Добірка наукової літератури з теми "Pulsed electrolysis"

Оформте джерело за APA, MLA, Chicago, Harvard та іншими стилями

Оберіть тип джерела:

Ознайомтеся зі списками актуальних статей, книг, дисертацій, тез та інших наукових джерел на тему "Pulsed electrolysis".

Біля кожної праці в переліку літератури доступна кнопка «Додати до бібліографії». Скористайтеся нею – і ми автоматично оформимо бібліографічне посилання на обрану працю в потрібному вам стилі цитування: APA, MLA, «Гарвард», «Чикаго», «Ванкувер» тощо.

Також ви можете завантажити повний текст наукової публікації у форматі «.pdf» та прочитати онлайн анотацію до роботи, якщо відповідні параметри наявні в метаданих.

Статті в журналах з теми "Pulsed electrolysis"

1

Poláčik, Ján, and Jiří Pospíšil. "Some Aspects of PDC Electrolysis." Technological Engineering 13, no. 1 (October 1, 2016): 33–34. http://dx.doi.org/10.2478/teen-2016-0011.

Повний текст джерела
Анотація:
Abstract In this paper, aspects of pulsed direct current (PDC) water splitting are described. Electrolysis is a simple and well-known method to produce hydrogen. The efficiency is relatively low in normal conditions using conventional DC. PDC in electrolysis brings about many advantages. It increases efficiency of hydrogen production, and performance of the electrolyser may be smoothly controlled without compromising efficiency of the process. In our approach, ultra-short pulses are applied. This method enhances efficiency of electrical energy in the process of decomposition of water into hydrogen and oxygen. Efficiency depends on frequency, shape and width of the electrical pulses. Experiments proved that efficiency was increased by 2 to 8 per cent. One of the prospects of PDC electrolysis producing hydrogen is in increase of efficiency of energy storage efficiency in the hydrogen. There are strong efforts to make the electrical grid more efficient and balanced in terms of production by installing electricity storage units. Using hydrogen as a fuel decreases air pollution and amount of carbon dioxide emissions in the air. In addition to energy storage, hydrogen is also important in transportation and chemical industry.
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Kim, Jae-Hoon, Chang-Yeol Oh, Ki-Ryong Kim, Jong-Pil Lee, and Tae-Jin Kim. "Electrical Double Layer Mechanism Analysis of PEM Water Electrolysis for Frequency Limitation of Pulsed Currents." Energies 14, no. 22 (November 22, 2021): 7822. http://dx.doi.org/10.3390/en14227822.

Повний текст джерела
Анотація:
This paper proposes a method for improving hydrogen generation using pulse current in a proton exchange membrane-type electrolyzer (PEMEL). Traditional methods of electrolysis using direct current are known as the simplest approach to produce hydrogen. However, it is highly dependent on environmental variables, such as the temperature and catalyst used, to enhance the rate of electrolysis. Therefore, we propose electrolysis using a pulse current that can apply several dependent variables rather than environmental variables. The proposed method overcomes the difficulties in selecting the frequency of the pulse current by deriving factors affecting hydrogen generation while changing the concentration generated by the cell interface during the pulsed water-electrolysis process. The correlation between the electrolyzer load and the frequency characteristics was analyzed, and the limit value of the applicable frequency of the pulse current was derived through electrical modeling. In addition, the operating characteristics of PEMEL could be predicted, and the PEMEL using the proposed pulse current was verified through experiments.
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Rocha, F., Q. de Radiguès, G. Thunis, and J. Proost. "Pulsed water electrolysis: A review." Electrochimica Acta 377 (May 2021): 138052. http://dx.doi.org/10.1016/j.electacta.2021.138052.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Gorodyskii, A. V. "Pulsed current electrolysis (in Russian)." Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 302, no. 1-2 (March 1991): 293. http://dx.doi.org/10.1016/0022-0728(91)85050-y.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Osuna, Isaac Aaron Rodriguez, Pablo Cobelli, and Nahuel Olaiz. "Bubble Formation in Pulsed Electric Field Technology May Pose Limitations." Micromachines 13, no. 8 (July 31, 2022): 1234. http://dx.doi.org/10.3390/mi13081234.

Повний текст джерела
Анотація:
Currently, increasing amounts of pulsed electric fields (PEF) are employed to improve a person’s life quality. This technology is based on the application of the shortest high voltage electrical pulse, which generates an increment over the cell membrane permeability. When applying these pulses, an unwanted effect is electrolysis, which could alter the treatment. This work focused on the study of the local variations of the electric field and current density around the bubbles formed by the electrolysis of water by PEF technology and how these variations alter the electroporation protocol. The assays, in the present work, were carried out at 2 KV/cm, 1.2 KV/cm and 0.6 KV/cm in water, adjusting the conductivity with NaCl at 2365 μs/cm with a single pulse of 800 μs. The measurements of the bubble diameter variations due to electrolysis as a function of time allowed us to develop an experimental model of the behavior of the bubble diameter vs. time, which was used for simulation purposes. In the in silico model, we calculated that the electric field and observed an increment of current density around the bubble can be up to four times the base value due to the edge effect around it, while the thermal effects were undesirable due to the short duration of the pulses (variations of ±0.1 °C are undesirable ). This research revealed that the rise of electric current is not just because of the shift in electrical conductivity due to chemical and thermal effects, but also varies with the bubble coverage over the electrode surface and variations in the local electric field by edge effect. All these variations can conduce to unwanted limitations over PEF treatment. In the future, we recommend tests on the variation of local current conductivity and electric fields.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Shaaban, Aly H. "Water Electrolysis and Pulsed Direct Current." Journal of The Electrochemical Society 140, no. 10 (October 1, 1993): 2863–67. http://dx.doi.org/10.1149/1.2220923.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Ved’, M., N. Sakhnenko, I. Yermolenko, G. Yar-Mukhamedova, and R. Atchibayev. "Composition and." Eurasian Chemico-Technological Journal 20, no. 2 (June 30, 2018): 145. http://dx.doi.org/10.18321/ectj697.

