Статті в журналах з теми "Pyrolyse du bois"

Щоб переглянути інші типи публікацій з цієї теми, перейдіть за посиланням: Pyrolyse du bois.

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся з топ-20 статей у журналах для дослідження на тему "Pyrolyse du bois".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Переглядайте статті в журналах для різних дисциплін та оформлюйте правильно вашу бібліографію.

1

Hemati, M., and C. Laguerie. "Etude cinétique de la pyrolyse de bois à haute température en thermobalance." Chemical Engineering Journal 35, no. 3 (July 1987): 147–56. http://dx.doi.org/10.1016/0300-9467(87)85025-6.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Hemati, M., and C. Laguerie. "Etude Cinétique de la Pyrolyse de Bois à Haute Température en Thermobalance." Chemical Engineering Journal 35, no. 3 (July 1987): 157–68. http://dx.doi.org/10.1016/0300-9467(87)85026-8.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Monties, Bernard. "Composition chimique des bois de chêne: composés phénoliques, relations avec quelques propriétés physiques et chimiques susceptibles d'influencer la qualité des vins et des eaux-de-vie." OENO One 21, no. 3 (September 30, 1987): 169. http://dx.doi.org/10.20870/oeno-one.1987.21.3.1282.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
<p style="text-align: justify;">Les polyphénols du bois de chêne, extractibles et composés liés à la paroi végétale = lignines, lignanes, tanins et aldéhydes phénoliques, ont été envisagés au niveau moléculaire de leurs relations avec les propriétés physico-chimiques des bois : retrait, porosité, propriétés mécaniques.</p><p style="text-align: justify;">Des résultats originaux ont été aussi présentés concernant le fractionnement des polyphénols pariétaux, l'incrustation des parois par les tanins hydrolysables: acide ellagique associé à des fractions de lignine, ainsi que la formation d'aldéhydes phénoliques (vanilline, syringaldéhyde, aldéhydes coniférylique et sinapylique) par pyrolyse douce de la lignine. Des mécanismes réactionnels hypothétiques ont été suggérés.</p><p style="text-align: justify;">+++</p><p style="text-align: justify;">Oak wood phenolics, extractives and cell wall linked compounds : lignins, lignans, tanins and phenolic aldehydes have been discussed, at the molecular level, in their relations with physico-chemical properties of wood = shrinking, permeability and mechanical properties.</p><p style="text-align: justify;">Unpublished results have been also reported concerning fractionnation of cell wall phenolics, incrustation of cell wall by tanins: ellagic acid associated with lignins fractions and formation of phenolic aldehydes (vanillin, syringaldehyde, coniferaldehyde, sinapaldehyde) during mild pyrolysis of lignin in oak wood. Hypotherical reaction mechanism have been suggested.</p>
4

