 (2007): 1–7. http://dx.doi.org/10.1155/2007/90651.
Повний текст джерелаMancini, S., and P. Tombesi. "Entanglement and nonlocality for a mixture of a pair-coherent state." Quantum Information and Computation 3, no. 2 (March 2003): 106–15. http://dx.doi.org/10.26421/qic3.2-2.
Повний текст джерелаParks, A. D., S. E. Spence, and J. E. Gray. "Exact pointer theories for von Neumann projector measurements of pre- and postselected and preselected-only quantum systems: statistical mixtures and weak value persistence." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470, no. 2162 (February 8, 2014): 20130651. http://dx.doi.org/10.1098/rspa.2013.0651.
Повний текст джерелаGutierrez, Emmanuel Mercado, Gustavo Alves de Oliveira, Kilvia Mayre Farias, Vanderlei Salvador Bagnato, and Patricia Christina Marques Castilho. "Miscibility Regimes in a 23Na–39K Quantum Mixture." Applied Sciences 11, no. 19 (September 29, 2021): 9099. http://dx.doi.org/10.3390/app11199099.
Повний текст джерелаPolyukhin, A. S. "Modelling of the Thermodynamic Properties of the Plasma Mixture." Nelineinaya Dinamika 17, no. 1 (2021): 49–57. http://dx.doi.org/10.20537/nd210105.
Повний текст джерелаДисертації з теми "Quantum mixture"
McCarron, Daniel John. "A quantum degenerate mixture of ⁸⁷Rb and ¹³³Cs." Thesis, Durham University, 2011. http://etheses.dur.ac.uk/3242/.
Повний текст джерелаVoigt, Arne-Christian. "Heteronuclear Molecules from a Quantum Degenerate Fermi-Fermi Mixture." Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-106171.
Повний текст джерелаTaglieber, Matthias. "Quantum degeneracy in an atomic fermi-fermi-bose mixture." Diss., kostenfrei, 2008. http://edoc.ub.uni-muenchen.de/8452/.
Повний текст джерелаCabrera, Córdova César Raymundo. "Quantum liquid droplets in a mixture of Bose-Einstein condensates." Doctoral thesis, Universitat Politècnica de Catalunya, 2018. http://hdl.handle.net/10803/663331.
Повний текст джерелаEn este trabajo de tesis se reporta el diseño y la construcción de uno de los experimentos pioneros en España que permite realizar simulaciones cuánticas usando átomos ultra fríos. En este experimento se enfrían hasta alcanzar la degeneración cuántica los tres diferentes isotopos de potasio los cuales permiten, de manera particular y original, el estudio de mezclas cuánticas degeneradas de tipo Bose-Bose o Bose-Fermi. El funcionamiento del experimento es validado por medio de la producción de condensados de Bose-Einstein de 41K y 39K. Además, se reporta la condensación de la mezcla degenerada 41K - 39K, la cual no había sido previamente reportada en la literatura. Estos resultados son los primeros de su tipo en España y por lo tanto abren un amplio panorama en el estudio de fenómenos cuánticos en el país. La mezcla cuántica reportada en esta tesis permite acceder a sistemas cuánticos novedosos en el campo de átomos fríos. El control de las interacciones atómicas es una herramienta ampliamente usada en el campo, por lo cual se han caracterizado las propiedades de dispersión en esta nueva mezcla, así como en diferentes mezclas de espín entre los isotopos 41K y 39K. El resultado más importante de esta tesis reside en la creación de un nuevo estado de la materia: una gota liquida cuántica ultra-diluida. Esta gota cuántica se compone de una mezcla de dos estados diferentes de espín de 39K. Este líquido se encuentra ligado por sí mismo debido a la compensación de las fuerzas atractivas de campo con el carácter repulsivo de efectos cuánticos que van más allá de la aproximación de campo medio. Este sistema sigue la idea original de D. Petrov, esta propone la formación de líquidos cuánticos usando mezclas de condensados de Bose-Einstein. En la primera serie de experimentos, hemos observado la formación de gotas cuánticas en un régimen donde una mezcla de Bose debería de colapsar de acuerdo con teorías de campo medio. Se ha medido su tamaño y ultra-baja densidad por medio de imágenes in situ. De esta manera confirma cómo este líquido permanece ligado por si mismo en la ausencia de confinamiento externo. Hemos demostrado que la existencia de estas gotas cuánticas se debe a una manifestación sorprendente de las fluctuaciones cuánticas. Finalmente hemos observado cómo debido a la presencia de la presión cuántica, debajo de un numero critico de átomos el sistema se disocia en gas dando lugar a una transición cuántica liquido-gas. Esta transición se ha medido experimentalmente como función de las interacciones atómicas entre los átomos. Estas mediciones traen consigo una pregunta intrigante: ¿Cuál es la diferencia entre nuestras gotas cuánticas y los ya conocidos solitones de materia? En una segunda serie de experimentos, hemos dado respuesta a esta interrogante al estudiar las propiedades de una mezcla de Bose confinada en una guía óptica. En este tipo de geometría ambos estados pueden existir. En analogía a sistemas ópticos no-lineales, solitones son sistemas estabilizados por efectos de dispersión, mientras las gotas cuánticas corresponden a solitones de más alta dimensión estabilizadas por efectos no lineales de alto orden. Hemos encontrado que, dependiendo del número de átomos, fuerza de interacción y confinamiento, solitones y gotas cuánticas son dos estados cuánticos que pueden estar conectados, permanecer como dos estados distintos, o coexistir en una región de bi-estabilidad. Se ha medido su composición de espín, densidad del sistema y encontrado experimentalmente la frontera que separa ambos sistemas. En conclusión, los experimentos mostrados en esta tesis demuestran la existencia de un nuevo liquido cuántico ultra-diluido estabilizado únicamente por interacciones de contacto. Su existencia es puramente debida a las fluctuaciones cuánticas presentes en el sistema. Este sistema provee una plataforma ideal para el estudio y la comprensión de teorías cuánticas más complejas las cuales van más allá de la aproximación de campo medio.