Повний текст джерела
Анотація:
Principles of three component Iron-Cobalt-Tungsten alloys electrodeposition from complex Fe (III) based citrate electrolytes are discussed. It is shown, that deposition of ternary alloys proceeds through competitive reduction of cobalt and tungsten with iron. With increasing ligand concentration coatings are enriched with a refractory component; however, increasing current density favors a reverse trend. The effect of both current density and pulse on/off time on the quality, content of alloying metals and surface topography of electrolytic coatings were determined. The application of pulsed electrolysis provides increasing tungsten content up to 13 at.%, at current efficiency of 70–75%. Globular relief of Fe-Co-W coatings is caused by refractory metals incorporation, and crystalline and amorphous parts of structure are visualized by X-ray spectroscopy, including inter-metallic phases Co7W6, Fe7W6 along with α-Fe and Fe3C. The crystallite size of the amorphous part is near 7–8 nm. Corrosion resistance of the coatings is 1.3–2.0 orders of magnitude higher than the substrate parameters as follows from data of polarization resistance method and electrode impedance spectroscopy.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Besra, Laxmidhar, Tetsuo Uchikoshi, Tohru Suzuki, and Yoshio Sakka. "Pulsed-DC Electrophoretic Deposition (EPD) of Aqueous Alumina Suspension for Controlling Bubble Incorporation and Deposit Microstructure." Key Engineering Materials 412 (June 2009): 39–44. http://dx.doi.org/10.4028/www.scientific.net/kem.412.39.

Повний текст джерела
Анотація:
Electrophoretic deposition (EPD) from aqueous suspension generally forms deposit containing incorporated bubbles because of evolution of gases at electrodes due to electrolysis of water. We have demonstrated here that application of pulsed voltage /current instead of continuous DC enables controlling the amount of bubble incorporation and obtain bubble-free deposits during EPD of aqueous suspension. The yield and bubble incorporation decreased progressively with decrease in size of the applied pulse. A characteristic band of deposition window was found in the plot of voltage/current vs. pulse width within which smooth and bubble-free deposits are obtained. The window is wider at low applied voltages/currents than at higher voltages/currents implying that it is more easier to control the pulsed EPD at lower applied voltages and/currents. No deposition occurred below the window whereas deposits with incorporated bubbles formed above the window. Suppression of bubbles with decreasing pulse size was attributed to decrease in the amount of hydrogen evolved per pulse and verified by monitoring the gain in weight of palladium (Pd) electrode used as cathode during electrolysis of water.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Zhang, Hua Li, Ji Cai Kuai, and Fei Hu Zhang. "Modeling of Thickness of the Oxide Film in ELID Grinding." Advanced Materials Research 135 (October 2010): 376–81. http://dx.doi.org/10.4028/www.scientific.net/amr.135.376.

Повний текст джерела
Анотація:
The properties of oxide films are very important for improving the mass of ELID grinding surface. In this paper, a novel calculation model of thickness of oxide films was proposed; the theoretical calculation and simulation analysis were developed, and were compared with the corresponding experimental results. The results proved that the theoretical calculation and simulation results of the thickness of the oxide films had good agreement with the experimental results. This model could predict precisely the change of thickness of oxide film, the instinct of non-linear electrolysis was explained from a novel aspect of ability of pulsed electrolysis. This model could be used in the on-line control of electrolytic state during practical ELID grinding process.
Стилі APA, Harvard, Vancouver, ISO та ін.
10

TSURU, Yutaka, Katsuyoshi FUKAGAWA, Morio MATSUNAGA, and Kunisuke HOSOKAWA. "Influences of pulsed current electrolysis on zinc electrodeposition." Journal of the Metal Finishing Society of Japan 36, no. 3 (1985): 110–15. http://dx.doi.org/10.4139/sfj1950.36.110.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Дисертації з теми "Pulsed electrolysis"

1

Yagi, Shunsuke. "Surface modification process for high-purity iron and carbon steel by alternating pulsed electrolysis." 京都大学 (Kyoto University), 2007. http://hdl.handle.net/2433/136229.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Cherkaoui, Mohammed. "Elaboration par electrolyse en courant pulse de revetements d'alliages ni-cu et ni-mo : etude de leurs proprietes." Paris 6, 1987. http://www.theses.fr/1987PA066306.

Повний текст джерела
Анотація:
Depot electrolytique sous courant pulse de revetements d'alliages base nickel. Etude de l'influence des parametres du courant pulse sur les differentes proprietes des depots ni-cu et ni-mo: composition, structure, contraintes, tenue a la corrosion (nacl a 3%)
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Ward, Matthew. "Enhanced copper electrodeposition onto printed circuit boards using pulsed current and eductor agitation." Thesis, Loughborough University, 1999. https://dspace.lboro.ac.uk/2134/7476.