Weiland, J. J., R. Guyonnet, and R. Gibert. "Analyse de la pyrolyse menagee du bois par un couplage TG-DSC-IRTF." Journal of Thermal Analysis and Calorimetry 51, no. 1 (January 1998): 265–74. http://dx.doi.org/10.1007/bf02719028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Méchi, Rachid, Habib Farhat, Kamel Halouani, and Mohamed-Sassi Radhouani. "Modélisation des transferts radiatifs dans un incinérateur des émissions polluantes de la pyrolyse du bois." International Journal of Thermal Sciences 43, no. 7 (July 2004): 697–708. http://dx.doi.org/10.1016/j.ijthermalsci.2003.10.013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Mouras, Sylvie, Philippe Girard, Patrick Rousset, Pipin Permadi, Danielle Dirol, and Gilles Labat. "Propri�t�s physiques de bois peu durables soumis � un traitement de pyrolyse m�nag�e." Annals of Forest Science 59, no. 3 (April 2002): 317–26. http://dx.doi.org/10.1051/forest:2002027.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Rousset, Patrick, Ian Turner, André Donnot, and Patrick Perré. "Choix d’un modèle de pyrolyse ménagée du bois à l’échelle de la microparticule en vue de la modélisation macroscopique." Annals of Forest Science 63, no. 2 (March 2006): 213–29. http://dx.doi.org/10.1051/forest:2005113.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Vivas, Nicolas, Guy Bourgeois, Yves Glories, Christiane Vitry, and Françoise Benoist. "Sur l’analyse in situ des macromolécules du bois de cœur de chêne Q. Robur L. par pyrolyse-spectrométrie de masse." Matériaux & Techniques 85, no. 1-2 (1997): 36–38. http://dx.doi.org/10.1051/mattech/199785010036.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Hemati, M., L. El Ghezal, and C. Laguerie. "Etude expérimentale de la pyrolyse de sciure de bois dans un lit fluidisé de sable entre 630 et 940 °C." Chemical Engineering Journal 42, no. 2 (November 1989): B25—B38. http://dx.doi.org/10.1016/0300-9467(89)85009-9.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Abdullah, Meileni Apriyanti, Sunardi, Uripto Trisno Santoso, Ahmad Budi Junaidi, Dessy Aditiya, and Utami Irawati. "Pyrolysis of palm oil using zeolite catalyst and characterization of the boil-oil." Green Processing and Synthesis 8, no. 1 (January 28, 2019): 649–58. http://dx.doi.org/10.1515/gps-2019-0035.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract Pyrolysis of palm oil is one of the most potential methods to obtain bio-oil. In this study, pyrolysis of palm oil was carried out by using zeolites as a catalyst. The use of HCl and NaOH as activating agents of the zeolites prior to its use in the pyrolysis process was investigated. The result showed that a 1 M concentration of either HCl or NaOH gave an optimum result when the zeolites were used to absorb methylene blue. When 1 M of HCl was used as the activating agent, a more uniform pore size of the zeolites was obtained, along with a more opened pore structure. A GC-MS analysis showed that by using zeolites which was activated using HCl or NaOH, the pyrolysis of palm oil yielded bio-oil with a high content of organic compounds.
11

Ayodeji Rapheal, Ige, Elinge Cosmos Moki, Aliyu Muhammad, Gwani Mohammed, Lawal Gusau Hassan, and Abubakar Umar BirninYauri. "Physico-chemical and combustion analyses of bio-briquettes from biochar produced from pyrolysis of groundnut shell." International Journal of Advanced Chemistry 9, no. 2 (August 10, 2021): 74. http://dx.doi.org/10.14419/ijac.v9i2.31641.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
The initiative of using biomass as a preference source of energy is vindicated by its availability, abundance, easy accessibility and its eco-friendly nature. This therefore calls for the conversion of agricultural wastes to usable form. This study is aimed to investigate the physicochemical and combustion properties of briquettes obtained from pyrolyzed biochar of groundnut shell. The groundnut shell biochar briquette bonded with cassava starch as binder were molded and analyzed. Proximate analysis, ultimate analyses, Scanning electron microscopy (SEM), Calorific values, density and compressive strength, among other properties, were determined for the fabricated briquettes. A high heating value of 45.20 MJ/Kg was recorded for groundnut shell biochar briquette compared to 25.20 MJ/Kg of raw groundnut shell briquette. While the ash contents of 5.12 % and 6.40 % were recorded for raw groundnut shell briquette and groundnut shell biochar briquette respectively. It took groundnut shell biochar briquette approximately 10 minutes to boil 1000 cm3 of water, while raw groundnut shell briquette boiled same quantity of water in 20 minutes. The finding of this study shows that the biochar obtained from the pyrolysis of groundnut shell is suitable for fuel briquette production.
12