D'Alberto, Jacopo. "Study of a 2D Bose-Fermi mixture with quantum Monte Carlo methods." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24393/.
Повний текст джерелаDuchon, Eric Nicholas. "Quantum Phase Transitions in the Bose Hubbard Model and in a Bose-Fermi Mixture." The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1386002245.
Повний текст джерелаKonishi, Hideki. "Collisional stability of localized metastable ytterbium atoms immersed in a Fermi sea of lithium." 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225386.
Повний текст джерелаWendland, David. "The equation of state of the Hydrogen-Helium mixture with application to the Sun." Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1029/document.
Повний текст джерелаThe study of the thermodynamic properties of a multi-component quantum Coulomb system is of fundamental theoretical interest and has, beyond that, a wide range of applications. The Hydrogen-Helium mixture can be found in the interstellar nebulae and giant planets, however the most prominent example is the Sun. Here the interaction between the electrons and the nuclei is almost purely electrostatic.In this work we study the equation of state of the Hydrogen-Helium mixture starting from first principles, meaning the fundamental Coulomb interaction of its constituting particles. In this context we develop numerical methods to study the few-particle clusters appearing in the theory by using the path integral language. To capture the effects of the long-range Coulomb interaction between the fundamental particles, we construct a new version of Mayer-diagrammatic, which is appropriate for our purposes. In a first step, we ameliorate the scaled-low-temperature (SLT) equation of state, valid in the limit of low density and low temperature, by taking three-body terms into account and we compare the predictions to the well-established OPAL equation of state. Higher densities are accessed by direct inversion of the density equations and by the use of cluster functions that include screening effects. These cluster functions put the influence of screening on the ionization, unto now treated ad-hoc, on a theoretically well-grounded basis. We also inspect other equilibrium quantities such as the speed of sound and the inner energy. In the last part we calculate the equation of state of the Hydrogen-Helium mixture including the charged He+ ions in the screening process. Our work gives insights in the physical content of previous phenomenological descriptions and helps to better determine their range of validity. The equation of state derived in this thesis is expected to be very precise as well as reliable for conditions found in the Sun
Laurent, Sébastien. "Dynamics and stability of a Bose-Fermi mixture : counterflow of superfluids and inelastic decay in a strongly interacting gas." Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE023/document.
Повний текст джерелаUnderstanding the effect of interactions in quantum many-body systems presents some of the most compelling challenges in modern physics. Ultracold atoms have emerged as a versatile platform to engineer and investigate these strongly correlated systems. In this thesis, we study the properties of a mixture of Bose and Fermi superfluids with tunable interactions produced using ultracold vapors of ⁷Li and ⁶Li. We first study the hydrodynamic properties of the mixture by creating a counterflow between the superfluids. The relative motion only exhibit dissipation above a critical velocity that we measure in the BEC-BCS crossover. A numerical simulation of counterflowing condensates allows for a better understanding of the underlying mechanisms at play in the dynamics. In particular, this numerical study provides additional evidence that the onset of friction in our experiment is due to the simultaneous generation of elementary excitations in both superfluids. Finally, we consider the inelastic losses that occur via three-body recombination in our cold gases. This few-body process is intimately related to short-distance correlations and is thereby connected to the universal properties of the many-body system. This manifests as the apparition of an unusual dependence on density or temperature in the loss rate when increasing the interactions. We demonstrate this effect in two examples where interactions are resonant: the case of a dilute unitary Bose gas and the one of impurities weakly coupled to a unitary Fermi gas. More generally, our work shows that inelastic losses can be used to probe quantum correlations in a many-body system
PANTALEI, CLAUDIA. "Single-particle dynamics of helium mixtures and 4He in nanometric confinement." Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2008. http://hdl.handle.net/2108/473.
