Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Quantum many body.

Статті в журналах з теми "Quantum many body"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-50 статей у журналах для дослідження на тему "Quantum many body".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Hainzl, Christian, Benjamin Schlein, Robert Seiringer, and Simone Warzel. "Many-Body Quantum Systems." Oberwolfach Reports 16, no. 3 (September 9, 2020): 2541–603. http://dx.doi.org/10.4171/owr/2019/41.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Wimberger, Sandro. "Many Body Quantum Chaos." Condensed Matter 5, no. 2 (June 12, 2020): 41. http://dx.doi.org/10.3390/condmat5020041.

Повний текст джерела
Анотація:
This editorial remembers Shmuel Fishman, one of the founding fathers of the research field “quantum chaos”, and puts into context his contributions to the scientific community with respect to the twelve papers that form the special issue.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Wall, Michael L., Arghavan Safavi-Naini, and Martin Gärttner. "Many-body quantum mechanics." XRDS: Crossroads, The ACM Magazine for Students 23, no. 1 (September 20, 2016): 25–29. http://dx.doi.org/10.1145/2983537.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Mukherjee, Victor, and Uma Divakaran. "Many-body quantum thermal machines." Journal of Physics: Condensed Matter 33, no. 45 (August 27, 2021): 454001. http://dx.doi.org/10.1088/1361-648x/ac1b60.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Palev, T. D., and N. I. Stoilova. "Many-body Wigner quantum systems." Journal of Mathematical Physics 38, no. 5 (May 1997): 2506–23. http://dx.doi.org/10.1063/1.531991.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lindgren, Ingvar, Sten Salomonson, and Daniel Hedendahl. "New approach to many-body quantum-electrodynamics calculations:merging quantum electrodynamics with many-body perturbation." Canadian Journal of Physics 83, no. 4 (April 1, 2005): 395–403. http://dx.doi.org/10.1139/p05-012.

Повний текст джерела
Анотація:
A new method for bound-state quantum electrodynamics (QED) calculations on many-electron systems is presented that is a combination of the non-QED many-body technique for quasi-degenerate systems and the newly developed covariant-evolution-operator technique for QED calculations. The latter technique has been successfully applied to the fine structure of excited states of medium-heavy heliumlike ions, and it is expected that the new method should be applicable also to light elements, hopefully down to neutral helium. PACS Nos.: 31.30.Jv, 31.15.Md, 31.25.Jf, 33.15.Pw
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Vojta, Thomas. "Disorder in Quantum Many-Body Systems." Annual Review of Condensed Matter Physics 10, no. 1 (March 10, 2019): 233–52. http://dx.doi.org/10.1146/annurev-conmatphys-031218-013433.

Повний текст джерела
Анотація:
Impurities, defects, and other types of imperfections are ubiquitous in realistic quantum many-body systems and essentially unavoidable in solid state materials. Often, such random disorder is viewed purely negatively as it is believed to prevent interesting new quantum states of matter from forming and to smear out sharp features associated with the phase transitions between them. However, disorder is also responsible for a variety of interesting novel phenomena that do not have clean counterparts. These include Anderson localization of single-particle wave functions, many-body localization in isolated many-body systems, exotic quantum critical points, and glassy ground-state phases. This brief review focuses on two separate but related subtopics in this field. First, we review under what conditions different types of randomness affect the stability of symmetry-broken low-temperature phases in quantum many-body systems and the stability of the corresponding phase transitions. Second, we discuss the fate of quantum phase transitions that are destabilized by disorder as well as the unconventional quantum Griffiths phases that emerge in their vicinity.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Daley, Andrew J. "Quantum trajectories and open many-body quantum systems." Advances in Physics 63, no. 2 (March 4, 2014): 77–149. http://dx.doi.org/10.1080/00018732.2014.933502.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Monras, A., and O. Romero-Isart. "Quantum information processing with quantum zeno many-body dynamics." Quantum Information and Computation 10, no. 3&4 (March 2010): 201–22. http://dx.doi.org/10.26421/qic10.3-4-3.

