Добірка наукової літератури з теми "Quantum dots glass"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Quantum dots glass".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Quantum dots glass"
Zhang, Jian, and Jia Wei Sheng. "Copper Quantum Dots Formation in a Borosilicate Glass." Journal of Nano Research 32 (May 2015): 66–70. http://dx.doi.org/10.4028/www.scientific.net/jnanor.32.66.
Повний текст джерелаKim, Bok Hyeon, Dong Hoon Son, Seongmin Ju, Chaehwan Jeong, Seongjae Boo, Cheol Jin Kim, and Won-Taek Han. "Effect of Aluminum on the Formation of Silver Metal Quantum Dots in Sol–Gel Derived Alumino-Silicate Glass Film." Journal of Nanoscience and Nanotechnology 6, no. 11 (November 1, 2006): 3399–403. http://dx.doi.org/10.1166/jnn.2006.020.
Повний текст джерелаJia, Rui, De-Sheng Jiang, Ping-Heng Tan, and Bao-Quan Sun. "Quantum dots in glass spherical microcavity." Applied Physics Letters 79, no. 2 (July 9, 2001): 153–55. http://dx.doi.org/10.1063/1.1380732.
Повний текст джерелаVERMA, ABHISHEK, P. K. PANDEY, J. KUMAR, S. NAGPAL, P. K. BHATNAGAR, and P. C. MATHUR. "GROWTH DYNAMICS OF II–VI COMPOUND SEMICONDUCTOR QUANTUM DOTS EMBEDDED IN BOROSILICATE GLASS MATRIX." International Journal of Nanoscience 07, no. 02n03 (April 2008): 151–60. http://dx.doi.org/10.1142/s0219581x08005250.
Повний текст джерелаZhao, Weigang, Cuirong Liu, and Xu Yin. "Cs4PbBr6 Combined with Graphite as Anode for High-Performance Lithium Batteries." Metals 12, no. 10 (September 23, 2022): 1584. http://dx.doi.org/10.3390/met12101584.
Повний текст джерелаSonawane, R. S., S. D. Naik, S. K. Apte, M. V. Kulkarni, and B. B. Kale. "CdS/CdSSe quantum dots in glass matrix." Bulletin of Materials Science 31, no. 3 (June 2008): 495–99. http://dx.doi.org/10.1007/s12034-008-0077-2.
Повний текст джерелаKaushik, Diksha, Madhulika Sharma, A. B. Sharma, and R. K. Pandey. "Study of Self-Organized CdS Q-Dots." Journal of Nanoscience and Nanotechnology 8, no. 8 (August 1, 2008): 4303–8. http://dx.doi.org/10.1166/jnn.2008.an38.
Повний текст джерелаKolobkova, E. V., A. V. Polyakova, A. N. Abdrshin, N. V. Nikonorov, and V. A. Aseev. "Nanostructured glass ceramic based on fluorophosphate glass with PbSe quantum dots." Glass Physics and Chemistry 41, no. 1 (January 2015): 127–31. http://dx.doi.org/10.1134/s1087659615010137.
Повний текст джерелаKuznetsova, M. S., R. V. Cherbunin, V. M. Litvyak, and E. V. Kolobkova. "Spectroscopy of PbS and PbSe quantum dots in fluorine phosphate glasses." Физика и техника полупроводников 52, no. 5 (2018): 497. http://dx.doi.org/10.21883/ftp.2018.05.45841.30.
Повний текст джерелаYükselici, M. H., Ç. Allahverdi, and H. Athalin. "Zinc incorporation into CdTe quantum dots in glass." Materials Chemistry and Physics 119, no. 1-2 (January 2010): 218–21. http://dx.doi.org/10.1016/j.matchemphys.2009.08.057.
Повний текст джерелаДисертації з теми "Quantum dots glass"
Poliakova, A. V., E. V. Kolobkova, A. N. Abdrshin, N. V. Nikonorov, and V. A. Aseev. "Optical Properties of PbSe Qantum Dots Doped in Fluorophosphate Glasses." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35364.
Повний текст джерелаWang, Zheng. "Synthesis, properties and applications of glasses containing chalcogenide quantum dots." Electronic Thesis or Diss., Université de Rennes (2023-....), 2023. http://www.theses.fr/2023URENS093.