Biester, H., K. H. Knorr, J. Schellekens, A. Basler, and Y. M. Hermanns. "Comparison of different methods to determine the degree of peat decomposition in peat bogs." Biogeosciences 11, no. 10 (May 21, 2014): 2691–707. http://dx.doi.org/10.5194/bg-11-2691-2014.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Peat humification or decomposition is a frequently used proxy to extract past time changes in hydrology and climate from peat bogs. During the past century several methods to determine changes in peat decomposition have been introduced. Most of these methods are operationally defined only and the chemical changes underlying the decomposition process are often poorly understood and lack validation. Owing to the chemically undefined nature of many humification analyses the comparison of results obtained by different methods is difficult. In this study we compared changes in peat decomposition proxies in cores of two peat bogs (Königsmoor, KK; Kleines Rotes Bruch, KRB) from the Harz Mountains (Germany) using C / N ratios, Fourier transform infrared spectra absorption (FTIR) intensities, Rock Eva® oxygen and hydrogen indices, δ13C and δ15N isotopic signatures and UV-absorption (UV-ABS) of NaOH peat extracts. In order to explain parallels and discrepancies between these methods, one of the cores was additionally analysed by pyrolysis gas chromatography mass spectrometry (pyrolysis-GC-MS). Pyrolysis-GC-MS data provide detailed information on a molecular level, which allows differentiation of both changes attributed to decomposition processes and changes in vegetation. Principal component analysis was used to identify and separate the effects of changes in vegetation pattern and decomposition processes because both may occur simultaneously upon changes in bog hydrology. Records of decomposition proxies show similar historical development at both sites, indicating external forcing such as climate as controlling the process. All decomposition proxies except UV-ABS and δ15N isotopes show similar patterns in their records and reflect to different extents signals of decomposition. The molecular composition of the KK core reveals that these changes are mainly attributed to decomposition processes and to a lesser extent to changes in vegetation. Changes in the molecular composition indicate that peat decomposition in the KK bog is mainly characterized by preferential decomposition of phenols and polysaccharides and relative enrichment of aliphatics during drier periods. Enrichment of lignin and other aromatics during decomposition was also observed but showed less variation than polysaccharides or aliphatics, and presumably reflects changes in vegetation associated with changes in hydrology of the bogs. Significant correlations with polysaccharide and aliphatic pyrolysis products were found for C / N ratios, FTIR-band intensities and for hydrogen index values, supporting that these decomposition indices provide reasonable information. Correlations of polysaccharide and aliphatic pyrolysis products with oxygen index values and δ13C was weaker, assumingly indicating carboxylation of the peat during drier periods and enrichment of isotopically lighter peat components during decomposition, respectively. FTIR, C / N ratio, pyrolysis-GC-MS analyses and Rock Eval hydrogen indices appear to reflect mass loss and related changes in the molecular peat composition during mineralization best. Pyrolysis-GC-MS allows disentangling the decomposition processes and vegetation changes. UV-ABS measurements of alkaline peat extracts show only weak correlation with other decomposition proxies and pyrolysis results as they mainly reflect the formation of humic acids through humification and to a lesser extent mass loss during mineralization.
13