Повний текст джерела
Анотація:
We show how the quantum Zeno effect can be exploited to control quantum many-body dynamics for quantum information and computation purposes. In particular, we consider a one dimensional array of three level systems interacting via a nearest-neighbour interaction. By encoding the qubit on two levels and using simple projective frequent measurements yielding the quantum Zeno effect, we demonstrate how to implement a well defined quantum register, quantum state transfer on demand, universal two-qubit gates and two-qubit parity measurements. Thus, we argue that the main ingredients for universal quantum computation can be achieved in a spin chain with an {\em always-on} and {\em constant} many-body Hamiltonian. We also show some possible modifications of the initially assumed dynamics in order to create maximally entangled qubit pairs and single qubit gates.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gómez-Ullate, D., A. González-López, and M. A. Rodríguez. "New algebraic quantum many-body problems." Journal of Physics A: Mathematical and General 33, no. 41 (October 5, 2000): 7305–35. http://dx.doi.org/10.1088/0305-4470/33/41/305.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
11

Dittel, Christoph, Robert Keil, and Gregor Weihs. "Many-body quantum interference on hypercubes." Quantum Science and Technology 2, no. 1 (February 6, 2017): 015003. http://dx.doi.org/10.1088/2058-9565/aa540c.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
12

Altman, Ehud. "Many-body localization and quantum thermalization." Nature Physics 14, no. 10 (October 2018): 979–83. http://dx.doi.org/10.1038/s41567-018-0305-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
13

Davis-Tilley, C., C. K. Teoh, and A. D. Armour. "Dynamics of many-body quantum synchronisation." New Journal of Physics 20, no. 11 (November 6, 2018): 113002. http://dx.doi.org/10.1088/1367-2630/aae947.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
14

Czajkowski, Jan, Krzysztof Pawłowski, and Rafał Demkowicz-Dobrzański. "Many-body effects in quantum metrology." New Journal of Physics 21, no. 5 (May 30, 2019): 053031. http://dx.doi.org/10.1088/1367-2630/ab1fc2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
15

Mertens, C. J., T. A. B. Kennedy, and S. Swain. "Many-body theory of quantum noise." Physical Review Letters 71, no. 13 (September 27, 1993): 2014–17. http://dx.doi.org/10.1103/physrevlett.71.2014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
16

Continentino, Mucio A. "Quantum scaling in many-body systems." Physics Reports 239, no. 3 (April 1994): 179–213. http://dx.doi.org/10.1016/0370-1573(94)90112-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

ZELEVINSKY, VLADIMIR. "MANY-BODY ASPECTS OF QUANTUM CHAOS." International Journal of Modern Physics B 13, no. 05n06 (March 10, 1999): 569–77. http://dx.doi.org/10.1142/s0217979299000461.

Повний текст джерела
Анотація:
Realistic many-body quantum systems with strong interaction reveal generic chaotic properties in level statistics and structure of eigenfunctions. In complex atoms and nuclei onset of chaos is driven by the residual interaction. We discuss specific features of many-body chaos in mesoscopic systems (complexity and thermalization; coexistence of chaos and collective motion; spreading widths of simple modes; geometric chaoticity).
Стилі APA, Harvard, Vancouver, ISO та ін.
18

Quarati, Piero, Marcello Lissia, and Antonio Scarfone. "Negentropy in Many-Body Quantum Systems." Entropy 18, no. 2 (February 22, 2016): 63. http://dx.doi.org/10.3390/e18020063.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
19

Ullmo, Denis. "Many-body physics and quantum chaos." Reports on Progress in Physics 71, no. 2 (January 28, 2008): 026001. http://dx.doi.org/10.1088/0034-4885/71/2/026001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
20

TOBATA, Kaito, and Kunio ISHIDA. "Modularized Quantum Many-body Dynamics Simulator." Journal of Computer Chemistry, Japan 22, no. 2 (2023): 28–30. http://dx.doi.org/10.2477/jccj.2023-0024.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
21

Balantekin, A. B. "Quantum Entanglement and Neutrino Many-Body Systems." Journal of Physics: Conference Series 2191, no. 1 (February 1, 2022): 012004. http://dx.doi.org/10.1088/1742-6596/2191/1/012004.

Повний текст джерела
Анотація:
Abstract Entanglement of constituents of a many-body system is a recurrent feature of quantum behaviour. Quantum information science provides tools, such as the entanglement entropy, to help assess the amount of entanglement in such systems. Many-neutrino systems are present in core-collapse supernovae, neutron star mergers, and the Early Universe. Recent work in applying the tools of quantum information science to the description of the entanglement in astrophysical many-neutrino systems is reviewed.
Стилі APA, Harvard, Vancouver, ISO та ін.
22

WEIDENMÜLLER, H. A. "QUANTUM DOTS AND THE MANY-BODY PROBLEM." International Journal of Modern Physics B 15, no. 10n11 (May 10, 2001): 1389–403. http://dx.doi.org/10.1142/s0217979201005891.