Повний текст джерелаThe aim of this thesis work is the study, by means of Deep Inelastic Neutron Scatter- ing, of the microscopic dynamics of two different helium systems at low temperature (T=2K): an isotopic helium mixture (in the fluid phase and near the melting point) and a system of 4He in nanometric confinement. The interest in the helium, from the first decades of 1900, is due to its unique features: it is the only element in nature that doesn't have a solid phase at absolute zero. Thus, at low temperatures it presents quantum effects, usually negligible in other physical systems that in this condition crystallise. The helium is thus the unique test-bed for theoretical quantum models, in particular for studying the interacting boson (4He) and fermion (3He) systems. Moreover, if in 4He are added some atoms of 3He it is possible to derive important information about the interplay of these two statistics. In this context, several experiments on liquid and solid helium have been performed. Measurements on pure 3He and 4He have shown that the mean kinetic energy of pure liquids depends on the density of the system and increases decreasing the molar volume. On the other hand, the microscopic dynamics of helium mixtures reveals quite a different picture with respect to pure 3He and 4He: the mean kinetic energy of the light isotope, above a molar volume of 25cm3/mole, shows a remarkable independence from molar volume and concentration. This behaviour could be explained by quantum effects, such as exchange effects. The first part of the present work deals with the experiments performed to investigate the dynamics of the mixtures from 22cm3/mole to 25cm3/mole and shows how, at these low molar volumes, the mean kinetic energy of 3He starts again to be strongly dependent on the molar volume, increasing until reaching, at 22.7cm3/mole, the corresponding value of pure helium. Recent measurements have been also performed to investigate the influence of confinement on helium. Experiments on 4He, adsorbed in flat surface or slit geometry porous substrates, have shown a large increase in helium mean kinetic energy. This has been attributed to the strong localisation effects induced by the helium-substrate interaction potential, which mainly influence the firsts two or three adsorbed layers. Such effects can be also investigated by confining 4He atoms in cylindrical pore geometries and by studying their dynamics as function of pore size. Aim of the second part of the thesis has been the determination of the single particle mean kinetic energy of 4He adsorbed in cylindrical silica nanopores (Xerogel) having two different pore diameters, namely, 24 ºAand 160 ºA, and to evaluate the dependence of single- particle dynamics on pore sizes, layer coverage, and confining system geometry. The measurements have been performed at a temperature of T=2.5K, saturated vapour pressure, and 95% volume filling. Significant changes in the values of the single particle mean kinetic energy are found: they are remarkably higher than the value of normal liquid 4He at the same conditions. The results are interpreted in terms of a model in which 4He atoms are arranged in concentric annuli along the cylindrical pore axis, growing layer-by-layer and with the mean kinetic energy mainly dependent on the ratio between the atomic diameter and the pore diameter.
Книги з теми "Quantum mixture"
Yudaev, Vasiliy. Hydraulics. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/996354.
Повний текст джерелаSchroeder, Daniel V. An Introduction to Thermal Physics. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192895547.001.0001.
Повний текст джерелаЧастини книг з теми "Quantum mixture"
Pu, H., W. Zhang, and P. Meystre. "Phonon excitations and stability of a Bose-Fermi mixture quantum gas." In Coherence and Quantum Optics VIII, 589–90. Boston, MA: Springer US, 2003. http://dx.doi.org/10.1007/978-1-4419-8907-9_182.
Повний текст джерелаHallock, Robert B. "NMR Measurements of 3 He in 3 He- 4 He Mixture Films." In Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids, 269–79. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5937-1_26.
Повний текст джерелаMeystre, Pierre, and Murray Sargent. "Mixtures and the Density Operator." In Elements of Quantum Optics, 101–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-662-11654-8_4.
Повний текст джерелаMeystre, Pierre, and Murray Sargent. "Mixtures and the Density Operator." In Elements of Quantum Optics, 101–28. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-662-07007-9_4.
Повний текст джерелаMeystre, Pierre, and Murray Sargent. "Mixtures and the Density Operator." In Elements of Quantum Optics, 93–116. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74211-1_4.