Biester, H., K. H. Knorr, J. Schellekens, A. Basler, and Y. M. Hermanns. "Comparison of different methods to determine the degree of peat decomposition in peat bogs." Biogeosciences Discussions 10, no. 11 (November 5, 2013): 17351–95. http://dx.doi.org/10.5194/bgd-10-17351-2013.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Abstract. Peat humification or decomposition is a frequently used proxy to extract past time changes in hydrology and climate from peat bogs. During the past century several methods to determine changes in peat decomposition have been introduced. Most of these methods are operationally defined only and the chemical changes underlying the decomposition process are often poorly understood and lack validation. Due to the chemically undefined nature of many humification analyses the comparison of results obtained by different methods is difficult if not misleading. In this study we compared changes in peat decomposition in cores of two peat bogs (Königsmoor (KK), Kleines Rotes Bruch, KRB) from the Harz Mountains (Germany) using C / N ratios, Fourier Transform Infrared spectra absorption (FTIR) intensities, Rock Eval® oxygen- and hydrogen indices, δ13C and δ15N isotopic signatures and UV-absorption of NaOH peat extracts. In addition, one of the cores was analysed for changes in the peat's molecular composition using pyrolysis gas chromatography mass spectrometry (pyrolysis-GC-MS). Records of decomposition proxies show similar historical development at both sites, indicating external forcing such as climate as controlling process. Moreover, all decomposition proxies except UV-ABS and δ15N isotopes show similar patterns in their records and thus reflect in different extents signals of decomposition. Pyrolysis-GC-MS analyses of the KK core reveal that changes in peat molecular chemistry are mainly attributed to decomposition processes and to a lesser extend to changes in vegetation. Changes in the abundance of molecular compounds indicate that peat decomposition in the KK bog is mainly characterized by preferential decomposition of phenols and polysaccharides and relative enrichment of aliphatics during drier periods. Enrichment of lignin and other aromatics during decomposition was also observed but showed less variation, and presumably reflects changes in vegetation associated to changes in hydrology of the bogs. Significant correlations with polysaccharide and aliphatic pyrolysis products were found for C / N ratios, FTIR-band intensities and for hydrogen index values, supporting that these decomposition indices provide reasonable information despite their bulk nature. Correlation with oxygen index values and δ13C was weaker assumingly indicating carboxylation of the peat during drier periods and enrichment of isotopically lighter peat components during decomposition, respectively. FTIR, C / N ratio, Pyrolysis-GC-MS analyses and Rock Eval hydrogen indices appear to reflect mass loss and related changes in the molecular peat composition during mineralization best. Different to the other investigated proxies, Pyrolysis-GC-MS and FTIR analyses allow disentangling decomposition processes and vegetation changes. UV-ABS measurements of alkaline peat extracts show only weak correlation with other decomposition proxiesas they mainly reflect the formation of humic acids through humifcation and to a~lesser extend mass loss during mineralization.
14

Jason, A. O., B. H. S. Chua, C. N. R. Rajendran, D. M. J. K. Bashir, E. T. T. Goh, and F. R. Ashraf. "Application of central composite design for optimization of bio‐oil production using peat moss." Materialwissenschaft und Werkstofftechnik 54, no. 9 (September 2023): 1097–106. http://dx.doi.org/10.1002/mawe.202200308.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
AbstractMost nations have concentrated on reducing greenhouse gas emissions since global warming is such a serious problem. Due to land use changes, the harvesting of peat for use as fuel in homes, and the gardening industry, peat moss from peat bogs or peat fields may cause smoldering fires and release quantities of carbon dioxide. Bio‐fuel is one of the alternative renewable sources created from organic materials. Pyrolysis, a thermochemical process that converts organic materials into substitutes for fossil fuels and used to create biofuel because it is readily available, straightforward, and inexpensive to implement. The feedstock utilized in this experiment was peat moss. Proximate and ultimate analyses were performed using thermogravimetric analysis and elemental analyzer to determine thermal breakdown and elemental characteristics. Pyrolysis was carried out in this work using a prototype lab scale fixed‐bed pyrolysis. Based on prior study, the parameters used are pyrolysis temperature, nitrogen flow rate and reaction time to create the central composite design model. According to the analysis of variance results, pyrolysis temperature and flow rate were significant, however reaction time was not. The effect of flow rate and reaction time on response was explored. The actual bio‐oil yield achieved utilizing the optimal parameters was 10.02 %. The presence of chemical compounds in bio‐oil was measured.
15

Amen-Chen, Carlos, Bernard Riedl, Xiang-Ming Wang, and Christian Roy. "Softwood Bark Pyrolysis Oil-PF Resols. Part 1. Resin Synthesis and OSB Mechanical Properties." Holzforschung 56, no. 2 (March 12, 2002): 167–75. http://dx.doi.org/10.1515/hf.2002.028.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Summary Bark residues generated by the pulp and paper and wood industries represent a threat to the environment due to leaching of chemicals such as phenolics and resin acids which are being currently regulated by governments. Vacuum pyrolysis of resinous bark produces phenolic-rich oils which represent a potential raw material to replace petroleum-based phenol presently used in the formulation of wood adhesive resols. Resols with different levels of phenol replacement by phenolic pyrolysis oils, formaldehyde to phenolics molar ratios and sodium hydroxide to phenolics molar ratios were synthesized. Strandboards werepreparedandtheirmechanicalandphysicalpropertiessuchasmodulusofrupture(MOR),modulus of elasticity (MOE), dry and 2-hour boil internal bond (IB) and thickness swelling (TS) were evaluated. Homogeneous panels bonded with resins having 25 and 50% by wt of pyrolysis oils replacing phenol exhibited comparable mechanical properties to those of panels made with a commercial surface resin under the same pressing conditions. Three-layer panels made with resins having 50 % by wt phenol replacement in the surface and 25% by wt phenol replacement in the core had mechanical properties above the requirements specified by the Canadian Standards CSAO437.0-93 for OSB products.
16

Klein, Kristy, Judith Schellekens, Miriam Groβ-Schmölders, Pascal von Sengbusch, Christine Alewell, and Jens Leifeld. "Characterizing ecosystem-driven chemical composition differences in natural and drained Finnish bogs using pyrolysis-GC/MS." Organic Geochemistry 165 (March 2022): 104351. http://dx.doi.org/10.1016/j.orggeochem.2021.104351.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
17

Narayanan, Arun Suresh. "Plastic Waste Pyrolytic Converter." International Journal for Research in Applied Science and Engineering Technology 9, no. VI (June 14, 2021): 2330–34. http://dx.doi.org/10.22214/ijraset.2021.34468.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Estimates show that less than 5% of the plastic manufactured each year is recycled, with production of the material set to increase by 3.8% every year until 2030, adding to the 6.3 billion tonnes churned out since production began 60 years ago. The majority ends up in our oceans, posing a disruption to marine ecosystems, which researchers predict would take a minimum of 450 years to biodegrade, if ever. The main objective of this study were to understand and optimize the process of plastic pyrolysis for maximizing the diesel range products. The technology is not overly complicated, plastics are shredded and then heated in an oxygen free chamber (known as pyrolysis) to about 400 degree Celsius. As the plastic boil, gas generated is separated out and often reused to fuel machine itself. The fuel is then distilled and filtered. Because the entire process takes place inside vacuum and the plastic is melted-not burned, minimal to no toxic gas are released in the air, as all the gases and sludges are reused to fuel the machine. For this technology, the type of plastic you convert to fuel is important. If you burn pure hydrocarbons, such as polyethylene (PE) and polypropylene (PP), you will produce fuel that will fairly burn clean. But burn PVC (polyvinyl chloride) and large amounts of chlorine will corrode the reactor and pollute the environment.
18

Al-Ayed, Omar. "Catalytic Cracking of Vacuum Gas Oil and Used Lubricating Oil on Oil Shale Ash." Global Journal of Energy Technology Research Updates 2, no. 1 (April 1, 2015): 25–32. http://dx.doi.org/10.15377/2409-5818.2015.02.01.4.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
In this research, Vacuum Gas Oil and/or used lubricating oil is subjected to thermal cracking (pyrolysis) after impregnation on oil shale ash to obtain lighter molecular weight components. The spent oil shale of the thermal cracking step is subjected to further heat treatment in open air at 950oC to react any organic compounds and mineral carbon to metal oxide. Used and/or fresh lubricating oils are impregnated on oil shale ash particles. Ash is soaked for 24 hours to allow absorption of the VGO or lubricating oils into the pores of the ash material. Oil shale ash which is known to contain several metal oxides such as CaO, SiO2, and lesser quantities of Fe2O3, Al2O3, K2O, Na2O, etc. possesses inherent catalytic nature to crack heavy hydrocarbons to produce lighter components.The absorbed Vacuum Gas Oil and/or lubricating oil inside the pores of the oil shale ash, is allowed to crack at 600oC temperature. Cracking of VGO is conducted in a fixed bed reactor under nitrogen, steam environments. The weight ratio of the absorbed oil into the pores to oil shale ash is 1:1 ratio.The particle size was in the range of 20-25 mm. The liquid products indicated 20 vol% falls in the kerosene fraction specifications where as Approximately 50 vol% is diesel cut. Residue which boils at higher than 370 oC constituted about 30 vol% of the liquid distillate.Steam presence in the reaction media affected the composition of the product as measured in density increase. The sulfur content of the produce is found to be 0.75 wt%.
19