Повний текст джерела
Анотація:
Printed Circuit Board (PCB) manufacture involves an electrolytic copper deposition stage for consolidation of conductive circuit paths. Miniaturisation trends requiring increased circuit densities and high aspect ratio through-holes are restricted by the phenomenon of non-uniform copper electrodeposit thickness which can affect electrical impedance properties of the circuitry, cause electrical discontinuity between adjoining circuit layers and inhibit component-lead insertion. This thesis considers means of enhancing the electrodeposition process to alleviate the aforementioned problems. Following a comprehensive review of process technology, both a novel electrolyte agitation method utilising eductors and a Periodic Pulse Reverse (PPR) current technique were investigated experimentally within a pilot tank containing 350 litres of electrolyte. Eductor agitation was analysed/optimised using high-speed photography and a mass transport mapping technique. Data for agitation configurations were verified by statistical analysis of thickness distributions across high surface-area panels. PPR current was initially studied with a small-scale pulse unit and Assaf Cell throwing power test, followed by pilot tank trials using a full-size pulse rectifier in conjunction with eductor agitation and a proprietary electrolyte containing additives. Through-hole throwing power, deposit morphology and microstructure were investigated under various low-frequency pulse conditions and anodic-to-cathodic current density ratios. Eductor agitation and PPR current were compared against the more widely used air agitation and direct current techniques. The effects of air agitation on electrolyte conductivity and commercially produced PCBs were also considered. Optimum agitation conditions were achieved using eight eductors inclined at 37.5° from the horizontal and spaced equidistantly along longitudinal tank walls. Such conditions decreased the standard deviation of copper thickness measured on high surface area panels and lessened edge-effects. Consistent agitation levels up to ten times greater than static solution were recorded, providing enhanced deposition rates; by comparison, air agitation achieved levels of around seven times in uniform regions. Conductivity data showed good correlation with a theoretical approach; air agitation was found to reduce conductivity in proportion to the voidage fraction of gas bubbles and by 20-30% in electrolyte adjacent to air sparge pipes. PPR current provided superior deposits compared to direct current. Through-hole throwing power ratios between 1:1 and 1.3:1 (hole-thickness: surfacethickness) were recorded at mean cathodic current densities between 3.3-4 A/dm2 using pulse timings of 15,1,20,1,25,1 and 30,1 ms (cathodic: anodic) and current density ratios between 2.6:1 and 3:1 (peak-anodic: peak-cathodic); optimum conditions for boards produced in the pilot tank were provided by the 20,1 ms timing. The 25,1 ms timing exhibited high throwing power between 2.5-3.5 A/dm2 under Assaf evaluation but was unable to maintain a uniform thickness distribution in through-holes across a PCB surface. Deposit microstructure and microhardness recorded using PPR current varied according to pulse parameters. Controlling factors and their influence upon results were discussed. Parameters critical to optimisation of agitation and PPR current were attributed to electrochemical effects during deposition. The merits, limitations and potential application of these techniques were examined in relation to PCB manufacture and future priorities were considered.
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Luk, Suet-Fan. "Surface hardening of AISI 1050 steel by pulse electrolysis in aqueous solutions." Thesis, University of Warwick, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364579.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Maire, Jean-Michel. "Etude de l'alliage cofecr elabore par electrolyse sous courants pulses." Besançon, 1998. http://www.theses.fr/1998BESA2046.