Повний текст джерелаIn this dissertation, the synthesis, properties and applications of glasses containing chalcogenide quantum dots (QDs) have been studied. Multicomponent lead chalcogenide QDs glasses (containing PbSe or PbS QDs) were successfully prepared, and their optical properties and potential applications were explored in combination with rare earth Tm3+ ion doping. In addition, based on the results, lead-free and environmentally friendly chalcogenide QDs glasses (containing ZnS or ZnSe QDs) were successfully prepared, and its luminescent performance was further improved by doping with transition metal nickel ions. These results lay the foundation for the improvement of optical properties of lead-based chalcogenide QDs and for the development of environmentally friendly heavy metal-free chalcogenide QDs glasses. Although future improvements are possible and necessary for practical applications, these chalcogenide QDs glasses developed in this work have application potential in the fields of luminescent solar concentrators, optical anti-counterfeiting, solid-state lighting, and optical temperature sensing
Gonsalves, Peter Robert. "THE DESIGN AND FABRICATION OF A MICROFLUIDIC REACTOR FOR SYNTHESIS OF CADMIUM SELENIDE QUANTUM DOTS USING SILICON AND GLASS SUBSTRATES." DigitalCommons@CalPoly, 2012. https://digitalcommons.calpoly.edu/theses/720.
Повний текст джерелаKumar, Ganapathy. "Enhanced verdet constant via quantum dot doped glass samples a thesis presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2008. http://proquest.umi.com/pqdweb?index=0&did=1597632931&SrchMode=1&sid=3&Fmt=6&VInst=PROD&VType=PQD&RQT=309&VName=PQD&TS=1268920533&clientId=28564.
Повний текст джерелаHsung, Chung Wu, and 鍾武雄. "Development of deep glass-etching technology for fabricating a microreactor of synthesizing composite quantum dots." Thesis, 2006. http://ndltd.ncl.edu.tw/handle/11317703186460532248.
Повний текст джерела國立臺灣師範大學
機電科技研究所
94
In this report, we fabricated an all-glass microreactor chip and used it to synthesize compound quantum dots. A microreactor chip integrates micro channels, a micro mixer, a Pt heater, and a temperature sensor on one glass chip. During fabrication of micro channels, a thick photoresist and Cr/Au layer were used as etching masks. Such etching masks could sufficiently reduce pinhole phenomenon. In addition, if we replaced aqua regia with KI solution, it would not damage the photoresist. Therefore, it could improve defects at edge of micro channels. If we considered annealing factor with different glass materials, the experimental results showed that if we annealed Pyrex 7740 to 600 ℃ and etched micro channels by using HF for 10 min, the channel width was found to be reduced from 498 m to 278 m. The lateral underetching ratio decreased from 5 to 0.96. Thus, we could improve the large lateral underetching of glass (Pyrex 7740) by annealing. However, the surface roughness of micro channels was high. On the other hand, it was not necessary for Corning 1737 to be annealed. We could get smaller lateral underetching ratio and better surface roughness of micro channel. As for Soda-lime, it didn’t have any relationship between annealing and lateral underetching ratio, but the surface roughness was high. Consequently, Corning 1737 was suitable material for making microreactor chip. For preparation of compound quantum dots, microfluidic systems have good characteristic on good mass and heat transfer. It can precisely control the reaction temperature, reaction time, and concentration of the solute. Therefore, unlike traditional reaction which is used to produce quantum dots with different sizes, we can use microfluidic systems to synthesize uniform quantum dots. When the reaction temperature was controlled from 200-280 ℃, the absorbance peak was found to increase from 481 nm to 538 nm. its corresponding band gap was discovered to decrease from 2.58 eV to 2.3 eV.
Pinheiro, Ana Catarina Tavares. "Luminescent Glass Materials for Photovoltaics." Master's thesis, 2019. http://hdl.handle.net/10362/89660.
Повний текст джерелаJIH-HSIN, CHENG, and 鄭日新. "A Study on the Growth of ZnSe and ZnTe Quantum Dots on the Glass and Si Substrate." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/80979765800052749168.
Повний текст джерелаLin, Hung-Yuan, and 林鴻源. "Laser Deposition ZnSe Quantum dot Glass Thin Film." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/95702695329813831774.
