Добірка наукової літератури з теми "Quadratic Boussinesq approximation"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Quadratic Boussinesq approximation".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "Quadratic Boussinesq approximation"
Gravanis, Elias, Evangelos Akylas, and Ernestos Nikolas Sarris. "Approximate Solutions for Horizontal Unconfined Aquifers in the Buildup Phase." Water 16, no. 7 (April 2, 2024): 1031. http://dx.doi.org/10.3390/w16071031.
Повний текст джерелаSajjan, Kiran, Nehad Ali Shah, N. Ameer Ahammad, C. S. K. Raju, M. Dinesh Kumar, and Wajaree Weera. "Nonlinear Boussinesq and Rosseland approximations on 3D flow in an interruption of Ternary nanoparticles with various shapes of densities and conductivity properties." AIMS Mathematics 7, no. 10 (2022): 18416–49. http://dx.doi.org/10.3934/math.20221014.
Повний текст джерелаSaprykina, Yana, Burak Aydogan, and Berna Ayat. "Wave Energy Dissipation of Spilling and Plunging Breaking Waves in Spectral Models." Journal of Marine Science and Engineering 10, no. 2 (February 1, 2022): 200. http://dx.doi.org/10.3390/jmse10020200.
Повний текст джерелаHassan, A. R., S. O. Salawu, A. B. Disu, and O. R. Aderele. "Thermodynamic analysis of a tangent hyperbolic hydromagnetic heat generating fluid in quadratic Boussinesq approximation." Journal of Computational Mathematics and Data Science 4 (August 2022): 100058. http://dx.doi.org/10.1016/j.jcmds.2022.100058.
Повний текст джерелаSrinivas Reddy, C., B. Mahanthesh, P. Rana, and K. S. Nisar. "Entropy generation analysis of tangent hyperbolic fluid in quadratic Boussinesq approximation using spectral quasi-linearization method." Applied Mathematics and Mechanics 42, no. 10 (September 29, 2021): 1525–42. http://dx.doi.org/10.1007/s10483-021-2773-8.
Повний текст джерелаOhaegbue, A. D., S. O. Salawu, R. A. Oderinu, E. O. Fatunmbi, and A. O. Akindele. "Thermal dissipation of two-step combustible tangent hyperbolic fluid with quadratic Boussinesq approximation and convective cooling." Results in Materials 22 (June 2024): 100565. http://dx.doi.org/10.1016/j.rinma.2024.100565.
Повний текст джерелаAlboussière, Thierry, and Yanick Ricard. "Rayleigh–Bénard stability and the validity of quasi-Boussinesq or quasi-anelastic liquid approximations." Journal of Fluid Mechanics 817 (March 16, 2017): 264–305. http://dx.doi.org/10.1017/jfm.2017.108.
Повний текст джерелаOpadiran, Sunday Iyiola, and Samuel Segun Okoya. "Influence of Non-Linear Radiation and Viscous Dissipation on the Convective Fluid Flow with Variable Viscosity and Quadratic Boussinesq Approximation across a Cylinder with Uniform Heat Flux at the Wall." Defect and Diffusion Forum 419 (October 20, 2022): 37–56. http://dx.doi.org/10.4028/p-xw16zz.
Повний текст джерелаOkoya, Samuel S., Anthony Rotimi Hassan, and Sulyman Olakunle Salawu. "ON FREE CONVECTION FLOW OF A MOVING VERTICAL PERMEABLE PLATE WITH QUADRATIC BOUSSINESQ APPROXIMATION AND VARIABLE THERMAL CONDUCTIVITY." Heat Transfer Research 52, no. 7 (2021): 55–66. http://dx.doi.org/10.1615/heattransres.2021037973.
Повний текст джерелаFujimura, K., and S. Yamada. "Hexagons and triangles in the Rayleigh–Bénard problem: quintic-order equations on a hexagonal lattice." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464, no. 2098 (June 3, 2008): 2721–39. http://dx.doi.org/10.1098/rspa.2007.0340.
Повний текст джерелаДисертації з теми "Quadratic Boussinesq approximation"
Ferré, Alexis. "Etude CFD et expérimentale d'un stockage thermique de type thermocline." Electronic Thesis or Diss., Pau, 2024. http://www.theses.fr/2024PAUU3023.
Повний текст джерелаEnergy storage is essential to the energy transition as it allows decoupling energy production from its consumption. Water-based thermocline heat storage, used in medium or low-temperature heating networks, relies on thermal stratification in a tank. The performance of this type of storage is strongly linked to the proper stratification of the fluid, which can be disrupted by the injection and extraction of the liquid, aspects that are scarcely explored in the literature.The objective of this thesis is to reliably model such storage to analyze the fluid distribution. The aim is to better understand the physical phenomena governing the thermocline during operating cycles and to enhance its energy performance through improved design or control. To achieve this, numerical studies using CFD (Computational Fluid Dynamics) were conducted and compared with experimental data available in the literature and obtained via a new experimental setup.Initially, a CFD model was developed based on an existing experimental case from the literature. In water thermocline storage, there is often coexistence between a laminar region in the tank and a turbulent region near the distributors. This coexistence is a major challenge in modeling because most turbulence models cannot reliably represent the transition from turbulent to laminar flow. For this work, a RANS (Reynolds Average Numerical Simulation) statistical method is adopted, and the k-omega-SST model is selected as it can represent near-wall flows. Regarding buoyancy, there are two methods to consider its effects: using a variable density in all equations or a constant density except in the buoyancy term. The latter is known as the Boussinesq approximation but is only valid over a narrow range of ΔT. The accuracy of the Boussinesq approximation has been questioned, and a second-order approach of this model is employed. This allows obtaining the same buoyancy term as a variable density model but with a calculation time reduced by half. Comparison with experimental data highlighted the impact of the initial temperature state (stratified or homogeneous storage). An exploratory study of the impact of progressive injection according to a flow ramp showed its effect on reducing the thermocline thickness at the time of its creation.As part of the model validation and verification of numerical observations, a new experimental setup was designed. It measures the temperature using 300 thermocouples placed in the tank and allows precise control of operating conditions. Static phase studies to evaluate thermal losses were conducted. Dynamic studies allowed varying relevant operating parameters: axial propagation speed, temperature difference, extraction device, and progressive injection. For this system, the results show that it is possible to obtain stratification at high speed (> 2 mm/s) as long as the ΔT is sufficiently high.Finally, the flow in the test section was numerically studied with an updated CFD model. The variable fields showed that the numerical and experimental results are consistent, especially during the formation of the thermocline. However, excessive diffusion during the propagation of the thermal gradient at low flow is notable. For all the tests carried out, the experimental and numerical discrepancies were quantified: except for critical conditions, the discrepancy in thermocline thickness is ±50% and ranges from 0 to -10% for the restitution rate
Частини книг з теми "Quadratic Boussinesq approximation"
Mahanthesh, B. "Quadratic radiation and quadratic Boussinesq approximation on hybrid nanoliquid flow." In Mathematical Fluid Mechanics, 13–54. De Gruyter, 2021. http://dx.doi.org/10.1515/9783110696080-002.
Повний текст джерелаТези доповідей конференцій з теми "Quadratic Boussinesq approximation"
Topcuoglu, Ilker, Robert F. Kunz, and Robert W. Smith. "A Computational Investigation of Dynamic Stabilization of Rayleigh-Bénard Convection Under System Acceleration." In ASME 2020 Heat Transfer Summer Conference collocated with the ASME 2020 Fluids Engineering Division Summer Meeting and the ASME 2020 18th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/ht2020-9020.
Повний текст джерела