Повний текст джерела
Анотація:
L'augmentation des densites d'informations stockees sur les medias d'enregistrement magnetique requiert des tetes de lecture-ecriture, et donc des materiaux doux, de plus en plus performants. L'alliage cofecr, elabore par depot electrolytique sous courants pulses, a ete selectionne pour ses caracteristiques repondant aux criteres exiges pour le materiau magnetique de la tete, en particulier une tres forte aimantation a saturation et une resistivite elevee. Une etude des phenomenes electrochimiques mis en jeu lors du depot a permis d'optimiser les parametres intervenant sur la composition de l'alliage. Les depots ont, dans un premier temps, ete realises sur des grandes surfaces afin de permettre leurs caracterisations magnetiques et structurales. Une plage de composition a ete definie et un traitement thermique associe a permis d'atteindre les performances desirees. Grace a l'etude structurale, un lien a ete etabli entre les proprietes optimales et la structure de l'alliage. Le comportement vis a vis de la corrosion a ete egalement etudie montrant que le nouvel alliage cofecr est tres performant, tant par ses proprietes magnetiques que par son comportement vis a vis de la corrosion. La technique du depot electrolytique sous courants pulses est enfin appliquee au depot dans des caissons de tailles microniques. Les resultats obtenus sont encourageants car l'optimisation des parametres des courants pulses autorise le depot d'alliages ayant la plage de composition definie prealablement. La visualisation des domaines magnetiques montre une repartition homogene et permet d'envisager l'integration de ce materiau dans des microcomposants magnetiques.
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Сачанова, Юлія Іванівна. "Електрохімічне формування покривів сплавами і композитами Fe–Co–Mo(MoOₓ)". Thesis, Національний технічний університет "Харківський політехнічний інститут", 2019. http://repository.kpi.kharkov.ua/handle/KhPI-Press/43993.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.03 – Технічна електрохімія. – Національний технічний університет «Харківський політехнічний інститут», Харків, 2019. Дисертаційну роботу присвячено розробці гальванохімічної технології покривів тернарними сплавами і композитами системи ферум-кобальт-молібден з підвищеним рівнем функціональних властивостей на підставі гіпотези про інкорпорацію оксидів тугоплавких компонентів як інтермедіатів електродних реакцій, до складу металевої матриці. Обґрунтовано компонентний склад електроліту та співвідношення концентрацій сплавотвірних компонентів в системі ферум-кобальт-молібден і закономірності комплексоутворення в присутності цитрату, які склали підгрунтя до розробки електролітів для нанесення металевих і металооксидних покривів. Встановлено, що бездефектні покриви високої якості з вмістом молібдену понад 30 ат.% формуються з електролітів із концентрацією натрій цитрату 0,4−0,5 М та оксометалату 0,2 М. Доведено, що утворення гетероядерних комплексів є передумовою для гнучкого керування іонними рівновагами в розчині, а відтак, і механізмом та перенапругою електродних реакцій, перебіг яких підпорядковується закономірностям змішаної кінетики, про що свідчать і визначена енергія активації процесу. Відновлення молібдат-іону до металевої фази відбувається через утворення поверхневих оксидів проміжного ступеню окиснення. Залежно від повноти перебігу цього процесу створюються умови до формування металевого покриву тернарним сплавом або металоксидного композиту, друга фаза якого складається з оксидів молібдену в проміжному ступені окиснення, тобто утворюється безпосередньо в електродному процесі. Встановлено, що відновлення оксометалату може перебігати в декілька стадій − як за електрохімічним, так і хімічним механізмом за участю ад-атомів гідрогену, які утворюються в катодній реакції. Саме така особливість забезпечує варіативність катодного процесу та надає можливість гнучкого керування перебігом окремих стадій і складом та властивостями цільового продукту технологічного процесу. Головними чинниками, що забезпечують варіативність складу покривів, є режим поляризації – гальваностатичний або імпульсний, та амплітудні і часові параметри струму. За однакових густин струму застосування імпульсного електролізу дозволяє формувати покриви із значно вищим вмістом молібдену. Зокрема, за сталих тривалості імпульсу 10-20 мс та паузи 5–20 мс склад покривів збагачується молібденом до 30 ат. % при суттєво нижчому вмісті оксигену. Такі зміни у складі покриву порівняно з стаціонарним режимом зумовлені перебігом впродовж паузи хімічної реакції відновлення проміжних оксидів молібдену ад-атомами водню внаслідок реалізації спілловер-ефекту. Вища кількість фази оксидів в складі покривів тернарним сплавом, сформованих в гальваностатичному режимі, дає підстави класифікувати їх як композити. За однакового типу поляризації струмозалежними виявились не тільки вміст компонентів сплаву/композиту, а й морфологія поверхні осадів та вихід за струмом. В умовах стаціонарного електролізу вихід за струмом сплаву знаходиться в межах 56−62 %, а при застосуванні імпульсного електролізу ефективність процесу зростає до 61−70 % за рахунок внеску хімічної реакції відновлення оксидів молібдену ад–атомами водню. Розсіювальна здатність електроліту також залежить від густини струму і має екстремальний характер із максимумом у 62 % при і=2,5 А/дм². Отримані результати розсіювальної здатності узгоджуються із значеннями для відомих електролітів. Композитні Fe−Co−MoОₓ і металеві Fe−Co−Mo покриви мають дрібноглобулярну структуру поверхні, розвиненість якої зростає зі збільшенням густини струму, а характер і розмір кристалітів залежить від складу покривів і режимів електролізу. Так, для покривів Fe48Сo40Mo12, отриманих постійним струмом, середній розмір кристалітів становить 63 Ǻ, а для покриву Fe43Сo39Mo18, отриманому в імпульсному режимі, середній розмір кристалітів складає 56 Ǻ. Залежно від режимів електроосадження різниться і шорсткість поверхні – в гальваностатичному та імпульсному режимах параметр Ra для сплавів становить 0,15 і 0,11, відповідно, що характерно для 9–10 класів шорсткості. Синтезовані покриви мають широкий спектр фізико-хімічних і фізико-механічних властивостей з високим рівнем споживчих характеристик. Так, тестуванням корозійної тривкості встановлено, що за глибинним показником (0,018 – 0,02 мм/рік) покриви мають 4 бал стійкості за десятибальною шкалою, а ранжовані за густиною струму корозії є "стійкими" в кислому середовищі та "вельми стійкими" у нейтральному та лужному. Корозійну стійкість в кислому середовищі підвищує наявність молібдену через кислотний характер його оксидів, а в нейтральному і лужному середовищах покриви проявляють стійкість внаслідок пасивації феруму і кобальту. Вільна енергія поверхні металевих покривів і композитів в межах 118−128 мДж/м², що майже на порядок величини нижча за сплавотвірні компоненти, а поверхні композитів Fe−Co−MoОₓ нижча ніж сплаву Fe−Co−Mo завдяки вищому вмісту кисню в його структурі, внаслідок чого покриви композитами є хімічно стійкішими. Мікротвердість гальванічних покривів знаходиться в межах 595 – 630 кгс/мм² і є вищою, порівняно із сплавотвірними компонентами, а також в 2,5–3 рази більшою за сталеву основу. Мікротвердість осадів симбатно змінюється із вмістом молібдену і в інтервалі досліджених густин струму також зростає з підвищенням цього параметра. Результатами комплексних випробувань механічних характеристик доведено високу адгезію покривів до поверхні підкладки, стійкість до полірування, нагріву і зламу. Встановлено високу електрокаталітичну активність тернарного сплаву в анодних реакціях окиснення низькомолекулярних спиртів, а значення анодних і катодних піків струму на циклічних вольтамперограмах навіть вищі за платиновий електрод, тому гальванічні покриви сплавом Fe−Co−Mo можна розглядати як перспективні каталітичні матеріали паливних елементів. Високу електрокаталітичну активність покривів виявлено і в катодних реакціях виділення водню з лужних та кислих середовищ, яка внаслідок реалізації синергетичного ефекту вища порівняно із індивідуальними металами. Встановлено залежність між складом сплаву і каталітичними властивостями – більший вміст молібдену в цілому покращує якість покривів. Водночас, густина струму обміну реакції виділення водню на композитних покривах в усіх модельних розчинах вище, ніж для металевих, що узгоджується з результатами визначення виходу за струмом. Покривам притаманні магнітні властивості, а значення коерцитивної сили для покривів Fe−Co−Mo знаходиться в інтервалі 7−10 Ое, що перевищує значення для бінарного Fe−Co сплаву (6,5–7,2 Ое). Сплави Fe−Co−Mo, як "магнітом’які матеріали", можна застосовувати і у виробництві елементів магнітних інформаційних накопичувачів. Означений сплав виявляє сенсорні властивості щодо окремих компонентів газових середовищ та може бути використаний, зокрема, як матеріал чутливого елемента сенсора для визначення граничної концентрації водню. На підставі визначених кінетичних характеристик і технологічних струмозалежних параметрів створено програмний і технологічний модулі і запропоновано варіативну технологічну схему нанесення покривів Fe−Co−Мо(МоОₓ) керованого складу та прогнозованими фізико-механічними і фізико-хімічними властивостями. За результатами дослідно-промислових випробувань виробів та елементів обладнання з покривами тернарними сплавами на ПАТ "Укрндіхіммаш" та в Метрологічному центрі військових еталонів Збройних Сил України доведено високий рівень експлуатаційних характеристик синтезованих покривів та ефективність технології їх нанесення. Результати досліджень впроваджені в навчальний процес кафедри фізичної хімії НТУ "ХПІ" і Військового інституту танкових військ НТУ "ХПІ".
Thesis for the degree of Candidate of Technical Sciences in the speciality 05.17.03 – Technical Electrochemistry. – National Technical University «Kharkiv Polytechnic Institute» Kharkiv, 2019. The component composition of the electrolyte and the ratio of the concentrations of the alloys forming components in the ferum-cobalt-molybdenum system and the regularities of the complex formation in the presence of citrate, which became the basis for the development of electrolytes for metal deposition and metal oxide coatings are substantiated. It was found that high-quality coatings with a molybdenum content of more than 30 at.% Are formed from electrolytes with a concentration of sodium citrate of 0,4 – 0,5 М and oxometalate of 0,2 М. It is proved that the formation of heteronuclear complexes is a prerequisite for the flexible control of ionic equilibria in solution, the mechanism and overvoltage of electrode reactions, the course of which obeys the laws of mixed kinetics, which is confirmed and determined by the activation energy of the process. The reduction of the molybdate ion to the metal phase occurs by the formation of surface oxides of an intermediate oxidation state. Depending on the completeness of the course of this process, conditions are created for the formation of a metal coating of a ternary alloy or a metal oxide composite, the second phase of which consists of molybdenum oxides in an intermediate oxidation state, that is, is formed directly in the electrolysis process. The reduction of oxometalate can occur in several stages using both the electrochemical and chemical mechanisms, which include hydrogen ad-atoms and atoms that are formed in the cathodic reaction. It is this feature that provides the variability of the cathode process and allows flexible control of the stages, as well as the composition and properties of the product of the technological process. The main factors ensuring variability of the coating composition are polarization modes — galvanostatic and pulsed modes, and amplitude and time parameters of the current. At the same current densities, the use of pulsed electrolysis allows the formation of coatings with a significantly higher molybdenum content. In particular, with a constant pulse duration of 10–20 ms and pauses of 5–20 ms, the composition of the shells is enriched in molybdenum to 30 at.% With a significantly lower oxide content. Such changes in the composition of the coating compared with the stationary regime are due to the chemical reaction of the reduction of intermediate molybdenum oxides by hydrogen atoms as a result of the overflow effect. The higher content of the oxide phase in the composition of tournament alloys formed in the galvanostatic mode allows us to classify them as composites. With the same polarization mode, the parameters depending on the current are determined not only by the content of the components of the alloy or composite, but also by the morphology of the coating surface and the current efficiency. Under the conditions of stationary electrolysis, the efficiency of the alloy is in the range 56−62 %, and when using pulsed electrolysis, the efficiency of the process increases to 61–70 % due to the chemical reaction of the reduction of molybdenum oxides. hydrogen atoms of hydrogen. The dissipated ability of the electrolyte also depends on the current density and is extreme in nature with a maximum of 62% at i = 2.5 A/dm². Dissipation results are consistent with known electrolytes. Composite coatings Fe−Co−MoOₓ and metallic coatings Fe−Co−Mo have a fine-crystalline structure, surface development increases with increasing current density, and the nature and size of crystallites depends on the composition of the coatings and electrolysis conditions. So for Fe48Co40Mo12 coatings obtained by direct current, the average crystallite size is 63 Ǻ, and for Fe43Co39Mo18 coatings obtained in a pulsed mode, the average crystallite size is 56 Ǻ. Depending on the electrodeposition modes, the surface roughness also varies - in the galvanostatic and pulsed modes, the parameter Ra for the alloys is 0,15 and 0,11, respectively, which corresponds to grades 9-10. The synthesized coatings have a range of physico-chemical and physico-mechanical properties with a high level of performance. Thus, corrosion resistance testing shows that the depth of the index (0,018 – 0,02 mm/year) coatings are characterized as 4 points of resistance on a ten-point scale, and ranked according to the density of the corrosion current is "stable" in acidic solutions and "very stable" in neutral and alkaline solutions. Corrosion resistance to the acid solutions increases the presence of molybdenum through the acidic nature of its oxides, and in neutral and alkaline solutions the covers exhibit resistance due to passivation of iron and cobalt. The free energy of the surface of metal coatings and composites is in the range of 118-128 mJ/m², which is almost an order of magnitude lower than the alloys of the component and the surfaces of the Fe−Co−MoOₓ composites lower than the Fe−Co−Mo alloy due to the higher oxygen content in its structure. , causing the composites to be chemically stable. The microhardness of galvanic coatings is in the range of 595–630 kgf/mm² depending on the individual components and is 2,5–3 times higher than for steel. The microhardness of the coatings increases symbatically with an increase in the amount of molybdenum in the alloy and also increases with an increase in this parameter in the integral of current densities. The high adhesion of the coatings to the surface of the steel, resistance to polishing, heating and kink is established. The high electrocatalytic activity of ternary alloys in the reactions of anodic oxidation of low molecular weight alcohols was established, and the magnitude of the peaks of the anodic and cathodic currents in the cyclic voltammogram is even higher than that of the platinum electrode, so galvanic coatings with Fe−Co−Mo alloy can be considered a promising catalytic material for fuel cells. High electrocatalytic activity of the skin was also detected in cathodic reactions of hydrogen evolution from alkaline and acidic media, which is higher as a result of the synergistic effect compared to individual metals. A connection was established between the alloy composition and catalytic properties – a higher molybdenum content usually improves the quality of coatings. At the same time, the exchange current density of the hydrogen evolution reaction on composite coatings in all model solutions is higher than for metal coatings, which is consistent with the results of determining the current efficiency. The coatings have magnetic properties, and the value of the coercive force for Fe—Co−Mo coatings is in the range of 7-10 Oe, which is higher than the value for the Fe−Co alloy (6,5-7,2 Oe). Fe−Co−Mo alloys are "Magnetic materials" and can be used in the production of magnetic information storage elements. The alloy has sensory properties on the individual components of the gas environment and can be used, in particular, as a sensor material of the sensor to determine the maximum hydrogen concentration. Based on kinetic characteristics and technological parameters, software and technological module have been created and a variable technological scheme for applying Fe−Co−Mo(MoOₓ) coatings of controlled composition and predicted physicomechanical and physicochemical properties has been proposed. According to the results of tests and elements of equipment coated with ternary alloys at PJSC "Ukrndikhimmash" and at the Metrological center of military standards of the Armed Forces of Ukraine, a high level of operational characteristics of the synthesized coatings and the effectiveness of the technology for their synthesis have been proved. The research results were introduced into the educational process of the Department of Physical Chemistry NTU "KhPI" and the Military Institute of Tank Troops NTU "KhPI".
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Єрмоленко, Ірина Юріївна. "Удосконалення електрохімічного рециклінгу псевдосплавів вольфраму". Thesis, НТУ "ХПІ", 2012. http://repository.kpi.kharkov.ua/handle/KhPI-Press/22265.

Повний текст джерела
Анотація:
Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.03 - технічна електрохімія. - Національний технічний університет “Харківський політехнічний інститут”, Харків, 2012 р. Дисертацію присвячено удосконаленню технології електрохімічної переробки вольфрамвмісного брухту і одержання покриттів сплавами вольфраму з широким спектром функціональних властивостей. За допомогою лінійної вольтамперометрії встановлено кінетичні закономірності і механізм окиснення вольфраму, кобальту і сплаву WC-Co в лужних електролітах при додаванні дифосфат- і цитрат-іонів. Показано, що кобальт утворює стійкі розчинні комплекси з дифосфат-іонами, а вольфрамати – гетероядерні комплекси з цитратами. Обґрунтовано кількісний склад електроліту на основі дифосфат-/цитрат-іонів, варіювання співвідношенням концентрацій яких дозволяє керувати процесом окиснення окремих компонентів при рН 10-12. Запропоновано застосування імпульсних режимів електролізу. що дозволяє працювати при підвищених густинах струму, оскільки під час паузи реалізуються процеси адсорбції лігандів, десорбції продуктів реакції і відведення їх з прианодного простору. Визначено вплив складу електроліту та енергетичних і часових параметрів електролізу на вихід за струмом, селективність і швидкість розчинення псевдосплаву. Доведено можливість отримання з напрацьованого електроліту електролітичних покриттів сплавами W-Co-Fe з вмістом кобальту 73-77 %, мас., вольфраму 23-25 %, мас. та заліза 1,0-1,5 %, мас.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Rolet, Jason. "Influence de la forme de l'onde de polarisation sur la microstructure et les propriétés de revêtements électrolytiques élaborés à base de chrome trivalent." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD010.