Повний текст джерела國立交通大學
光電工程研究所
84
ZnSe doped glasses thin films were deposited on silicon and substrate by using of Q-switched Nd:YAG laser, and the targert were prepared by sol-gel methed of colloid chemical technique. From the SEM, we can realize the fine structure of the ZnSe thin film surface and estimate the grain size about 200 A. By changing the deposition condition, we obtain a single crystallite of ZnSe thin film which is identified to be H(002) or C(111) by XRD, and the grain sizecaculation through Half Maximum of XRD peak tch the result of SEM. In the Raman spetra, we make sure the ZnSe bond, and the peak show that the phonon frequency shift to lower side for grain size becaming smaller. The energy gap of ZnSe film is acquired by the Transmission spectra has the phenomonon of blue shift, and this result is corresponding with the prediction of Quantum dot effect.
Lin, Hong-Yuan, and 林鴻源. "Laser deposition ZnSe quantum dot glass thin films." Thesis, 1996. http://ndltd.ncl.edu.tw/handle/93861374520609226198.
Повний текст джерелаKUO, JIN-PING, and 郭進平. "Studies on the Electrochemical Behaviors of Caffeic Acid with Carbon Black/Carbon Quantum Dot/Metal Organic Frameworks Modified Glassy Carbon Electrode." Thesis, 2019. http://ndltd.ncl.edu.tw/handle/8u857b.
Повний текст джерела輔仁大學
化學系
107
In this study, using nano carbon black/carbon quantum dot (CQD)/metal-organic frameworks (MOFs) modified electrode detecting caffeic acid, and investigating the electrochemical properties of the modified electrode. The metal organic frameworks have been successfully scrutinized by using Fourier transform infrared spectroscopy (FT-IR) and powder X-ray diffraction (PXRD), transmission electron microscopy (TEM) and fluorescence spectrometer successful identify the CQD, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) confirmed that carbon black/carbon quantum dots/metal-organic frameworks modified electrode can be successfully prepared. In these optimal conditions, differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS) were used to confirm nano carbon black/carbon quantum dots/metal-organic frameworks modified electrode has excellent electron transfer characteristics, low electron transfer resistance and increase oxidation current signal characteristics. After the optimization process, the electrochemical detection of CA in a wide concentration range, from 0.1 μM to 20 μM concentration range, with the limit of detection (S/N = 3) of 20 nM. In addition, the repeatability of the CB/CQD/MOFs/GCE was measured in the intra-day and inter-day and the relative standard deviation (RSD) was less than 6.93 % and 1.15 %, respectively. Stability remained above 94.52 % after 20 scan by DPV, long-term stability remained above 84.78 %, which confirmed that the modified electrode has good repeatability and stability. Finally, CB/CQD/MOFs/GCE applied in determination of caffeic acid in commercial beverages. The recovery was between 95.01 to 113.14 %, which shows the feasible detection of CA in real sample.
Частини книг з теми "Quantum dots glass"
Yu, Feng Bin, Fu Yi Chen, and Wan Qi Jie. "Preparation and Characterization of CdS Quantum Dots Doped Phosphate Nanocomposite Glass." In Advances in Composite Materials and Structures, 801–4. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-427-8.801.
Повний текст джерелаScamarcio, G. "Raman Scattering in CdS1-x Se x Quantum Dots Embedded in Glass: Evidence of Size-Dependent Lattice Contraction." In Phonons in Semiconductor Nanostructures, 393–401. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1683-1_38.
Повний текст джерелаVerma, A., P. K. Bhatnagar, P. C. Mathur, S. Nagpal, P. K. Pandey, and J. Kumar. "Development of Low Size Dispersion, High Volume Fraction and Strong Quantum Confined CdSxSe1-x Quantum Dots Embedded in Borosilicate Glass Matrix and Study of their Optical Properties." In Semiconductor Photonics: Nano-Structured Materials and Devices, 161–63. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-471-5.161.
Повний текст джерелаShukla, Shailendra Kumar. "Solar Distillation Using Quantum Dot Glass Evaporator." In Lecture Notes in Mechanical Engineering, 1–6. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1894-2_1.
Повний текст джерелаC.A. Silva, Anielle, Jerusa M. de Oliveira, Luciana R.S. Floresta, Matheus V. da Silva, José L. da S. Duarte, Karolina B. da Silva, Eurípedes A. da Silva Filho, et al. "Transition Metals Doped Nanocrystals: Synthesis, Characterization, and Applications." In Transition Metal Compounds - Synthesis, Properties, and Application. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.97326.
Повний текст джерелаSutton, Adrian P. "Materials by design." In Concepts of Materials Science, 102–13. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780192846839.003.0009.
