Добірка наукової літератури з теми "QED de cavité"
Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями
Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "QED de cavité".
Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.
Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.
Статті в журналах з теми "QED de cavité"
Lechner, Daniel, Riccardo Pennetta, Martin Blaha, Philipp Schneeweiss, Jürgen Volz, and Arno Rauschenbeutel. "Experimental investigation of light-matter interaction when transitioning from cavity QED to waveguide QED." EPJ Web of Conferences 266 (2022): 11006. http://dx.doi.org/10.1051/epjconf/202226611006.
Повний текст джерелаZhang Lei, 张蕾. "基于腔QED制备三粒子singlet态". Laser & Optoelectronics Progress 58, № 23 (2021): 2327002. http://dx.doi.org/10.3788/lop202158.2327002.
Повний текст джерелаYE, LIU, and GUANG-CAN GUO. "ENTANGLEMENT CONCENTRATION AND A QUANTUM REPEATER IN CAVITY QED." International Journal of Quantum Information 03, no. 02 (June 2005): 351–57. http://dx.doi.org/10.1142/s0219749905001018.
Повний текст джерелаYANG, ZHEN, WEN-HAI ZHANG, and LIU YE. "SCHEME TO IMPLEMENT THE OPTIMAL ASYMMETRIC ECONOMICAL 1 → 2 PHASE-COVARIANT TELECLONING VIA CAVITY-QED." International Journal of Quantum Information 06, no. 02 (April 2008): 317–23. http://dx.doi.org/10.1142/s0219749908003426.
Повний текст джерелаWang, Yahong, and Changshui Yu. "Minimum remote state preparation of an arbitrary two-level one-atom state via cavity QED." International Journal of Quantum Information 13, no. 02 (March 2015): 1550009. http://dx.doi.org/10.1142/s0219749915500094.
Повний текст джерелаXUE, ZHENG-YAUN, PING DONG, YOU-MIN YI, and ZHUO-LIANG CAO. "QUANTUM STATE SHARING VIA THE GHZ STATE IN CAVITY QED WITHOUT JOINT MEASUREMENT." International Journal of Quantum Information 04, no. 05 (October 2006): 749–59. http://dx.doi.org/10.1142/s0219749906002201.
Повний текст джерелаLIU, CHUAN-LONG, YAN-WEI WANG, and YI-ZHUANG ZHENG. "IMPLEMENTATION OF NON-LOCAL TOFFOLI GATE VIA CAVITY QUANTUM ELECTRODYNAMICS." International Journal of Quantum Information 07, no. 03 (April 2009): 669–80. http://dx.doi.org/10.1142/s0219749909003329.
Повний текст джерелаSaid, Taoufik, Abdelhaq Chouikh, Karima Essammouni, and Mohamed Bennai. "Realizing an N-two-qubit quantum logic gate in a cavity QED with nearest qubit--qubit interaction." Quantum Information and Computation 16, no. 5&6 (April 2016): 465–82. http://dx.doi.org/10.26421/qic16.5-6-4.
Повний текст джерелаChang, D. E., L. Jiang, A. V. Gorshkov, and H. J. Kimble. "Cavity QED with atomic mirrors." New Journal of Physics 14, no. 6 (June 1, 2012): 063003. http://dx.doi.org/10.1088/1367-2630/14/6/063003.
Повний текст джерелаImamoglu, Atac. "Cavity-QED Using Quantum Dots." Optics and Photonics News 13, no. 8 (August 1, 2002): 22. http://dx.doi.org/10.1364/opn.13.8.000022.
Повний текст джерелаДисертації з теми "QED de cavité"
De, Santis Lorenzo. "Single photon generation and manipulation with semiconductor quantum dot devices." Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS034/document.
Повний текст джерелаQuantum phenomena can nowadays be engineered to realize fundamentally new applications. This is the field of quantum technology, which holds the promise of revolutionizing computation, communication and metrology. By encoding the information in quantum mechanical systems, it appears to be possible to solve classically intractable problems, achieve absolute security in distant communications and beat the classical limits for precision measurements. Single photons as quantum information carriers play a central role in this field, as they can be easily manipulated and can be used to implement many quantum protocols. A key aspect is the interfacing between photons and matter quantum systems, a fundamental operation both for the generation and the readout of the photons. This has been driving a lot of research toward the realization of efficient atom-cavity systems, which allows the deterministic and reversible transfer of the information between the flying photons and the optical transition of a stationary atom. The realization of such systems in the solid-state gives the possibility of fabricating integrated and scalable quantum devices. With this objective, in this thesis work, we study the light-matter interface provided by a single semiconductor quantum dot, acting as an artificial atom, deterministically coupled to a micropillar cavity. Such a device is shown to be an efficient emitter and receiver of single photons, and is used to implement basic quantum functionalities.First, under resonant optical excitation, the device is shown to act as a very bright source of single photons. The strong acceleration of the spontaneous emission in the cavity and the electrical control of the structure, allow generating highly indistinguishable photons with a record brightness. This new generation of single photon sources can be used to generate path entangled NOON states. Such entangled states are important resources for sensing application, but their full characterizatiob has been scarcely studied. We propose here a novel tomography method to fully characterize path entangled N00N state and experimentally demonstrate the method to derive the density matrix of a two-photon path entangled state. Finally, we study the effect of the quantum dot-cavity device as a non-linear filter. The optimal light matter interface achieved here leads to the observation of an optical nonlinear response at the level of a single incident photon. This effect is used to demonstrate the filtering of single photon Fock state from classical incident light pulses. This opens the way towards the realization of efficient photon-photon effective interactions in the solid state, a fundamental step to overcome the limitations arising from the probabilistic operations of linear optical gates that are currently employed in quantum computation and communication
Diniz, Igor. "Quantum electrodynamics in superconducting artificial atoms." Thesis, Grenoble, 2012. http://www.theses.fr/2012GRENY048/document.
Повний текст джерелаCette thèse porte sur deux problèmes théoriques d'électrodynamique quantique en circuits supraconducteurs. Nous avons d'abord étudié les conditions d'obtention du couplage fort entre un résonateur et une distribution continue d'émetteurs élargie de façon inhomogène. Le développement de ce formalisme est fortement motivé par les récentes propositions d'utiliser des ensembles de degrés de liberté microscopiques pour réaliser des mémoires quantiques. En effet, ces systèmes bénéficient du couplage collectif au résonateur, tout en conservant les propriétés de relaxation d'un seul émetteur. Nous discutons l'influence de l'élargissement inhomogène sur l'existence et les propriétés de cohérence des pics polaritoniques obtenus dans le régime de couplage fort. Nous constatons que leur cohérence dépend de façon critique de la forme de la distribution et pas uniquement de sa largeur. En tenant compte de l'élargissement inhomogène, nous avons pu simuler avec une grande précision de nombreux résultats expérimentaux pionniers sur un ensemble de centres NV. La modélisation s'est révélée un outil puissant pour obtenir les propriétés des ensembles de spins couplés à un résonateur. Nous proposons également une méthode originale de mesure de l'état de qubits Josephson fondée sur un SQUID DC avec une inductance de boucle élevée. Ce système est décrit par un atome artificiel avec des niveaux d'énergie en forme de diamant où nous définissons les qubits logique et ancilla couplés entre eux par un terme Kerr croisé. En fonction de l'état du qubit logique, l'ancilla est couplée de manière résonante ou dispersive au résonateur, ce qui provoque un contraste important dans l'amplitude du signal micro-onde transmis par le résonateur. Les simulations montrent que cette méthode originale peut être plus rapide et peut aussi avoir une plus grande fidélité que les méthodes actuellement utilisées dans la communauté des circuits supraconducteurs
Srivastava, Vineesha. "Entanglement generation and quantum gates with quantum emitters in a cavity." Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAF069.
Повний текст джерелаThis thesis presents novel protocols for non-local multi-qubit quantum gates and entanglement generation in systems where multiple quantum emitters interact with a shared bosonic mode. It introduces the Geometric and Adiabatic Phase Gates, with closed-form infidelity expressions scaling with qubit number and cooperativity. For two qubits, these form a universal gate set, while in multi-qubit systems, they enable deterministic gates for quantum simulation and quantum error correction. A key contribution is an entanglement-enhanced sensing protocol that achieves high measurement precision via optimal control. The thesis also examines a cavity polariton blockade mechanism for non-local W-state generation and multi-qubit gates. These deterministic multi-qubit operations rely only on classical cavity drives and, in some cases, global qubit pulses, providing a scalable foundation for quantum computing, sensing, and the future quantum internet, especially for neutral atom systems
Diniz, Igor. "Electrodynamique quantique des les atomes artificiels supraconducteurs." Phd thesis, Université de Grenoble, 2012. http://tel.archives-ouvertes.fr/tel-00771451.
Повний текст джерелаMartini, Ullrich. "Cavity QED with many atoms." Diss., [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=963141449.
Повний текст джерелаBoozer, Allen David Kimble H. Jeff. "Raman transitions in cavity QED /." Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05272005-160246.
Повний текст джерелаBirnbaum, Kevin Michael Kimble H. Jeff. "Cavity QED with multilevel atoms /." Diss., Pasadena, Calif. : California Institute of Technology, 2005. http://resolver.caltech.edu/CaltechETD:etd-05272005-103306.
Повний текст джерелаNorthup, Tracy Eleanor Kimble H. Jeff Kimble H. Jeff. "Coherent control in cavity QED /." Diss., Pasadena, Calif. : California Institute of Technology, 2008. http://resolver.caltech.edu/CaltechETD:etd-05242008-114227.
Повний текст джерелаBrama, Elisabeth. "Ion trap cavity system for strongly coupled cavity-QED." Thesis, University of Sussex, 2013. http://sro.sussex.ac.uk/id/eprint/45218/.
Повний текст джерелаAlqahtani, Moteb M. "Multi-photon processes in cavity QED." Thesis, University of Sussex, 2014. http://sro.sussex.ac.uk/id/eprint/49632/.
Повний текст джерелаКниги з теми "QED de cavité"
Putz, Stefan. Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66447-7.
Повний текст джерелаVučković, Jelena. Quantum optics and cavity QED with quantum dots in photonic crystals. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198768609.003.0008.
Повний текст джерелаThoumany, Pierre. Optical spectroscopy and cavity QED experiments with Rydberg atoms. 2011.
Знайти повний текст джерелаPutz, Stefan. Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles. Springer, 2017.
Знайти повний текст джерелаPutz, Stefan. Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles. Springer, 2018.
Знайти повний текст джерелаJones, Bobby L. Monte Carlo study of a single atom cavity QED laser. 1995.
Знайти повний текст джерелаPandey, Deepak. Fiber-Based Optical Resonators: Cavity QED, Resonator Design and Technological Applications. de Gruyter GmbH, Walter, 2022.
Знайти повний текст джерелаPandey, Deepak. Fiber-Based Optical Resonators: Cavity QED, Resonator Design and Technological Applications. de Gruyter GmbH, Walter, 2022.
Знайти повний текст джерелаPandey, Deepak. Fiber-Based Optical Resonators: Cavity QED, Resonator Design and Technological Applications. de Gruyter GmbH, Walter, 2022.
Знайти повний текст джерелаЧастини книг з теми "QED de cavité"
Meystre, P. "Cavity QED." In Springer Series on Wave Phenomena, 26–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84206-1_3.
Повний текст джерелаLange, W., Q. A. Turchette, C. J. Hood, H. Mabuchi, and H. J. Kimble. "Optical Cavity QED." In Microcavities and Photonic Bandgaps: Physics and Applications, 443–56. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0313-5_41.
Повний текст джерелаVollmer, Frank, and Deshui Yu. "Molecular Cavity QED." In Biological and Medical Physics, Biomedical Engineering, 345–83. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-60235-2_7.
Повний текст джерелаPuri, Ravinder Rupchand. "Dissipative Cavity QED." In Springer Series in Optical Sciences, 251–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-540-44953-9_14.
Повний текст джерелаVollmer, Frank, and Deshui Yu. "Molecular Cavity QED." In Optical Whispering Gallery Modes for Biosensing, 399–446. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-06858-4_7.
Повний текст джерелаPutz, Stefan. "Spins in the Cavity—Cavity QED." In Circuit Cavity QED with Macroscopic Solid-State Spin Ensembles, 25–49. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66447-7_3.
Повний текст джерелаLange, W., Q. A. Turchette, C. Hood, H. Mabuchi, and H. J. Kimble. "Flying Qubits in Cavity QED." In Coherence and Quantum Optics VII, 345–46. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4757-9742-8_46.
Повний текст джерелаHaroche, Serge, and Jean-Michel Raimond. "Bohr’s Legacy in Cavity QED." In Niels Bohr, 1913-2013, 103–46. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-14316-3_5.
Повний текст джерелаRaizen, M. G., R. J. Thompson, R. J. Brecha, H. J. Kimble, and H. J. Carmichael. "Modulation Spectroscopy and Cavity QED." In Springer Proceedings in Physics, 176–80. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-74951-3_17.
Повний текст джерелаMeystre, Pierre. "Tailoring the Environment—Cavity QED." In Quantum Optics, 187–228. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-76183-7_7.
Повний текст джерелаТези доповідей конференцій з теми "QED de cavité"
Wong, Yu-En, Adam Johnston, Ulises Felix-Rendon, and Songtao Chen. "Enhanced Light-Matter Interactions for a Single T Center in a Silicon Nanocavity." In CLEO: Fundamental Science, FTu3I.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ftu3i.4.
Повний текст джерелаHensley, Hagan, Braden Larsen, and James K. Thompson. "Hot Atoms and Light Cooperating." In Frontiers in Optics, JTu5A.39. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jtu5a.39.
Повний текст джерелаKanneworff, Kirsten N., Petr Steindl, Mio T. L. Poortvliet, and Wolfgang Löffler. "Photon Quantum Interference for Quantum Position Verification with Four Detectors." In Quantum 2.0, QW2B.6. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/quantum.2024.qw2b.6.
Повний текст джерелаTorres, Juan Mauricio. "Quantum Operations Assisted by Multiphoton and Multiphonon States." In Latin America Optics and Photonics Conference, M3B.2. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/laop.2024.m3b.2.
Повний текст джерелаTziperman, Offek, Ron Ruimy, Alexey Gorlach, and Ido Kaminer. "Creating Entanglement Through a Joint Decay Channel." In CLEO: Fundamental Science, FTu3O.4. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_fs.2024.ftu3o.4.
Повний текст джерелаSahu, Subrat, Kali P. Nayak, and Rajan Jha. "One-sided Slotted Photonic Crystal Nanofiber for Cavity QED." In CLEO: Applications and Technology, JW2A.63. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/cleo_at.2024.jw2a.63.
Повний текст джерелаSahu, Subrat, Kali P. Nayak, and Rajan Jha. "Single-Sided Cavity QED Effect on an Optical Nanowire." In Frontiers in Optics, JW5A.6. Washington, D.C.: Optica Publishing Group, 2024. https://doi.org/10.1364/fio.2024.jw5a.6.
Повний текст джерелаMeystre, Pierre. "Cavity QED." In OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/oam.1989.wr1.
Повний текст джерелаKono, Junichiro. "Ultrastrong Light-Matter Coupling in a High-Q Terahertz Cavity." In JSAP-OSA Joint Symposia. Washington, D.C.: Optica Publishing Group, 2017. http://dx.doi.org/10.1364/jsap.2017.7a_a409_1.
Повний текст джерелаLai, H. M., P. T. Leung, S. Y. Liu, and K. Young. "Cavity QED in microdroplets." In 1992 Shanghai International Symposium on Quantum Optics, edited by Yuzhu Wang, Yiqiu Wang, and Zugeng Wang. SPIE, 1992. http://dx.doi.org/10.1117/12.140324.
Повний текст джерелаЗвіти організацій з теми "QED de cavité"
Wang, Hailin. Cavity QED of NV Centers in Diamond Nanopillars. Fort Belvoir, VA: Defense Technical Information Center, March 2012. http://dx.doi.org/10.21236/ada557808.
Повний текст джерелаVuckovic, Jelena. Quantum Dot-Photonic Crystal Cavity QED Based Quantum Information Processing. Fort Belvoir, VA: Defense Technical Information Center, August 2012. http://dx.doi.org/10.21236/ada576255.
Повний текст джерелаStamper-Kurn, Dan M. Operation and On-Chip Integration of Cavity-QED-Based Detectors for Single Atoms and Molecules. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada523323.
Повний текст джерелаSercel, Peter C. High Resolution Optical Spectroscopy of Single Quantum Dots and Cavity-QED Effects and Lasing in Quantum Dot Microdisk Resonator Structures. Fort Belvoir, VA: Defense Technical Information Center, December 2000. http://dx.doi.org/10.21236/ada391380.
Повний текст джерела