Повний текст джерела
Анотація:
Ce travail de thèse s’inscrit dans un projet de grande envergure piloté par l’IRT M2P, intitulé « Hard Chrome by Trivalent Chromium » qui regroupe 15 partenaires industriels et 2 partenaires académiques. L’objectif principal est de substituer les composés du chrome hexavalent par des électrolytes à base de chrome trivalent dans les procédés de chromage « dur », en réponse à l’application du règlement européen REACH en septembre 2017, même si des demandes d’autorisations temporaires sont en cours. Dans le cadre de cette thèse, des études électrochimiques ont été réalisées sur des bains commercial et synthétique. Celles-ci ont conduit au choix d’un matériau jouant le rôle d’anode, à une meilleure compréhension des mécanismes mis en jeu et de ce fait à une optimisation des conditions d’utilisation du bain commercial. D’autre part, une étude approfondie des courbes transitoires permet de mieux appréhender le comportement des électrolytes de chrome trivalent vis-à-vis des courants pulsés. Ainsi, un plan d’expérience sur les paramètres des pulses avec pour sortie de multiples caractérisations des dépôts de chrome montre que les courants pulsés influent sur plusieurs propriétés telles que : la teneur en carbone, la structure cristalline, la microdureté, la morphologie de surface et la microfissuration. Grâce au traitement des données issues du plan d’expériences, l’optimisation des paramètres de polarisation aboutit à l’élaboration de séquences de pulses optimisées. L’utilisation de celles-ci, employées seules ou en combinaison avec d’autres séquences de pulses issues également du plan d’expériences, aboutit à l’obtention de dépôts de chrome trivalent dont les propriétés sont modulables en fonction des paramètres procédés. Dans l’optique de la mise en place d’une nouvelle stratégie de choix des paramètres de l’impulsion anodique, un dispositif permettant la mesure du pH local en fonction des séquences et à proximité immédiate de la surface a été élaboré. Les premières tendances confirment les modes d’action des courants pulsés, et les choix qui ont été faits pour l’optimisation
This thesis work is part of an ambitious project handled by IRT M2P, named “Hard Chrome by Trivalent Chromium” which gathers 15 industrials partners but also 2 academic partners. The main objective is to substitute the hexavalent chromium compounds in hard chromium electroplating process before there ban by European instances (REACH, ECHA) in September 2017, excepted for those authorized. As part of this thesis, electrochemical studies were realized on commercial and synthetic baths. Thanks to this studies, a material has been chosen to act as an anode for the making of the trivalent chromium coatings ; furthermore, the utilization conditions of the commercial bath has been optimized. Moreover, another study based on transient curves allows a better comprehension of the behaviour of the trivalent chromium electrolytes regarding pulsed current. This work permitted the elaboration of pulse sequences in the form of an experimental design. The realization and characterization of trivalent chromium coatings as a part of the experimental design show that pulsed current have an effect on several properties of the coatings such as carbon content, crystalline structure, microhardness, surface morphologies an microcracking. Thanks to the analyses of the results from the experimental design, an optimization of pulsed current has been made to obtain optimized pulse sequences. The utilization of those pulse sequences, used alone or combine with some pulse sequences of the experimental design lead to the elaboration of trivalent chromium coatings which properties are adjustables depending on the set parameters of the process. To further optimize the properties of the coatings, the basis of an analysis tool based on local pH measurements are developed; this analysis tool must make it possible to select the most interesting pulse sequences for the realization of trivalent chromium coatings
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Every, Hayley A. (Hayley Ann) 1973. "An NMR diffusion study of the transport properties in novel electrolytes." Monash University, Dept. of Materials Engineering, 2001. http://arrow.monash.edu.au/hdl/1959.1/8796.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Mays, Thomas Allen. "Low voltage electrolytic capacitor pulse forming inductive network for electric weapons." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2006. http://library.nps.navy.mil/uhtbin/hyperion/06Jun%5FMays.pdf.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Книги з теми "Pulsed electrolysis"

1

Luk, Suet-Fan. Surface hardening of AISI 1050 steel by pulse electrolysis in aqueous solution: Executive summary. [s.l.]: typescript, 1999.

Знайти повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.

Частини книг з теми "Pulsed electrolysis"

1

Luján, E., H. Schinca, N. Olaiz, S. Urquiza, F. V. Molina, P. Turjanski, and G. Marshall. "Electrolytic Ablation Dose Planning Methodology." In 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies, 101–4. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-287-817-5_23.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Straka, M., F. Lisý, and L. Szatmáry. "Electrodeposition of Uranium by Pulse Electrolysis in Molten Fluoride Salts." In Molten Salts Chemistry and Technology, 467–74. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118448847.ch6h.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Aliofkhazraei, M., A. Sabour Rouhaghdam, and H. Alimadadi. "Study of Pulsed Bipolar Nanocrystalline Plasma Electrolytic Carburizing on Nanostructure and Friction Coefficient of Compound Layer." In Friction, Wear and Wear Protection, 637–44. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011. http://dx.doi.org/10.1002/9783527628513.ch83.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Zhu, X., N. Nguyen, B. Sun, Z. Li, and P. Zhan. "Phenolic wastewater treatment by pulsed electrolysis with alternative current." In Energy, Environment and Green Building Materials, 105–8. CRC Press, 2015. http://dx.doi.org/10.1201/b18511-24.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

Hourng, Lih-Wu, Wei-Hua Wu, and Ming-Yuan Lin. "The improvement of water electrolysis efficiency by using acid-alkaline electrolysis with multi-electrode and pulsed current." In Engineering Innovation and Design, 143–47. CRC Press, 2019. http://dx.doi.org/10.1201/9780429019777-29.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Vanags, Martins, Janis Kleperis, and Gunars Bajars. "Water Electrolysis with Inductive Voltage Pulses." In Electrolysis. InTech, 2012. http://dx.doi.org/10.5772/52453.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Tao, Shaohu, Jianping Peng, Yuezhong Di, Kejia Liu, Kun Zhao, and Naixiang Feng. "Electrochemical Study of Potassium Fluoride in a Cryolite-Aluminum Oxide Molten Salt." In Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000409.

Повний текст джерела
Анотація:
Selective and efficient electrochemical methods to characterize aluminum are necessary. Current methods are based on potentiodynamic polarization, recurrent potential double pulses, chronopotentiometry, open-circuit chronopotentiometry, and potentiostatic electrolysis, but have not been used to characterize the deposition of aluminum in Na3AlF6-Al2O3-KF molten salts. The control processes of the formation of aluminum-tungsten inter-metallic compounds, and the deposition of aluminum have been investigated by using steady-state potentiodynamic cathodic polarization curves. The dissolution loss rate of aluminum was determined with an increase in KF concentration by the analysis of recurrent potential double pulses. Using chronopotentiometry, it was confirmed that the deposition potential of aluminum shifted more negative as the KF concentration increased, and a higher KF concentrations induced a higher cathodic overpotential. From open-circuit potential measurements and scanning electron micrographs, it was concluded that aluminum(III) ions react with tungsten substrates to form an aluminum-tungsten compound, and the reaction mechanism of aluminum was determined. These electrochemical methods applied with aluminum electrolysis were accurate, efficient, and reliable.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Stępniowski, W. J. "Anodic Oxides: Applications and Trends in Nanofabrication." In Encyclopedia of Aluminum and Its Alloys. Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9781351045636-140000304.

Повний текст джерела
Анотація:
Anodic aluminum oxide (AAO) is one of the most frequently fabricated materials with the use of electrochemical techniques. In this article, current trends in aluminum anodizing are reviewed, including anodizing in novel electrolytes, anodizing in electrolytes with various additives, and fabrication of 3D nanostructures using pulse anodizing, leading to the formation of distributed Bragg reflectors. Applications of AAO in the field of nanofabrication are also reviewed with the use of milestone and the most current research.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

R. Miller, John, and Matthew J. Bird. "Effects of Electrolyte on Redox Potentials." In Redox Chemistry - From Molecules to Energy Storage [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.103003.

Повний текст джерела
Анотація:
Redox potentials, especially as measured by cyclic voltammetry and related electrochemical techniques, are the basis for understanding energetics of photochemical solar energy storage, organic photovoltaics, light-emitting diodes, and even photosynthesis. These very popular techniques are dominant although none of the energy systems just mentioned contain large concentrations, typically 100 mM, of supporting electrolyte needed for electrochemical techniques to work. At the same time, the added electrolytes often have large, but unknown effects on the energetics studied. Despite substantial efforts using microelectrodes, it has not been possible to utilize electrochemical techniques to measure redox potentials in the absence of electrolytes. This chapter will be an account of new techniques applying the method of pulse radiolysis to partly answer the question: what is the effect of electrolytes on redox potentials?
Стилі APA, Harvard, Vancouver, ISO та ін.
10

Kublanovsky, Valeriy S., Oksana L. Bersirova, Yulia S. Yapontseva, Tetyana V. Maltseva, Vasyl M. Nikitenko, Eugen A. Babenkov, Sergei V. Devyatkin, et al. "Electrochemical synthesis of nanostructured super-alloys with valuable electrochemical, electrocatalytic and corrosion properties." In NEW FUNCTIONAL SUBSTANCES AND MATERIALS FOR CHEMICAL ENGINEERING, 130–45. PH “Akademperiodyka”, 2021. http://dx.doi.org/10.15407/akademperiodyka.444.130.

Повний текст джерела
Анотація:
A study of the electrochemical formation of functional coatings by binary and ternary alloys M1M2, M1M3, M1M2M3 (where M1 is 3d6-8 metal of the iron subgroup: Fe, Co, Ni, and M2 is Mo, W; M3 is Re), from complex aqueous solutions and ionic melts. Such alloys are called "superalloys" due to a wide range of valuable physicochemical (corrosive, electrocatalytic) and functional properties and are designed to operate in extreme temperature and power modes with simultaneous exposure to an aggressive environment. The presence of rhenium in the alloy also simultaneously increases its strength and ductility (the so-called "rhenium effect"). A fundamentally new electrolyte (highly concentrated ammonia-acetate) has been developed for the formation of molybdenum alloys (NiMo, CoMo, FeMo) with a maximum content of a refractory component (about 85 at.%), such as those that exhibit a high electrocatalytic effect in the hydrogen evolution reaction (HER). The deposition of binary CoRe and ternary CoWRe alloys from a citrate electrolyte was carried out. The influence of the composition of solutions and electrolysis parameters on the chemical and phase composition, structure and properties of coatings has been established. The parameters of pulse electrolysis for obtaining multilayer CoMo and CoW coatings from carbamide melts containing cobalt and molybdenum / tungsten oxides have been determined.
Стилі APA, Harvard, Vancouver, ISO та ін.