Повний текст джерелаKumar, Indradeep. "Simulation and Modeling of Nanotechnology Aircraft Using MATLAB." In Nanotechnology in Aerospace and Structural Mechanics, 257–90. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7921-2.ch008.
Повний текст джерелаCristina Vasconcelos, Helena. "Optical Nonlinearities in Glasses." In Nonlinear Optics - Nonlinear Nanophotonics and Novel Materials for Nonlinear Optics. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.101774.
Повний текст джерелаMassimi, Michela. "Evolving natural kinds." In Perspectival Realism, 304–31. Oxford University Press, 2022. http://dx.doi.org/10.1093/oso/9780197555620.003.0013.
Повний текст джерелаMark, James E., Dale W. Schaefer, and Gui Lin. "Surfaces." In The Polysiloxanes. Oxford University Press, 2015. http://dx.doi.org/10.1093/oso/9780195181739.003.0008.
Повний текст джерелаТези доповідей конференцій з теми "Quantum dots glass"
Reisfeld, Renata, Marek Eyal, Valery Chernyak, and Christian K. Jorgensen. "Glasses including quantum dots of cadmium sulfide, silver, and laser dyes." In Submolecular Glass Chemistry and Physics, edited by Phillip Bray and Norbert J. Kreidl. SPIE, 1991. http://dx.doi.org/10.1117/12.50210.
Повний текст джерелаPeyghambarian, N. "Recent advances in nonlinear semiconductor quantum dots in glass." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1993. http://dx.doi.org/10.1364/oam.1993.fc.1.
Повний текст джерелаEsch, V., G. Khitrova, H. M. Gibbs, Xu Jiajin, L. C. Liu, and S. H. Risbud. "Quantum-confined Franz-Keldysh Effect in CdTe Quantum Dots in Glass." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.pd10.
Повний текст джерелаLipovskii, A. A., I. D. Litvin, A. A. Sitnikova, and S. A. Soloviev. "Synthesis and study of glasses doped with semiconductor quantum dots." In The European Conference on Lasers and Electro-Optics. Washington, D.C.: Optica Publishing Group, 1994. http://dx.doi.org/10.1364/cleo_europe.1994.cwf46.
Повний текст джерелаJustus, B. L., J. A. Ruller, D. McMorrow, and J. S. Melinger. "Femtosecond Nonresonant Nonlinear-optical Response of CuCl Quantum Dots in Glass." In Nonlinear Optics. Washington, D.C.: Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nlo.1992.md7.
Повний текст джерелаJacob, G. J., D. B. Almeida, W. M. Faustino, E. F. Chillcce, E. Rodriguez, C. H. Brito Cruz, L. C. Barbosa, and C. L. Cesar. "PbTe quantum dots in tellurite glass microstructured optical fiber." In Integrated Optoelectronic Devices 2008, edited by Kurt G. Eyink, Frank Szmulowicz, and Diana L. Huffaker. SPIE, 2008. http://dx.doi.org/10.1117/12.761563.
Повний текст джерелаJacob, G. J., E. Rodriguez, E. F. Chillcce, W. Faustino, W. L. Moreira, C. H. Brito, L. C. Barbosa, and C. L. Cesar. "PbTe quantum dots in tellurite glass photonic optical fiber." In Photonic Crystal Materials and Devices VI. SPIE, 2007. http://dx.doi.org/10.1117/12.701227.
Повний текст джерелаJacob, Gilberto J., Luiz C. Barbosa, and Carlos L. Cesar. "Tellurite glass optical fiber doped with PbTe quantum dots." In Integrated Optoelectronic Devices 2005, edited by Diana L. Huffaker and Pallab K. Bhattacharya. SPIE, 2005. http://dx.doi.org/10.1117/12.587248.
Повний текст джерелаBhardwaj, A., A. Hreibi, C. Liu, J. Heo, J. L. Auguste, J. M. Blondy, and F. Gérôme. "PbS quantum dots doped glass fibers for optical applications." In CLEO: Science and Innovations. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/cleo_si.2012.cth1g.1.
Повний текст джерелаOreshkina, K., V. Dubrovin, Y. Sgibnev, N. Nikonorov, A. Babkina, E. Kulpina, and K. Zyryanova. "Luminescent Glass with Lead Perovskite Quantum Dots for Solar Concentrators." In 2020 International Conference Laser Optics (ICLO). IEEE, 2020. http://dx.doi.org/10.1109/iclo48556.2020.9285792.
Повний текст джерела