Повний текст джерелаMeystre, Pierre, and Murray Sargent. "Mixtures and the Density Operator." In Elements of Quantum Optics, 81–102. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03877-2_4.
Повний текст джерелаBowley, R. M. "Bulk Properties of 3He-4He Mixtures." In Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids, 183–94. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5937-1_18.
Повний текст джерелаWill, Sebastian. "Interacting Mixtures of Bosons and Fermions in Optical Lattice Potentials." In From Atom Optics to Quantum Simulation, 193–207. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33633-1_8.
Повний текст джерелаvan Beelen, H. "Thermal Counterflow in Superfluid 3He-4He Mixtures." In Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids, 221–29. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5937-1_21.
Повний текст джерелаBalibar, S., and H. Meyer. "Discussion on Bulk 3He and 3He/4He Mixtures." In Excitations in Two-Dimensional and Three-Dimensional Quantum Fluids, 251–55. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5937-1_24.
Повний текст джерелаТези доповідей конференцій з теми "Quantum mixture"
Modugno, G., G. Roati, F. Ferlaino, and M. Inguscio. "Experiments with a quantum degenerate Fermi-Bose mixture." In 2003 European Quantum Electronics Conference. EQEC 2003 (IEEE Cat No.03TH8665). IEEE, 2003. http://dx.doi.org/10.1109/eqec.2003.1314146.
Повний текст джерелаWebb, Kevin J., and Alon Ludwig. "Lossless Negative Dielectric Constant Optical Material from a Semiconductor Quantum Dot Mixture." In International Quantum Electronics Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/iqec.2009.itul7.
Повний текст джерелаJohn, Shincy, Nicolas Spethmann, Claudia Weber, Tatjana Weikum, Artur Widera, and Dieter Meschede. "Interspecies interaction in a strongly imbalanced Bose-Bose mixture." In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5192914.
Повний текст джерелаKorkinof, Dimitrios, and Yiannis Demiris. "Online quantum mixture regression for trajectory learning by demonstration." In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2013). IEEE, 2013. http://dx.doi.org/10.1109/iros.2013.6696814.
Повний текст джерелаHigley, R. H., D. T. Sprague, and R. B. Hallock. "Structure in the magnetization of thin 3He-4He mixture films." In Symposium on quantum fluids and solids−1989. AIP, 1989. http://dx.doi.org/10.1063/1.38780.
Повний текст джерелаCarmi, Yoash, Stephen Lipson, and Emil Polturak. "Roughening and wetting transitions in dilute 3He-4He mixture crystals." In Symposium on quantum fluids and solids−1989. AIP, 1989. http://dx.doi.org/10.1063/1.38797.
Повний текст джерелаSpiegelhalder, F., A. Trenkwalder, D. Naik, E. Wille, G. Hendl, F. Schreck, and R. Grimm. "All-optical production of a doubly degenerate Fermi-Fermi mixture." In 11th European Quantum Electronics Conference (CLEO/EQEC). IEEE, 2009. http://dx.doi.org/10.1109/cleoe-eqec.2009.5192440.
Повний текст джерелаShadbolt, Peter, Maria Rodas Verde, Alberto Peruzzo, Alberto Politi, Anthony Laing, Mirko Lobino, Jonathan Matthews, Mark G. Thompson, and Jeremy L. O'Brien. "A Reconfigurable Photonic Chip for Generating, Manipulating and Measuring Entanglement and Mixture." In Quantum Electronics and Laser Science Conference. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/qels.2012.qf2f.1.
Повний текст джерелаLim, Sun Hee, Felix Bestwater, Philippe Buchy, Sek Mardy, and Alexey Dan Chin Yu. "Quantum-dot-based quantitative identification of pathogens in complex mixture." In BiOS, edited by Marek Osinski, Wolfgang J. Parak, Thomas M. Jovin, and Kenji Yamamoto. SPIE, 2010. http://dx.doi.org/10.1117/12.851050.
Повний текст джерелаZhao, Liancheng, Ruiyi Zhu, Xuelong Liu, Zhenxu Wang, Qi L. Wang, and Zuguang Ma. "Two-step excitation of He/K mixture for producing coherent XUV radiation." In 1992 Shanghai International Symposium on Quantum Optics, edited by Yuzhu Wang, Yiqiu Wang, and Zugeng Wang. SPIE, 1992. http://dx.doi.org/10.1117/12.130479.
Повний текст джерелаЗвіти організацій з теми "Quantum mixture"
Jin, Deborah. Exploring Quantum Degenerate Bose-Fermi Mixtures Toward Cooper Pairing of Fermionic Atoms. Office of Scientific and Technical Information (OSTI), April 2011. http://dx.doi.org/10.2172/1011496.
Повний текст джерела