Тези доповідей конференцій з теми "Pulsed electrolysis"

1

Albornoz, Matias, Marco Rivera, Roberto Ramirez, Felipe Varas-Concha, and Patrick Wheeler. "Water Splitting Dynamics of High Voltage Pulsed Alkaline Electrolysis." In 2022 IEEE International Conference on Automation/XXV Congress of the Chilean Association of Automatic Control (ICA-ACCA). IEEE, 2022. http://dx.doi.org/10.1109/ica-acca56767.2022.10006326.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
2

Roldan Cuenya, Beatriz. "Selectivity Control in CO2 Electroreduction over Cu Electrocatalysts via Pulsed Electrolysis." In nanoGe Fall Meeting 2021. València: Fundació Scito, 2021. http://dx.doi.org/10.29363/nanoge.nfm.2021.174.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
3

Zhang, Xinzheng, Nickolai V. Kukhtarev, Tatiana Kukhtareva, Anatoliy Glushchenko, Jiayi Wang, and Yuriy Garrbovskiy. "Photogalvanic effect for water splitting by pulsed electrolysis enhanced by magnetic fields." In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications XII, edited by Shizhuo Yin and Ruyan Guo. SPIE, 2018. http://dx.doi.org/10.1117/12.2320702.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
4

Taniguchi, Ryoichi, and Takao Yamamoto. "High sensitivity measurement of charged particles emitted during pulsed electrolysis of D2O." In Anomalous nuclear effects in deuterium/solid systems. AIP, 1991. http://dx.doi.org/10.1063/1.40665.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
5

NIE, Rui, Tian-guo LI, Xiao-jun XU, and Shu-li LIU. "Removal of copper ions from flotation wastewater by pulsed electric field enhanced internal micro-electrolysis." In The 2015 International Conference on Materials Engineering and Environmental Science (MEES2015). WORLD SCIENTIFIC, 2016. http://dx.doi.org/10.1142/9789814759984_0012.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
6

Lee, Kern, Kyoung-Jae Chung, and Y. S. Hwang. "A New Method to Generate Strong Underwater Shock Waves Using Water Electrolysis in Negative Streamer Pulsed Spark Discharge." In 2018 IEEE International Conference on Plasma Science (ICOPS). IEEE, 2018. http://dx.doi.org/10.1109/icops35962.2018.9575821.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
7

Lewandowski, Melanie, Daniel A. Ateya, Ashish A. Shah, and Susan Z. Hua. "Sequential Electrolytic Bubble-Based Micro-Pump Dosing System." In ASME 2003 International Mechanical Engineering Congress and Exposition. ASMEDC, 2003. http://dx.doi.org/10.1115/imece2003-41314.

Повний текст джерела
Анотація:
An electrolytic bubble actuated micropump has been fabricated and characterized for dosing application. The micropump consists of a series of bubbles formed directly inside a microfluidic channel, and the volume displacement characteristics of inflating/deflating electrolytic bubbles are utilized to move the liquid along the channel. Prototype chips with five sequential bubbles were built using standard photolithography techniques. The pump performance was characterized as a function of the voltage required to generate electrolytic bubbles of varying size (3.5–4.5 V), pulse-width (50–300 ms), time interval between pulses (50–300 ms), and backpressure; each parameter being varied independently. It was found that the size of the bubble, and hence the quantity of liquid displaced, increases with voltage. Also, the pump rate increases with a reduction in pulse-width and the time interval between pulses. The optimum pump rate of 24 nl/min, corresponding to a flow velocity of 640 μm/s, was obtained for the current channel size of 25×25μm in cross-section. The pump performed successfully against backpressures up to 107 kPa.
Стилі APA, Harvard, Vancouver, ISO та ін.
8

Risko, Donald G. "Electrolytic Micro Machining Technology." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81451.

Повний текст джерела
Анотація:
The electrolytic machining process that has been used for many years to machine airfoil surfaces in turbine engine applications and critical features in diesel injection nozzles is emerging as a machining process for features in the 1 to 100 micron range. Like Electrochemical Machining (ECM), Electrolytic Micro Machining is a very fast area based machining process. In most cases, all features can be machined simultaneously in two to three seconds or less. The technology draws upon the basics of ECM which is an application of Faradays Law to metal removal. Tooling that consists of precise cathodes and fixtures are critical to the machining outcome, as are other factors such as electrolyte parameter selection. Using pulsed direct current to achieve high current densities with necessary “relaxation” time, can enable the process to machine in a predictable manner. Tooling is not consumed in the traditional sense, therefore, the economics of the process for medium to high volume production is very attractive.
Стилі APA, Harvard, Vancouver, ISO та ін.
9

Takahashi, A., T. Takeuchi, T. Iida, and M. Watanabe. "Neutron spectra from D2O–Pd cells with pulse electrolysis." In Anomalous nuclear effects in deuterium/solid systems. AIP, 1991. http://dx.doi.org/10.1063/1.40703.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
10

FURNEAUX, JOHN E. "SELECTIVE HEAT-PULSE STUDIES OF POLYMERIC ELECTROLYTES." In Proceedings of the 16th Course of the International School of Atomic and Molecular Spectroscopy. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810960_0033.

Повний текст джерела
Стилі APA, Harvard, Vancouver, ISO та ін.
Ми пропонуємо знижки на всі преміум-плани для авторів, чиї праці увійшли до тематичних добірок літератури. Зв'яжіться з нами, щоб отримати унікальний промокод!

До бібліографії