Vîjeu, Rãzvan, Luc Gerun, Jérôme Bellettre, Mohand Tazerout, Zohir Younsi, and Cathy Castelain. "Modèle thermochimique bidimensionnel de pyrolyse de la biomasse." Journal of Renewable Energies 10, no. 3 (November 12, 2023). http://dx.doi.org/10.54966/jreen.v10i3.778.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
La pyrolyse de la biomasse est étudiée. Un modèle thermochimique bidimensionnel basé sur une méthode nodale a été créé. Il intègre un mécanisme de transfert de chaleur et d’écoulement diphasiquc. La décomposition du bois s’effectue selon trois réactions concurrentes, produisant coke, gaz et goudrons. Ces derniers subissent également des réactions secondaires. Des essais sur une unité de pyrolyse ont permis de caractériser le comportement de la sciure de chêne durant le process. Les champs de température dans le lit de biomasse ont ainsi pu être obtenu en régime transitoire. Les résultats expérimentaux et numériques coïncident de manière satisfaisante.
20

Houben, David, Brieuc Hardy, Michel-Pierre Faucon, and Jean-Thomas Cornelis. "Effet du biochar sur la biodisponibilité du phosphore dans un sol limoneux acide." BASE, 2017, 209–17. http://dx.doi.org/10.25518/1780-4507.13539.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Анотація:
Description du sujet. Cet article traite de l’impact du biochar sur la biodisponibilité en phosphore (P) dans les sols en vue d’améliorer la gestion et l’autonomie de la fertilisation en P des cultures. Objectifs. L’objectif général était d’explorer le potentiel du biochar à augmenter la biodisponibilité du P dans le sol. Les objectifs spécifiques étaient de préciser l’influence de la biomasse pyrolysée ainsi que la dose de biochar appliquée sur la solubilité du P. Méthode. Trois biochars produits à partir de biomasses différentes (résidus de Miscanthus, de bois et de café) ont été incorporés dans un Luvisol (pH acide) selon deux doses (1 et 3 % en masse). Après 76 jours d’incubation, la biodisponibilité du P a été estimée (extraction au CaCl2 0,01 M). Les propriétés physico-chimiques du sol et la quantité de CO2 émise durant la période d’incubation ont également été déterminées. Résultats. Seul le biochar produit à partir de résidus de bois et incorporé à une dose de 3 % a augmenté la concentration en P biodisponible dans le sol (+ 75 %). Cette augmentation résulterait non seulement d’une libération de P par le biochar lui-même (effet direct), mais également d’une remobilisation du P du sol (effet indirect) faisant suite à l’élévation drastique du pH (+ 3,6 unités) ainsi qu’à l’augmentation de l’activité biologique. Pour les autres traitements, l’absence d’effet significatif sur la biodisponibilité du P résulte vraisemblablement de leur faible impact sur le pH du sol, celui-ci restant dans une gamme (4,3 – 5,1) favorisant l’insolubilisation du P. Conclusions. Étant donné la variabilité des résultats et les incertitudes concernant les mécanismes responsables de la mobilisation du P en présence de biochar, il est essentiel de conduire des études complémentaires afin de mieux comprendre l’impact du biochar sur la mobilité du P dans les systèmes sol-plante.

До бібліографії