Повний текст джерела
Анотація:
Quantum dots are often referred to as artificial atoms: Metallic gates at the surface of a GaAs-GaAlAs heterostructure confine the two-dimensional electron gas at the interface to an area of ≤μm2 size. Because of the tunneling barriers connecting the quantum dot to external leads, the number of electrons on the dot is (almost) integer, and the Coulomb interaction is important and affects many properties of quantum dots: The spacing of Coulomb blockade resonances, the co-tunneling between resonances, and (possible) localization in Fock space. Some theoretical work relating to these topics is reviewed.
Стилі APA, Harvard, Vancouver, ISO та ін.
23

Ritter, Mark B. "Near-term Quantum Algorithms for Quantum Many-body Systems." Journal of Physics: Conference Series 1290 (October 2019): 012003. http://dx.doi.org/10.1088/1742-6596/1290/1/012003.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
24

Gustafson, Erik J., Andy C. Y. Li, Abid Khan, Joonho Kim, Doga Murat Kurkcuoglu, M. Sohaib Alam, Peter P. Orth, Armin Rahmani, and Thomas Iadecola. "Preparing quantum many-body scar states on quantum computers." Quantum 7 (November 7, 2023): 1171. http://dx.doi.org/10.22331/q-2023-11-07-1171.

Повний текст джерела
Анотація:
Quantum many-body scar states are highly excited eigenstates of many-body systems that exhibit atypical entanglement and correlation properties relative to typical eigenstates at the same energy density. Scar states also give rise to infinitely long-lived coherent dynamics when the system is prepared in a special initial state having finite overlap with them. Many models with exact scar states have been constructed, but the fate of scarred eigenstates and dynamics when these models are perturbed is difficult to study with classical computational techniques. In this work, we propose state preparation protocols that enable the use of quantum computers to study this question. We present protocols both for individual scar states in a particular model, as well as superpositions of them that give rise to coherent dynamics. For superpositions of scar states, we present both a system-size-linear depth unitary and a finite-depth nonunitary state preparation protocol, the latter of which uses measurement and postselection to reduce the circuit depth. For individual scarred eigenstates, we formulate an exact state preparation approach based on matrix product states that yields quasipolynomial-depth circuits, as well as a variational approach with a polynomial-depth ansatz circuit. We also provide proof of principle state-preparation demonstrations on superconducting quantum hardware.
Стилі APA, Harvard, Vancouver, ISO та ін.
25

Peña, Rubén, Thi Ha Kyaw, and Guillermo Romero. "Stable Many-Body Resonances in Open Quantum Systems." Symmetry 14, no. 12 (December 4, 2022): 2562. http://dx.doi.org/10.3390/sym14122562.

Повний текст джерела
Анотація:
Periodically driven quantum many-body systems exhibit novel nonequilibrium states, such as prethermalization, discrete time crystals, and many-body localization. Recently, the general mechanism of fractional resonances has been proposed that leads to slowing the many-body dynamics in systems with both U(1) and parity symmetry. Here, we show that fractional resonance is stable under local noise models. To corroborate our finding, we numerically study the dynamics of a small-scale Bose–Hubbard model that can readily be implemented in existing noisy intermediate-scale quantum (NISQ) devices. Our findings suggest a possible pathway toward a stable nonequilibrium state of matter, with potential applications of quantum memories for quantum information processing.
Стилі APA, Harvard, Vancouver, ISO та ін.
26

Novo, Leonardo, Juani Bermejo-Vega, and Raúl García-Patrón. "Quantum advantage from energy measurements of many-body quantum systems." Quantum 5 (June 2, 2021): 465. http://dx.doi.org/10.22331/q-2021-06-02-465.

Повний текст джерела
Анотація:
The problem of sampling outputs of quantum circuits has been proposed as a candidate for demonstrating a quantum computational advantage (sometimes referred to as quantum "supremacy"). In this work, we investigate whether quantum advantage demonstrations can be achieved for more physically-motivated sampling problems, related to measurements of physical observables. We focus on the problem of sampling the outcomes of an energy measurement, performed on a simple-to-prepare product quantum state – a problem we refer to as energy sampling. For different regimes of measurement resolution and measurement errors, we provide complexity theoretic arguments showing that the existence of efficient classical algorithms for energy sampling is unlikely. In particular, we describe a family of Hamiltonians with nearest-neighbour interactions on a 2D lattice that can be efficiently measured with high resolution using a quantum circuit of commuting gates (IQP circuit), whereas an efficient classical simulation of this process should be impossible. In this high resolution regime, which can only be achieved for Hamiltonians that can be exponentially fast-forwarded, it is possible to use current theoretical tools tying quantum advantage statements to a polynomial-hierarchy collapse whereas for lower resolution measurements such arguments fail. Nevertheless, we show that efficient classical algorithms for low-resolution energy sampling can still be ruled out if we assume that quantum computers are strictly more powerful than classical ones. We believe our work brings a new perspective to the problem of demonstrating quantum advantage and leads to interesting new questions in Hamiltonian complexity.
Стилі APA, Harvard, Vancouver, ISO та ін.
27

Ziegler, Klaus. "Probing Many-Body Systems near Spectral Degeneracies." Symmetry 13, no. 10 (September 26, 2021): 1796. http://dx.doi.org/10.3390/sym13101796.

Повний текст джерела
Анотація:
The diagonal elements of the time correlation matrix are used to probe closed quantum systems that are measured at random times. This enables us to extract two distinct parts of the quantum evolution, a recurrent part and an exponentially decaying part. This separation is strongly affected when spectral degeneracies occur, for instance, in the presence of spontaneous symmetry breaking. Moreover, the slowest decay rate is determined by the smallest energy level spacing, and this decay rate diverges at the spectral degeneracies. Probing the quantum evolution with the diagonal elements of the time correlation matrix is discussed as a general concept and tested in the case of a bosonic Josephson junction. It reveals for the latter characteristic properties at the transition to Hilbert-space localization.
Стилі APA, Harvard, Vancouver, ISO та ін.
28

Sun, Li-Zhen, Qingmiao Nie, and Haibin Li. "Randomness of Eigenstates of Many-Body Quantum Systems." Entropy 21, no. 3 (February 27, 2019): 227. http://dx.doi.org/10.3390/e21030227.

Повний текст джерела
Анотація:
The emergence of random eigenstates of quantum many-body systems in integrable-chaos transitions is the underlying mechanism of thermalization for these quantum systems. We use fidelity and modulus fidelity to measure the randomness of eigenstates in quantum many-body systems. Analytic results of modulus fidelity between random vectors are obtained to be a judge for the degree of randomness. Unlike fidelity, which just refers to a kind of criterion of necessity, modulus fidelity can measure the degree of randomness in eigenstates of a one-dimension (1D) hard-core boson system and identifies the integrable-chaos transition in this system.
Стилі APA, Harvard, Vancouver, ISO та ін.
29

Otsuki, Junya, Masayuki Ohzeki, Hiroshi Shinaoka, and Kazuyoshi Yoshimi. "Sparse Modeling in Quantum Many-Body Problems." Journal of the Physical Society of Japan 89, no. 1 (January 15, 2020): 012001. http://dx.doi.org/10.7566/jpsj.89.012001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
30

Hainzl, Christian, Benjamin Schlein, and Robert Seiringer. "Many-Body Quantum Systems and Effective Theories." Oberwolfach Reports 13, no. 3 (2016): 2465–511. http://dx.doi.org/10.4171/owr/2016/43.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
31

Lindgren, Ingvar, Sten Salomonson, and Daniel Hedendahl. "Combining Many-Body Perturbation and Quantum Electrodynamics." Journal of Atomic, Molecular, and Optical Physics 2011 (December 18, 2011): 1–11. http://dx.doi.org/10.1155/2011/723574.

Повний текст джерела
Анотація:
It has been a long-sought problem to be able to combine many-body perturbation theory and quantum electrodynamics into a unified, covariant model. Such a model has recently been developed at our laboratory and is outlined in the present paper. The model has potential applications in many areas and opens up the possibility of studying the interplay between various interactions in different system. The model has so far been applied to highly ionized helium-like ions, and some numerical results are given. It is expected that the combined effect—that has never been calculated before—could have a significant effect on certain experimental data. The radiative effects are being regularized using the dimensional regularization in Coulomb gauge, and the first numerical results have been obtained.
Стилі APA, Harvard, Vancouver, ISO та ін.
32

Turbiner, A. V. "Quantum many-body problems and perturbation theory." Physics of Atomic Nuclei 65, no. 6 (June 2002): 1135–43. http://dx.doi.org/10.1134/1.1490123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
33

Schiulaz, Mauro, Marco Távora, and Lea F. Santos. "From few- to many-body quantum systems." Quantum Science and Technology 3, no. 4 (September 4, 2018): 044006. http://dx.doi.org/10.1088/2058-9565/aad913.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
34

Cuccoli, Alessandro, Andrea Fubini, Valerio Tognetti, and Ruggero Vaia. "Thermodynamics of quantum dissipative many-body systems." Physical Review E 60, no. 1 (July 1, 1999): 231–41. http://dx.doi.org/10.1103/physreve.60.231.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
35

Baker, George A. "New tool for quantum many-body theory." Physical Review Letters 58, no. 13 (March 30, 1987): 1379. http://dx.doi.org/10.1103/physrevlett.58.1379.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
36

Tura, J., R. Augusiak, A. B. Sainz, T. Vertesi, M. Lewenstein, and A. Acin. "Detecting nonlocality in many-body quantum states." Science 344, no. 6189 (June 12, 2014): 1256–58. http://dx.doi.org/10.1126/science.1247715.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
37

Gasenzer, Thomas, Stefan Keßler, and Jan M. Pawlowski. "Far-from-equilibrium quantum many-body dynamics." European Physical Journal C 70, no. 1-2 (September 16, 2010): 423–43. http://dx.doi.org/10.1140/epjc/s10052-010-1430-3.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
38

Eisert, J., M. Friesdorf, and C. Gogolin. "Quantum many-body systems out of equilibrium." Nature Physics 11, no. 2 (February 2015): 124–30. http://dx.doi.org/10.1038/nphys3215.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
39

Nielsen, S. E. B., M. Ruggenthaler, and R. van Leeuwen. "Many-body quantum dynamics from the density." EPL (Europhysics Letters) 101, no. 3 (February 1, 2013): 33001. http://dx.doi.org/10.1209/0295-5075/101/33001.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
40

Chau Huu-Tai, P., and P. Van Isacker. "Convexity and the quantum many-body problem." Journal of Physics A: Mathematical and Theoretical 46, no. 20 (May 1, 2013): 205302. http://dx.doi.org/10.1088/1751-8113/46/20/205302.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
41

Bravyi, Sergey, David Gosset, Robert König, and Kristan Temme. "Approximation algorithms for quantum many-body problems." Journal of Mathematical Physics 60, no. 3 (March 2019): 032203. http://dx.doi.org/10.1063/1.5085428.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
42

FAN, YALE. "QUANTUM SIMULATION OF SIMPLE MANY-BODY DYNAMICS." International Journal of Quantum Information 10, no. 05 (August 2012): 1250049. http://dx.doi.org/10.1142/s0219749912500499.

Повний текст джерела
Анотація:
We describe a general quantum computational algorithm that simulates the time evolution of an arbitrary nonrelativistic, Coulombic many-body system in three dimensions, considering only spatial degrees of freedom. We use a simple discretized model of Schrödinger evolution in the coordinate representation and discuss detailed constructions of the operators necessary to realize the scheme of Wiesner and Zalka. The algorithm is simulated numerically for small test cases, and its outputs are found to be in good agreement with analytical solutions.
Стилі APA, Harvard, Vancouver, ISO та ін.
43

Gagliano, E. R., and S. Bacci. "Thermodynamical properties of quantum many-body systems." Physical Review Letters 62, no. 10 (March 6, 1989): 1154–56. http://dx.doi.org/10.1103/physrevlett.62.1154.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
44

Liu, Zi-Wen, and Andreas Winter. "Many-Body Quantum Magic." PRX Quantum 3, no. 2 (May 12, 2022). http://dx.doi.org/10.1103/prxquantum.3.020333.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
45

Yao, Zhiyuan, Lei Pan, Shang Liu, and Hui Zhai. "Quantum many-body scars and quantum criticality." Physical Review B 105, no. 12 (March 18, 2022). http://dx.doi.org/10.1103/physrevb.105.125123.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
46

Zhao, Hongzheng, Adam Smith, Florian Mintert, and Johannes Knolle. "Orthogonal Quantum Many-Body Scars." Physical Review Letters 127, no. 15 (October 6, 2021). http://dx.doi.org/10.1103/physrevlett.127.150601.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
47

Windt, Bennet, and Hannes Pichler. "Squeezing Quantum Many-Body Scars." Physical Review Letters 128, no. 9 (March 4, 2022). http://dx.doi.org/10.1103/physrevlett.128.090606.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
48

Simenel, Cédric. "Nuclear quantum many-body dynamics." European Physical Journal A 48, no. 11 (November 2012). http://dx.doi.org/10.1140/epja/i2012-12152-0.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
49

Rossini, Davide, Gian Marcello Andolina, and Marco Polini. "Many-body localized quantum batteries." Physical Review B 100, no. 11 (September 18, 2019). http://dx.doi.org/10.1103/physrevb.100.115142.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
50

Dabelow, Lennart, and Peter Reimann. "Persistent many-body quantum echoes." Physical Review Research 2, no. 2 (May 22, 2020). http://dx.doi.org/10.1103/physrevresearch.2.023216.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії