Добірка наукової літератури з теми "QCD topology"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "QCD topology".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "QCD topology"

1

Teper, M. "Topology in QCD." Nuclear Physics B - Proceedings Supplements 83-84, no. 1-3 (March 2000): 146–50. http://dx.doi.org/10.1016/s0920-5632(00)00212-7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Teper, M. "Topology in QCD." Nuclear Physics B - Proceedings Supplements 83-84 (April 2000): 146–50. http://dx.doi.org/10.1016/s0920-5632(00)91608-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Shuryak, Edward. "QCD with many fermions and QCD topology." Journal of Physics: Conference Series 432 (April 30, 2013): 012022. http://dx.doi.org/10.1088/1742-6596/432/1/012022.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Lombardo, Maria Paola, and Anton Trunin. "Topology and axions in QCD." International Journal of Modern Physics A 35, no. 20 (July 15, 2020): 2030010. http://dx.doi.org/10.1142/s0217751x20300100.

Повний текст джерела
Анотація:
QCD axions are at the crossroads of QCD topology and Dark Matter searches. We present here the current status of topological studies on the lattice, and their implication on axion physics. We outline the specific challenges posed by lattice topology, the different proposals for handling them, the observable effects of topology on the QCD spectrum and its interrelation with chiral and axial symmetries. We review the transition to the quark–gluon plasma, the fate of topology at the transition, and the approach to the high temperature limit. We discuss the extrapolations needed to reach the regime of cosmological relevance, and the resulting constraints on the QCD axion.
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Zou, L. P., P. M. Zhang, and D. G. Pak. "Knot topology in QCD." Physics Letters B 726, no. 1-3 (October 2013): 436–43. http://dx.doi.org/10.1016/j.physletb.2013.08.037.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

de Forcrand, Philippe, Margarita García Pérez, James E. Hetrick, and Ion-Olimpu Stamatescu. "Topology of full QCD." Nuclear Physics B - Proceedings Supplements 63, no. 1-3 (April 1998): 549–51. http://dx.doi.org/10.1016/s0920-5632(97)00830-x.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Brower, R., S. Chandrasekharan, J. W. Negele, and U. J. Wiese. "QCD at fixed topology." Physics Letters B 560, no. 1-2 (May 2003): 64–74. http://dx.doi.org/10.1016/s0370-2693(03)00369-1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Zubkov, M. A. "Momentum space topology of QCD." Annals of Physics 393 (June 2018): 264–87. http://dx.doi.org/10.1016/j.aop.2018.04.016.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Kharzeev, Dmitri E. "Color confinement from fluctuating topology." International Journal of Modern Physics A 31, no. 28n29 (October 19, 2016): 1645023. http://dx.doi.org/10.1142/s0217751x16450238.

Повний текст джерела
Анотація:
QCD possesses a compact gauge group, and this implies a non-trivial topological structure of the vacuum. In this contribution to the Gribov-85 Memorial volume, we first discuss the origin of Gribov copies and their interpretation in terms of fluctuating topology in the QCD vacuum. We then describe the recent work with E. Levin that links the confinement of gluons and color screening to the fluctuating topology, and discuss implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Gogohia, V., and H. Toki. "Topology of the chiral QCD vacuum." Physics Letters B 466, no. 2-4 (November 1999): 305–12. http://dx.doi.org/10.1016/s0370-2693(99)01106-5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "QCD topology"

1

Fukaya, Hidenori. "Lattice QCD with fixed topology." 京都大学 (Kyoto University), 2006. http://hdl.handle.net/2433/144178.

Повний текст джерела
Анотація:
Kyoto University (京都大学)
0048
新制・課程博士
博士(理学)
甲第12095号
理博第2989号
新制||理||1446(附属図書館)
23931
UT51-2006-J90
京都大学大学院理学研究科物理学・宇宙物理学専攻
(主査)助教授 大野木 哲也, 教授 二宮 正夫, 教授 畑 浩之
学位規則第4条第1項該当
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Sharan, Ujjawal. "Topology and chiral symmetry breaking in QCD." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.302137.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Cundy, Nigel. "Instantons, topology, and chiral symmetry breaking in QCD." Thesis, University of Oxford, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.275509.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gruber, Florian [Verfasser], and Andreas [Akademischer Betreuer] Schäfer. "Topology in dynamical Lattice QCD simulations / Florian Gruber. Betreuer: Andreas Schäfer." Regensburg : Universitätsbibliothek Regensburg, 2012. http://d-nb.info/1032040300/34.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Bilson-Thompson, Sundance Osland. "Investigation of topology, instantons, and the Nahm transform in lattice QCD using highly improved operators." Title page, contents and abstract only, 2002. http://web4.library.adelaide.edu.au/theses/09PH/09phb5996.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Ramos, Elena Garcia. "Investigations of chiral symmetry breaking and topological aspects of lattice QCD." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16890.

Повний текст джерела
Анотація:
Die spontane Brechung der chiralen Symmetrie ist ein faszinierendes Phenomän der QCD mit fundamentalen phänomenologischen Implikationen. Die Brechung der chiral Symmetrie ist beispielsweise verantwortlich für die niedrige Masse der Pionen, welche die effektiven Goldstone Boson der spontan gebrochene Symmetrie sind. Die spontane Brechung der chiral Symmetrie und die chirale Anomalie sind niedrig Energie-Phenomäne der QCD, weshalb nichtperturbative Methoden nötig sind um sie zu studieren. In der vorliegenden Arbeit verwenden wir die Gitterregularisierung der QCD, um das chirale Kondensat, den Ordnungsparameter der spontanen Brechung der chiralen Symmetrie zu bestimen. Dazu wendeten wir die Definition der in dieser Arbeit studierten Observablen über Dichteketten an, die eine theoretisch wohldefinierte Bahndlung der Observablen zulässt. Für die praktische Berechnung wurde die kürzlich entwickelte Methode der spektralen Projektoren angewandt. In dieser Weise berchnen wir den Kontinuumlimes des chiralen Kondensates, das im chiralen Limes gewonnen, sowohl für N_f=2 als auch für N_f=2+1+1 Flavour von so genannten twisted mass Fermionen. Des Weiteren untersuchen wir das chirale Verhalten der topologischen Suszeptibilität. Wir verwenden hier wieder die Methode der spektralen Projektoren, anstelle aufwendigerer Verfahren, die chirale Symmetrie erhalten, aber zu numerisch sehr aufwändigen Simulationen führen. Schließ lich kommentieren wir die sich aus den starken Autokorrelationen ergebenden Schwierigkeiten dieser Rechnung. Abschließ end stellen wir die Kontinuumlimes-Ergebnisse der topologischen Suszeptibilität in der rein gluonischen Theorie vor, die es uns erlauben, die Witten-Veneziano-Formel zu testen. Unseren Untersuchung zufolge ist diese Formel gut erfüllt. Diese Tatsache stützt die Gültigkeit der Formel, die die topologischen Fluktuationen der Eichfelder mit der unerwartet groß en Masse des eta'' Mesons in Verbindung setzt.
The spontaneous breaking of chiral symmetry is a fascinating phenomenon of QCD whose mechanism is still not well understood and it has fundamental phenomenological implications. It is, for instance, responsible for the low mass of the pions which are effectively Goldstone bosons of the spontaneously broken symmetry. Since these phenomena belong to the low energy regime of QCD, non-perturbative techniques have to be applied in order to study them. In this work we use the twisted mass lattice QCD regularization to compute the chiral condensate, the order parameter of spontaneous chiral symmetry breaking. To this end we apply the recently introduced method of spectral projectors which allows us to perform calculations in large volumes due to its inherently low computational cost. This approach, moreover, enables a direct calculation of the chiral condensate based on a theoretically clean definition of the observable via density chains. We thus present a continuum limit determination of the chirally extrapolated condensate for N_f=2 and N_f=2+1+1 flavours of twisted mass fermions at maximal twist. In addition we study the chiral behavior of the topological susceptibility, a measure of the topological fluctuations of the gauge fields. We again apply the spectral projector method for this calculation. We comment on the difficulties which appear in the calculation of this observable due to the large autocorrelations involved. Finally we present the continuum limit result of the topological susceptibility in the pure gluonic theory which allows us to perform a test of the Witten-Veneziano relation. We found that this relation is well satisfied. Our results support the validity of the Witten-Veneziano formula which relates the topological fluctuations of the gauge fields with the unexpectedly large value of the eta''
Стилі APA, Harvard, Vancouver, ISO та ін.
7

O'Holleran, Kevin. "Fractality and topology of optical singularities." Thesis, University of Glasgow, 2008. http://theses.gla.ac.uk/470/.

Повний текст джерела
Анотація:
Optical singularities are points in complex scalar and vector fields where a property of the field becomes undefined (singular). In complex scalar fields these are phase singularities and in vector fields they are polarisation singularities. In the former the phase of the field is singular and in the latter it is the polarisation ellipse axes. In three dimensions these singularities are lines and natural light fields are threaded by these lines. The interference between three, four and five waves is investigated and inequalities are given which establish the topology of the singularity lines in fields composed of four plane waves. Beyond several waves, numerical simulations are used, supported by experiments, to establish that optical singularties in speckle fields have the fractal properties of a Brownian random walk. Approximately 73% of singularity lines percolate random optical fields, the remainder forming closed loops. The statistical results are found to be similar to those of vortices in random discrete lattice models of cosmic strings, implying that the statistics of singularities in random optical fields exhibit universal behavior. It is also established that a random superposition of plane-waves, such as optical speckle, form singularities which not only map out fractal lines, but create topological features within them. These topological features are rare and include vortex loops which are threaded by infinitely long lines and pairs of loops that form links. Such structures should be not only limited to optical fields but will be present in all systems that can be modeled as random wave superpositions such as those found in cosmic strings and Bose-Einstein condensates. Also reported are results from experiments that generated compact vortex knots and links in real Gaussian beams. These results were achieved through the use of algebraic knot theory and random search optimisation algorithms. Finally, polarisation singularity densities are measured experimentally which confirm analytic predictions.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Lawrence, Mark. "Symmetry and topology at the metasurface." Thesis, University of Birmingham, 2015. http://etheses.bham.ac.uk//id/eprint/6152/.

Повний текст джерела
Анотація:
Since the metamaterials ethos of geometry over chemistry was first conceived at the end of the last century, a great deal of effort has been directed towards the conceptual, computational and experimental development of myriad effective electromagnetic media. Taking inspiration from quantum mechanics, here we exploit the possibility of independently controlling the individual elements of an effective polarizability matrix to reveal unique polarisation based phenomena. Firstly, by employing resonant “meta-atoms” to selectively absorb specific polarisation states of THz radiation, while tuning the polarisation conversion efficiency via near-field coupling, Parity Time symmetry breaking has been proposed, based on analytical and numerical modelling, and observed, using THz-Time Domain Spectroscopy, in polarisation space for the first time. We also reveal that anisotropic material as well radiative loss can be highly useful for tailoring the response of resonant metamaterials. Secondly, the possibility of achieving a topologically non-trivial phase within an effectively homogeneous photonic medium is discussed. Originating from the inherent spin-orbit interaction for light, three dimensional metamaterials with chirality and hyperbolicity are shown to be topologically non-trivial, resulting in one-way surface waves that are immune to back-scattering. Building on the effective medium calculations, our predictions are confirmed by numerical studies of realistic meta-structures.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Li, Yue. "Dynamic magnetism and magnetisation topology in artificial spin ice." Thesis, University of Glasgow, 2018. http://theses.gla.ac.uk/30748/.

Повний текст джерела
Анотація:
Artificial spin ice (ASI) is a class of magnetic patterned arrays consisting of interacting ferromagnetic nanomagnets. The nano-scale size and the elongated shape of each nanomagnet ensure the formation of a single domain, which behaves as a ‘macrospin’ and results in only two possible magnetisation directions along the long axis of the nanomagnet. ASI system has the potential ability not only as a magnonic crystal because of the microwave properties being associated with its intrinsically intricate magnetisation topologies and inter-element interaction, but as a tool to model the microstructure of atomic scale allowing its fundamental physics to be studied. This thesis addresses the field-induced properties of the static and dynamic magnetisation in square and pinwheel ASI. Firstly, the magnetic properties of the square ASI specimens were characterised using alternating gradient force magnetometry, Brillouin light scattering and ferromagnetic resonance. Micromagnetic simulations were employed to assist in understanding the experimental results. Secondly, the field-induced evolution of the magnetisation configuration in a finite-size pinwheel ASI array was imaged using Lorentz transmission electron microscopy. The square structure of the square ASI lattices allows a comparison of the response of the spin-wave modes in the two groups of magnetic elements which are orthogonally aligned to one another. The frequency of the spin-wave mode is dependent on the direction of the applied field, either along the easy or hard axes of the nanomagnet. It has been found that more spin-wave modes are found when the magnetic field lies along the hard axis of the nanomagnet compared to when the field is aligned with the easy axis of the island. This attributes to the formation of more edge modes of standing spin waves in the former case. The experimental behaviour of the static and dynamic magnetisation can be well described via the micromagnetic simulations where only an individual island is considered with an assumption that the inter-island interaction is negligible. Additionally, the field direction with respect to the square ASI lattices is also responsible for the changes in spin-wave frequencies. The results imply that the square ASI could act as a reconfigurable microwave resonator due to its spin-wave frequency being dependent on the changes in magnetisation configuration that were controlled by the applied field. The dependence of the nanomagnet thickness on the static and the dynamic properties of the square ASI was studied. The nanomagnet thickness is found to be responsible for the coercivity and the number of observed spin-wave modes of the square ASI array. The thicker ASI array has a larger coercive field and produces more spin-wave modes. Micromagnetic simulations suggest that the inter-island coupling contributes weakly to the coercivity and the spin-wave frequency of the thicker array whereas it is negligible for a thinner array. Furthermore, fitting to ferromagnetic resonance data allows for access to information on ferromagnetic parameters, such as gyromagnetic ratio and saturation magnetisation. Finally, static and dynamic magnetisation topologies in a pinwheel ASI is explored as a function of magnetic field. The pinwheel ASI is a square ASI modified by rotating each nanomagnet 45° around its central axis in the same direction. The energy spread between the pinwheel vertices significantly decreased as the geometrical structure transforms from the square vertices to the pinwheel vertices. The ferromagnetic magnetisation process shows the domain growth mediated via the propagation of domain walls. Intriguingly, some of the observed mesoscopic domain-wall topologies resemble the Néel and the crosstie walls seen in natural ferromagnetic films, while others mimic the configurations of the charged walls found in the ferroelectric materials. In addition, a rotational-field demagnetisation was carried out in order to anneal the pinwheel ASI to the ground state. The results show that the net moment of the entire array decreases and the short-range ground state is attained through the presence of the vortices (Type III) and antivortices (Type IV) vertices, rather than the global Landau-like flux closure structure predicted by Monte Carlo simulations.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mellars, Ehren Axel. "Time-reversal symmetry and topology in one-dimensional Josephson junctions." Thesis, University of Birmingham, 2018. http://etheses.bham.ac.uk//id/eprint/8739/.

Повний текст джерела
Анотація:
We explore the roles of topology and time-reversal symmetry in one-dimensional superconducting systems. Specifically, we examine junctions involving time-reversal-invariant topological superconductors, which are characterised by the emergence of zero-energy Majorana- Kramers pairs at their boundaries. For Josephson junctions composed of these superconductors, we obtain, through a scattering matrix technique valid in a regime where the junction length is much shorter than the superconducting coherence length, exact analytical and numerical results for the Josephson current in terms of a small number of independently measurable junction parameters. The current is found to have a number of prominent and robust features which indicate the underlying symmetries and the nontrivial topology inherent in these systems. The most remarkable of these features occurs in the form of switches in the Josephson current, where the sign of the current reverses as a consequence of crossings between energy levels in the subgap spectrum. By utilising a quantum master equation approach, we establish general conditions under which these switches manifest in relation to a phenomenological relaxation rate and a voltage applied across the junction. Our findings enable quantitative predictions for such junctions, potentially assisting in experimental directions regarding the detection of Majorana- Kramers pairs in mesoscopic Josephson systems.
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "QCD topology"

1

Greensite, Jeff, and Štefan Olejník, eds. Confinement, Topology, and Other Non-Perturbative Aspects of QCD. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0502-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Jeff, Greensite, Olejník Štefan, and North Atlantic Treaty Organization. Scientific Affairs Division, eds. Confinement, topology, and other non-perturbative aspects of QCD. Dordrecht: Kluwer Academic Publishers, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Greensite, Jeff. Confinement, Topology, and Other Non-Perturbative Aspects of QCD. Dordrecht: Springer Netherlands, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Confinement, Topology, and Other Non-Pertubative Aspects of QCD (NATO Science Series II: Mathematics, Physics and Chemistry). Springer, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

(Editor), Jeff Paul Greensite, and Stefan Olejník (Editor), eds. Confinement, Topology, and Other Non-Pertubative Aspects of QCD (NATO Science Series II: Mathematics, Physics and Chemistry). Springer, 2002.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "QCD topology"

1

Boyd, G., B. Allés, M. D’Elia, and A. Di Giacomo. "Topology in QCD." In International Europhysics Conference on High Energy Physics, 1028–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-59982-8_193.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Shuryak, Edward. "QCD Correlation Functions and Topology." In Nonperturbative Topological Phenomena in QCD and Related Theories, 203–40. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62990-8_9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Catani, S. "Jet Topology and New Jet Counting Algorithms." In QCD at 200 TeV, 21–41. Boston, MA: Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3440-2_2.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

HOšek, Jiří. "Anisotropic QCD Superfluids." In Confinement, Topology, and Other Non-Perturbative Aspects of QCD, 225–31. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0502-9_24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Shuryak, Edward. "Topology on the Lattice." In Nonperturbative Topological Phenomena in QCD and Related Theories, 173–83. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62990-8_7.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Reinhardt, H. "Topology of Center Vortices." In Confinement, Topology, and Other Non-Perturbative Aspects of QCD, 277–85. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0502-9_30.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Shuryak, Edward. "Gauge Field Topology and Instantons." In Nonperturbative Topological Phenomena in QCD and Related Theories, 135–71. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-62990-8_6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Edwards, Robert G., Urs M. Heller, Joe Kiskis, and Rajamani Narayanan. "Topology and Chiral Symmetry in QCD with Overlap Fermions." In Lattice Fermions and Structure of the Vacuum, 53–64. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4124-6_5.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

González-Arroyo, Antonio. "Spectra of Lattice Dirac Operators in Non-Trivial Topology Backgrounds." In Confinement, Topology, and Other Non-Perturbative Aspects of QCD, 177–84. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0502-9_19.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Baal, Pierre. "Chiral Zero-Mode for Abelian BPS Dipoles." In Confinement, Topology, and Other Non-Perturbative Aspects of QCD, 1–9. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0502-9_1.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "QCD topology"

1

Forkel, Hilmar. "QCD Vacuum Topology and Glueballs." In IX HADRON PHYSICS AND VII RELATIVISTIC ASPECTS OF NUCLEAR PHYSICS: A Joint Meeting on QCD and QCP. AIP, 2004. http://dx.doi.org/10.1063/1.1843614.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

FACCIOLI, P., and T. A. DEGRAND. "TOPOLOGY AND CHIRALITY MIXING INTERACTION IN QCD." In Proceedings of the International Conference. WORLD SCIENTIFIC, 2004. http://dx.doi.org/10.1142/9789812702845_0035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

FORKEL, HILMAR. "QCD GLUEBALL SUM RULES AND VACUUM TOPOLOGY." In Proceedings of the Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812838667_0017.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Kovacs, Tamas, and Reka A. Vig. "Localization and topology in high temperature QCD." In The 36th Annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.334.0258.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

FORKEL, HILMAR. "QCD GLUEBALL SUM RULES AND VACUUM TOPOLOGY." In Proceedings of the Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812708267_0047.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Nagai, Keiichi, Karl Jansen, Wolfgang Bietenholz, Luigi Scorzato, Silvia Necco, and Stanislav Shcheredin. "Testing Topology Conserving Gauge Actions for Lattice QCD." In XXIIIrd International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2005. http://dx.doi.org/10.22323/1.020.0283.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Kovacs, Tamas G. "Topology and the Dirac Spectrum in Hot QCD." In The 39th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.430.0180.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Bonanno, Claudio, Andreas Athenodorou, Claudio Bonati, Giuseppe Clemente, Francesco D'Angelo, Massimo D'Elia, Lorenzo Maio, Guido Martinelli, Francesco Sanfilippo, and Antonino Todaro. "Topology in high-T QCD via staggered spectral projectors." In The 38th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2022. http://dx.doi.org/10.22323/1.396.0166.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Reinhardt, H. "Magnetic monopoles, center vortices, confinement and topology of gauge fields." In The international workshop on hadron physics of low energy QCD. AIP, 2000. http://dx.doi.org/10.1063/1.1303019.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Itou, Etsuko, Kei Iida, and Tong-Gyu Lee. "Topology of two-color QCD at low temperature and high density." In The 36th Annual International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2019. http://dx.doi.org/10.22323/1.334.0168.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії